EP1173657B1 - Turbine blade and method for producing a turbine blade - Google Patents

Turbine blade and method for producing a turbine blade Download PDF

Info

Publication number
EP1173657B1
EP1173657B1 EP00925036A EP00925036A EP1173657B1 EP 1173657 B1 EP1173657 B1 EP 1173657B1 EP 00925036 A EP00925036 A EP 00925036A EP 00925036 A EP00925036 A EP 00925036A EP 1173657 B1 EP1173657 B1 EP 1173657B1
Authority
EP
European Patent Office
Prior art keywords
blade
turbine
wall
turbine blade
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00925036A
Other languages
German (de)
French (fr)
Other versions
EP1173657A1 (en
Inventor
Ralf Kannefass
Markus Tacke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1173657A1 publication Critical patent/EP1173657A1/en
Application granted granted Critical
Publication of EP1173657B1 publication Critical patent/EP1173657B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/224Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/226Carbides
    • F05D2300/2261Carbides of silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the invention relates to a turbine blade of a turbine, especially a gas or steam turbine.
  • the turbine blade extends along a major axis from a foot area via an airfoil area to a head area.
  • the invention further relates to a method of manufacture a turbine blade and a turbine system, in particular a gas turbine plant.
  • the efficiency of a gas turbine plant is largely determined through the turbine inlet temperature of the working medium, which is relaxed in the gas turbine. Therefore aimed for the highest possible temperatures.
  • the turbine blades but become very thermal due to the high temperatures and due to the high flow rate of the working medium or hot gas subject to high mechanical loads.
  • Usually are manufactured using casting technology for the turbine blades Shovels used. It is a Investment casting - partially solidified in a directed manner or as a single crystal drawn.
  • An apparatus and a method of manufacture of castings, in particular gas turbine blades, with directed solidified structure is described in DE-AS 22 42 111.
  • the turbine blade is here a solid material blade predominantly from nickel alloys in single crystal Cast form.
  • a cooled gas turbine blade goes out U.S. Patent 5,419,039.
  • the turbine blade disclosed therein is also made as a casting put together two castings.
  • EP 0657 404 for example, also shows a turbine blade according to the preamble of claim 1.
  • the turbine blades are usually at temperatures close to the maximum for the material of the turbine blade permissible temperature, the so-called load limit.
  • the turbine inlet temperature is of gas turbines due to the temperature limits for the turbine blade used materials about 1500 to 1600 K, usually already cooling the blade surfaces is made.
  • An increase in turbine inlet temperature requires a larger amount of cooling air, so the efficiency of the gas turbine and thus that of an overall system, especially a gas and steam turbine plant, is deteriorated. This is because the cooling air usually a compressor upstream of the gas turbine is removed. This compressed cooling air is therefore available not for burning and doing work more available. It is also due to thermal expansion the turbine blades required a gap before so-called gap losses, especially in the partial load range of the gas turbine leads.
  • the object of the invention is therefore to provide a turbine blade, the particularly favorable properties regarding high mechanical resistance and temperature resistance having.
  • Another task is a procedure to specify for the manufacture of a turbine blade.
  • this object is achieved by a turbine blade, which is along a major axis of one Foot area over an airfoil area that can be subjected to hot gas extends to a head area and essentially is formed from carbon fiber reinforced carbon, at least the airfoil area has an outer wall with has carbon fiber reinforced carbon by a Protective layer is surrounded.
  • the material for the turbine blade has one in particular high thermal and mechanical stability.
  • the protective layer provided which is at least the one that is subjected to hot gas during operation of the turbine system Surrounding the outer shovel wall.
  • a ceramic layer is expedient as a protective layer intended.
  • a layer of silicon carbide is particularly suitable for the ceramic layer.
  • the use of silicon carbide causes the Surface of the turbine blade due to the reaction of the silicon with the carbon with a thin layer of silicon carbide sealed and thereby protected very effectively.
  • silicon carbide is particularly suitable because of its antioxidant property as a protective layer for the turbine blade made of carbon fiber reinforced carbon.
  • the ceramic layer expediently has a minimum value in their layer thickness between about 0.5 and 5 mm.
  • the ceramic layer can depend on the temperature load there can also be designed as a multilayer layer.
  • the protective layer alternatively or additionally by a gaseous one Given protective film formed by an inert gas is. It is advantageous at least in the airfoil area a supply for the protective gas is provided by the Is surrounded by the blade inner wall. The one through the inner wall of the bucket formed cavity allows a particularly simple Supply of the protective gas.
  • a protective gas advantageously natural gas, water vapor or Inert gas provided.
  • Exhaust gas for example, Nitrogen or an inert gas is used.
  • the shielding gas is particularly favorable in terms of gas dynamics ensures even distribution on the blade surface.
  • the particularly good flow properties of the Shielding gas thus enables the formation of a closed one and full-coverage protective film on the blade surface.
  • the turbine blade is preferably at least Double-skin design in the airfoil area.
  • the wall of the turbine blade can be double-walled be - with a shovel inner wall that is the feeder surrounds, and one extending along the inner wall of the blade Blade outer wall.
  • a plurality formed by cavities each over at least one associated inlet fluidically connected to the feed are.
  • the cavities a plurality of spacers in a grid pattern arranged.
  • the spacers made of carbon fiber reinforced Carbon made. Due to the grid-like arrangement the spacer is a particularly effective flow of the protective gas in the cavities over a long period Distance allowed.
  • Exhausts are provided that remove the shielding gas from each cavity lead outside.
  • the feeders are as well
  • the number and size of the transfers were chosen in such a way that the protective gas flows around the outer wall of the blade becomes.
  • the protective gas is therefore in an open protective circuit passed through the turbine blade.
  • the Shielding gas flows out of the cavities through the exhausts to the outer wall of the bucket and forms a protective film on the surface of the blade outer wall which can be exposed to the hot gas (comparable to the so-called film cooling).
  • the exhausts as well as the feeders are preferably as one Hole or multiple holes executed. These can, for example be funnel-shaped. Through one acute angle will form a film on the Surface of the blade outer wall is particularly favored.
  • Such a double-walled structure enables decoupling the functional properties of the wall structure, whereby on the outer wall of the bucket less demands on the mechanical Stability can be placed on the inner wall of the blade.
  • the inner wall of the shovel can therefore, since it is not is directly exposed to a hot gas flow, with a greater wall thickness than the blade outer wall and essentially the mechanical support function for the turbine blade take.
  • the cross section of the cavity area between the outer wall of the bucket and the inner wall of the bucket is preferred for high speed formation the protective gas is formed as low as possible and lies in particular in the area of the wall thickness of the blade outer wall. Through a small cross-section of the cavity with flow and a high speed of the protective gas thus formed a particularly good protective film property is achieved, especially efficient heat dissipation the protective gas.
  • the turbine blade is preferably designed as a rotor or Guide vane of a turbine, in particular a gas or Steam turbine, at temperatures well above 1000 ° C of the hot gas flowing around the turbine blade during operation occur.
  • the airfoil area of the turbine blade has expediently a height between 5 cm and 50 cm.
  • the Wall thickness of the blade outer wall and / or the blade inner wall preferably has a minimum value between 0.5 mm and 5 mm.
  • the Process parameters of the process e.g. the wrapping and gluing in processing the carbon fibers, the temperature and Duration of the heating process and the type of used Resin, etc. - are the size and the desired strength properties adapted to the turbine blade.
  • FIG. 1 shows a turbine blade 1, in particular a moving blade of a stationary gas turbine, which extends from a base area 4 over a blade area 6 to a head area 8 along a main axis 2.
  • the airfoil area 6 has an airfoil outer wall 10, an inflow area 12 and an outflow area 14.
  • a hot working medium 16 (“hot gas”) flows through the gas turbine (not shown in any more detail), which flows against the turbine blade 1 into the inflow region 12 and flows past along the outer wall 10 of the blade up to the outflow region 14.
  • the turbine blade 1 is formed from carbon fiber reinforced carbon. This material is a so-called fiber composite material which has carbon both as a matrix and as a fiber. By using carbon fiber-reinforced carbon, the turbine blade 1 is suitable for use up to temperatures of 2800 K due to its particularly high mechanical and thermal strength.
  • A serves as protective layer 18 Ceramic layer on the base material, the carbon fiber reinforced Carbon is applied.
  • the ceramic layer is formed from silicon carbide. silicon carbide is particularly suitable due to its good processability as well as due to the good connection properties Carbon.
  • the ceramic layer has its thinnest Set a value for the layer thickness between 0.5 and 5 mm.
  • FIG. 3 shows an alternative embodiment of the turbine blade 1 to see which instead of a solid ceramic layer a protective film formed from a protective gas S. Avoiding oxidation.
  • This is the turbine blade 1 double-skin, in particular double-walled.
  • a feed 20 is surrounded by a blade inner wall 22.
  • the feed 20 extends as a cavity along the Main axis 2 of the turbine blade 1 (see FIG. 1).
  • the Blade inner wall 22 is carried and extends also along the main axis 2.
  • It can be like conventional Turbine parts are made of metal but preferably made of the same material as the outer wall 10th
  • the protective gas S is supplied via the feed 20 through the foot area 4 into the blade area 6 (see also Figure 1).
  • the protective gas S is in particular natural gas, water vapor or inert gas, which is from a not shown Feed line of the turbine blade 1 is supplied.
  • the blade inner wall 22 is the blade outer wall 10 across from. Between the outer blade wall 10 and the Vane inner wall 22 has a plurality of cavities 24 one essentially flat, along the blade walls 22, 10 extending extent arranged.
  • everyone Cavity 24 is via an associated inlet 26 with the feed 20 for the shielding gas S connected fluidically.
  • To form the cavities 24 are between the outer blade wall 10 and the blade inner wall 22 a number of spacers 28 provided.
  • Inerting shielding gas S is released through a number of outlets 30 in the blade outer wall 10 in the flow of the working medium 16 out.
  • the discharges 30 are in this regard the number and shape carried out such that the Shielding gas S directly along the outer wall 10 of the blade flows, causing an attached protective film on the outer surface the blade outer wall 10 is formed.
  • FIG 4 shows - after removal of the outer wall 10 - a section a turbine blade 1 according to FIG 3 in the area of Cavities 24 with multiple inlets 26 and multiple spacers 28, which are arranged in a grid.
  • the Cavities 24 are formed accordingly regularly.
  • the grid-shaped The arrangement supports the outer wall of the bucket 10 opposite the blade inner wall 22.
  • FIG. 5 shows a section of a top view of the turbine blade 1 with a plurality of circular exhausts 30.
  • the outlets 30 are preferably bores, arranged one behind the other, one row at a time form, with the rows offset from each other are arranged. This makes a particularly efficient and uniform distribution of the outflowing from the outlets 30 Shielding gas S reached.
  • Adjacent rows of exhausts 30 are each at a distance D1 from each other arranged.
  • the exhausts have 30 within a row each a distance D2.
  • the distance D1 between two neighboring ones Rows are approximately the same or slightly less than the distance D2 between adjacent drains 30 within a series of drains 30.
  • the diameter of the cross section circular discharges 30 and the one to be selected Hole patterns depend on the mass flow to be achieved and pressure of the protective gas S.
  • FIG. 6 shows a turbine system 32 with a compressor 34, a combustion chamber 36 and a multi-stage turbine 38 hot working medium generated by combustion in the combustion chamber 36, e.g. a hot gas is used in the respective Stages of the turbine 38 relaxed.
  • a hot gas is used in the respective Stages of the turbine 38 relaxed.
  • the first turbine stage 40 at least one row of turbine blades 1 on which is essentially made of carbon fiber reinforced material are formed.
  • the second and third turbine stages 42 and 44 both have rows of conventional ones Turbine blades - e.g. cast metallic turbine blade - And turbine blades 1 made of carbon fiber reinforced Carbon on.
  • turbine blades 1 with different Protective layers 18 used.
  • the advantages of the invention are in particular that by one formed from carbon fiber reinforced carbon Turbine blade 1, which at least in the airfoil area 6 is surrounded by a protective layer 18, one in particular high turbine inlet temperature is made possible. About that In addition, the fact that a Cooling due to the high temperature resistance of the material the turbine blade 1 is no longer required. Another advantage is that due to the lower specific masses (mass density) of the turbine blade 1 in operation when rotating, the rotating mass versus one conventionally cast turbine blade reduced by a factor of 10 , whereby the strength of the turbine blade 1 is significantly improved. Furthermore, the use of carbon fiber reinforced carbon a significant reduction the thermal expansion of the turbine blade 1, causing gap losses avoided, or at least reduced. When using of natural gas to build up the protective layer 18 out through the introduced in the working space of the gas turbine Natural gas an intermediate combustion or afterburning enables, which also brings about an increase in efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft eine Turbinenschaufel einer Turbine, insbesondere einer Gas- oder Dampfturbine. Die Turbinenschaufel erstreckt sich entlang einer Hauptachse von einem Fußbereich über einen Schaufelblattbereich zu einem Kopfbereich. Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung einer Turbinenschaufel sowie eine Turbinenanlage, insbesondere eine Gasturbinenanlage.The invention relates to a turbine blade of a turbine, especially a gas or steam turbine. The turbine blade extends along a major axis from a foot area via an airfoil area to a head area. The invention further relates to a method of manufacture a turbine blade and a turbine system, in particular a gas turbine plant.

Der Wirkungsgrad einer Gasturbinenanlage ist maßgeblich bestimmt durch die Turbineneintrittstemperatur des Arbeitsmediums, welches in der Gasturbine entspannt wird. Daher werden möglichst hohe Temperaturen angestrebt. Die Turbinenschaufeln werden aber aufgrund der hohen Temperaturen stark thermisch und aufgrund der hohen Strömungsgeschwindigkeit des Arbeitsmediums oder Heißgases stark mechanisch belastet. Üblicherweise werden für die Turbinenschaufeln gußtechnisch hergestellte Schaufeln verwendet. Dabei handelt es sich um einen Feinguß - teilweise gerichtet erstarrt oder als Einkristall gezogen. Eine Vorrichtung und ein Verfahren zur Herstellung von Gußstücken, insbesondere Gasturbinenschaufeln, mit gerichtet erstarrten Gefüge ist in der DE-AS 22 42 111 beschrieben. Die Turbinenschaufel wird hierbei als Vollmaterialschaufel überwiegend aus Nickellegierungen in einkristalliner Form gegossen. Eine gekühlte Gasturbinenschaufel geht aus der US-PS 5,419,039 hervor. Die darin offenbarte Turbinenschaufel ist ebenfalls als ein Gußstück ausgeführt bzw. aus zwei Gußstücken zusammengesetzt. Weiterhin zeigt z.B EP 0657 404 eine Turbinenschaufel nach dem Oberbegriff von Anspruch 1.The efficiency of a gas turbine plant is largely determined through the turbine inlet temperature of the working medium, which is relaxed in the gas turbine. Therefore aimed for the highest possible temperatures. The turbine blades but become very thermal due to the high temperatures and due to the high flow rate of the working medium or hot gas subject to high mechanical loads. Usually are manufactured using casting technology for the turbine blades Shovels used. It is a Investment casting - partially solidified in a directed manner or as a single crystal drawn. An apparatus and a method of manufacture of castings, in particular gas turbine blades, with directed solidified structure is described in DE-AS 22 42 111. The turbine blade is here a solid material blade predominantly from nickel alloys in single crystal Cast form. A cooled gas turbine blade goes out U.S. Patent 5,419,039. The turbine blade disclosed therein is also made as a casting put together two castings. EP 0657 404, for example, also shows a turbine blade according to the preamble of claim 1.

Die Turbinenschaufeln werden üblicherweise bei Temperaturen nahe bei der für den Werkstoff der Turbinenschaufel maximal zulässigen Temperatur, der sogenannten Belastungsgrenze, betrieben. Beispielsweise beträgt die Turbineneintrittstemperatur von Gasturbinen aufgrund der Temperaturgrenzen der für die Turbinenschaufel eingesetzten Werkstoffe ca. 1500 bis 1600 K, wobei in der Regel bereits eine Kühlung der Schaufeloberflächen vorgenommen wird. Eine Erhöhung der Turbineneintrittstemperatur bedarf einer größeren Kühlluftmenge, wodurch der Wirkungsgrad der Gasturbine und damit auch der einer Gesamtanlage, insbesondere einer Gas- und Dampfturbinenanlage, verschlechtert ist. Dies ist darin begründet, daß die Kühlluft üblicherweise einem der Gasturbine vorgeschalteten Verdichter entnommen wird. Diese komprimierte Kühlluft steht somit für die Verbrennung und zur Verrichtung von Arbeit nicht mehr zur Verfügung. Darüber hinaus ist aufgrund der Wärmeausdehnung der Turbinenschaufeln ein Spalt erforderlich, der vor allem im Teillastbereich der Gasturbine zu sogenannten Spaltverlusten führt.The turbine blades are usually at temperatures close to the maximum for the material of the turbine blade permissible temperature, the so-called load limit. For example, the turbine inlet temperature is of gas turbines due to the temperature limits for the turbine blade used materials about 1500 to 1600 K, usually already cooling the blade surfaces is made. An increase in turbine inlet temperature requires a larger amount of cooling air, so the efficiency of the gas turbine and thus that of an overall system, especially a gas and steam turbine plant, is deteriorated. This is because the cooling air usually a compressor upstream of the gas turbine is removed. This compressed cooling air is therefore available not for burning and doing work more available. It is also due to thermal expansion the turbine blades required a gap before so-called gap losses, especially in the partial load range of the gas turbine leads.

Aufgabe der Erfindung ist es daher eine Turbinenschaufel anzugeben, die besonders günstige Eigenschaften hinsichtlich einer hohen mechanischen Beständigkeit und Temperaturfestigkeit aufweist. Eine weitere Aufgabe besteht darin, ein Verfahren zur Herstellung einer Turbinenschaufel anzugeben.The object of the invention is therefore to provide a turbine blade, the particularly favorable properties regarding high mechanical resistance and temperature resistance having. Another task is a procedure to specify for the manufacture of a turbine blade.

Diese Aufgabe wird erfindungsgemäß gelöst durch eine Turbinenschaufel, welche sich entlang einer Hauptachse von einem Fußbereich über einen heißgasbeaufschlagbaren Schaufelblattbereich zu einem Kopfbereich erstreckt und im wesentlichen aus kohlefaserverstärktem Kohlenstoff gebildet ist, wobei zumindest der Schaufelblattbereich eine Schaufelaußenwand mit kohlefaserverstärktem Kohlenstoff aufweist, die von einer Schutzschicht umgeben ist.According to the invention, this object is achieved by a turbine blade, which is along a major axis of one Foot area over an airfoil area that can be subjected to hot gas extends to a head area and essentially is formed from carbon fiber reinforced carbon, at least the airfoil area has an outer wall with has carbon fiber reinforced carbon by a Protective layer is surrounded.

Durch den Einsatz von kohlefaserverstärktem Kohlenstoff als Werkstoff für die Turbinenschaufel weist dieser eine besonders hohe thermische und mechanische Stabilität auf. Insbesondere sind gegenüber herkömmlichen einkristallinen Turbinenschaufeln höhere Turbineneintrittstemperaturen bis hin zu 2800 K ermöglicht. Es sind bevorzugt auch bei großen Wanddikkenunterschieden zwischen dem Schaufelblattbereich und dem massiven Fußbereich oder am Fußbereich bzw. am Kopfbereich in allen Schaufelbereichen die gleiche Werkstoffstruktur und damit im wesentlichen die gleichen physikalischen Eigenschaften erreicht.Through the use of carbon fiber reinforced carbon as The material for the turbine blade has one in particular high thermal and mechanical stability. In particular are compared to conventional single-crystalline turbine blades higher turbine inlet temperatures up to 2800 K enables. It is also preferred for large wall thickness differences between the airfoil area and the massive foot area or at the foot area or at the head area in the same material structure and therefore all blade areas essentially the same physical properties reached.

Aufgrund der besonders hohen Temperaturbeständigkeit des für die Turbinenschaufel eingesetzten Werkstoffs ist eine Kühlung der Turbinenschaufel nicht mehr erforderlich, wodurch ein besonders hoher Wirkungsgrad der Turbinenanlage erreicht wird. Für eine besonders gute Oxidationsbeständigkeit des kohlefaserverstärkten Kohlenstoffs ist die Schutzschicht vorgesehen, die zumindest die im Betrieb der Turbinenanlage heißgasbeaufschlagte Schaufelaußenwand umgibt.Due to the particularly high temperature resistance of the for The material used for the turbine blade is cooling the turbine blade is no longer required, which makes a special high efficiency of the turbine system is achieved. For a particularly good oxidation resistance of the carbon fiber reinforced Carbon is the protective layer provided which is at least the one that is subjected to hot gas during operation of the turbine system Surrounding the outer shovel wall.

Zweckmäßigerweise ist als Schutzschicht eine Keramikschicht vorgesehen. Für die als reine Oberflächenschicht ausgeführte Keramikschicht eignet sich insbesondere eine Schicht aus Siliziumcarbid. Der Einsatz von Siliziumcarbid bewirkt, daß die Oberfläche der Turbinenschaufel durch Reaktion des Siliziums mit dem Kohlenstoff mit einer dünnen Siliziumcarbid-Schicht versiegelt und dadurch sehr wirkungsvoll geschützt wird. Siliziumcarbid eignet sich insbesondere aufgrund seiner besonders oxidationshemmenden Eigenschaft als Schutzschicht für die aus kohlefaserverstärkten Kohlenstoff aufgebaute Turbinenschaufel.A ceramic layer is expedient as a protective layer intended. For those designed as a pure surface layer A layer of silicon carbide is particularly suitable for the ceramic layer. The use of silicon carbide causes the Surface of the turbine blade due to the reaction of the silicon with the carbon with a thin layer of silicon carbide sealed and thereby protected very effectively. silicon carbide is particularly suitable because of its antioxidant property as a protective layer for the turbine blade made of carbon fiber reinforced carbon.

Zweckmäßigerweise weist die Keramikschicht einen Minimalwert in ihrer Schichtdicke zwischen etwa 0,5 und 5 mm auf. In Abhängigkeit vom Einbauort der Turbinenschaufel, insbesondere von der dort herrschenden Temperaturbelastung, kann die Keramikschicht auch als eine Multilayerschicht ausgeführt sein.The ceramic layer expediently has a minimum value in their layer thickness between about 0.5 and 5 mm. Dependent on from the installation location of the turbine blade, in particular the ceramic layer can depend on the temperature load there can also be designed as a multilayer layer.

In einer weiteren besonders vorteilhaften Ausgestaltung ist die Schutzschicht alternativ oder zusätzlich durch einen gasförmigen Schutzfilm gegeben, der von einem Schutzgas gebildet ist. Vorteilhafterweise ist zumindest im Schaufelblattbereich eine Zuführung für das Schutzgas vorgesehen, die von der Schaufelinnenwand umgeben ist. Der durch die Schaufelinnenwand gebildete Hohlraum ermöglicht ein besonders einfaches Zuführen des Schutzgases.In a further particularly advantageous embodiment the protective layer alternatively or additionally by a gaseous one Given protective film formed by an inert gas is. It is advantageous at least in the airfoil area a supply for the protective gas is provided by the Is surrounded by the blade inner wall. The one through the inner wall of the bucket formed cavity allows a particularly simple Supply of the protective gas.

Zur Verhinderung der Oxidation des kohlefaserverstärkten Kohlenstoffs, d.h. des Grundwerkstoffs der Turbinenschaufel, ist als Schutzgas vorteilhafterweise Erdgas, Wasserdampf oder Inertgas vorgesehen. Als Inertgas wird beispielsweise Abgas, Stickstoff oder ein Edelgas eingesetzt. Durch die Verwendung des Schutzgases ist gasdynamisch begünstigt eine besonders gleichmäßige Verteilung auf der Schaufeloberfläche gewährleistet. Die besonders guten Strömungseigenschaften des Schutzgases ermöglichen somit die Bildung eines geschlossenen und flächendeckenden Schutzfilms auf der Schaufeloberfläche.To prevent oxidation of the carbon fiber reinforced carbon, i.e. of the base material of the turbine blade as a protective gas advantageously natural gas, water vapor or Inert gas provided. Exhaust gas, for example, Nitrogen or an inert gas is used. By using it The shielding gas is particularly favorable in terms of gas dynamics ensures even distribution on the blade surface. The particularly good flow properties of the Shielding gas thus enables the formation of a closed one and full-coverage protective film on the blade surface.

Zur Verteilung des Schutzgases auf der Oberfläche der Schaufelaußenwand ist die Turbinenschaufel vorzugsweise mindestens im Schaufelblattbereich zweischalig ausgeführt. Beispielsweise kann die Wand der Turbinenschaufel doppelwandig ausgeführt sein - mit einer Schaufelinnenwand, die die Zuführung umgibt, und einer entlang der Schaufelinnenwand sich erstreckenden Schaufelaußenwand. Zwischen der Schaufelaußenwand und der Schaufelinnenwand sind zweckmäßigerweise eine Mehrzahl von Hohlräumen gebildet, die jeweils über mindestens einen zugehörigen Einlaß mit der Zuführung strömungstechnisch verbunden sind. In vorteilhafter Ausgestaltung sind zur Bildung der Hohlräume eine Mehrzahl von Abstandshaltern rasterartig angeordnet. Zur Reduzierung des Gewichts der Turbinenschaufel sind zweckmäßigerweise die Abstandshalter aus kohlefaserverstärkten Kohlenstoff hergestellt. Durch die rasterartige Anordnung der Abstandshalter ist eine besonders wirksame Durchströmung des Schutzgases in den Hohlräumen über eine lange Wegstrecke ermöglicht.For the distribution of the protective gas on the surface of the blade outer wall the turbine blade is preferably at least Double-skin design in the airfoil area. For example the wall of the turbine blade can be double-walled be - with a shovel inner wall that is the feeder surrounds, and one extending along the inner wall of the blade Blade outer wall. Between the outer wall of the bucket and the blade inner wall are expediently a plurality formed by cavities, each over at least one associated inlet fluidically connected to the feed are. In an advantageous embodiment are for education the cavities a plurality of spacers in a grid pattern arranged. To reduce the weight of the turbine blade are the spacers made of carbon fiber reinforced Carbon made. Due to the grid-like arrangement the spacer is a particularly effective flow of the protective gas in the cavities over a long period Distance allowed.

Vorzugsweise sind in der Schaufelaußenwand eine Mehrzahl von Abführungen vorgesehen, die das Schutzgas aus jedem Hohlraum nach außen führen. Insbesondere sind die Zuführungen sowie Abführungen hinsichtlich der Anzahl und der Größe derart gewählt, daß die Schaufelaußenwand von dem Schutzgas umströmt wird. Das Schutzgas wird demzufolge in einem offenen Schutzkreis durch die Turbinenschaufel hindurch geführt. Das Schutzgas strömt dabei über die Abführungen aus den Hohlräumen an die Schaufelaußenwand aus und bildet einen Schutzfilm an der dem Heißgas aussetzbaren Oberfläche der Schaufelaußenwand (vergleichbar mit der sogenannten Filmkühlung). Die Abführungen sowie die Zuführungen sind vorzugsweise als eine Bohrung oder mehrere Bohrungen ausgeführt. Diese können beispielsweise trichterförmig erweitert sein. Durch einen solchen spitzen Winkel wird die Ausbildung eines Films auf der Oberfläche der Schaufelaußenwand besonders begünstigt.There are preferably a plurality of in the blade outer wall Exhausts are provided that remove the shielding gas from each cavity lead outside. In particular, the feeders are as well The number and size of the transfers were chosen in such a way that the protective gas flows around the outer wall of the blade becomes. The protective gas is therefore in an open protective circuit passed through the turbine blade. The Shielding gas flows out of the cavities through the exhausts to the outer wall of the bucket and forms a protective film on the surface of the blade outer wall which can be exposed to the hot gas (comparable to the so-called film cooling). The exhausts as well as the feeders are preferably as one Hole or multiple holes executed. These can, for example be funnel-shaped. Through one acute angle will form a film on the Surface of the blade outer wall is particularly favored.

Ein derartiger doppelwandiger Aufbau ermöglicht eine Entkoppelung der funktionellen Eigenschaften der Wandstruktur, wobei an die Schaufelaußenwand geringere Anforderung an die mechanische Stabilität gestellt werden können als an die Schaufelinnenwand. Die Schaufelinnenwand kann mithin, da sie nicht unmittelbar einer Heißgasströmung ausgesetzt ist, mit einer größeren Wandstärke als die Schaufelaußenwand ausgeführt sein und im wesentlichen die mechanische Tragfunktion für die Turbinenschaufel übernehmen. Der Querschnitt des Hohlraumbereiches zwischen der Schaufelaußenwand und der Schaufelinnenwand ist vorzugsweise zur Ausbildung einer hohen Geschwindigkeit des Schutzgases möglichst gering ausgebildet und liegt insbesondere im Bereich der Wandstärke der Schaufelaußenwand. Durch einen kleinen durchströmten Querschnitt des Hohlraumes und eine damit ausgebildete hohe Geschwindigkeit des Schutzgases wird eine besonders gute Schutzfilmeigenschaft erreicht, insbesondere auch eine effiziente Wärmeabfuhr durch das Schutzgas.Such a double-walled structure enables decoupling the functional properties of the wall structure, whereby on the outer wall of the bucket less demands on the mechanical Stability can be placed on the inner wall of the blade. The inner wall of the shovel can therefore, since it is not is directly exposed to a hot gas flow, with a greater wall thickness than the blade outer wall and essentially the mechanical support function for the turbine blade take. The cross section of the cavity area between the outer wall of the bucket and the inner wall of the bucket is preferred for high speed formation the protective gas is formed as low as possible and lies in particular in the area of the wall thickness of the blade outer wall. Through a small cross-section of the cavity with flow and a high speed of the protective gas thus formed a particularly good protective film property is achieved, especially efficient heat dissipation the protective gas.

Die Turbinenschaufel ist bevorzugt ausgestaltet als Laufoder Leitschaufel einer Turbine, insbesondere einer Gas- oder Dampfturbine, in der Temperaturen von deutlich über 1000 °C des im Betrieb die Turbinenschaufel umströmenden Heißgases auftreten. Der Schaufelblattbereich der Turbinenschaufel hat zweckmäßigerweise eine Höhe zwischen 5 cm und 50 cm. Die Wandstärke der Schaufelaußenwand und/oder der Schaufelinnenwand hat vorzugsweise einen minimalen Wert zwischen 0,5 mm und 5 mm.The turbine blade is preferably designed as a rotor or Guide vane of a turbine, in particular a gas or Steam turbine, at temperatures well above 1000 ° C of the hot gas flowing around the turbine blade during operation occur. The airfoil area of the turbine blade has expediently a height between 5 cm and 50 cm. The Wall thickness of the blade outer wall and / or the blade inner wall preferably has a minimum value between 0.5 mm and 5 mm.

Soweit die Aufgabe auf ein Verfahren zur Herstellung einer Turbinenschaufel gerichtet ist, welche sich entlang einer Hauptachse von einem Fußbereich über einen Schaufelblattbereich zu einem Kopfbereich erstreckt, wird sie erfindungsgemäß dadurch gelöst, daß eine Mehrzahl von Kohlenstoffasern derart verarbeitet werden, daß die Kohlenstoffasern die Form der Turbinenschaufel bilden, wobei zwischen den Kohlenstoffasern Kunstharz angeordnet wird, das bei Erhitzung unter luftdichtem Verschluß in eine die Kohlenstoffasern umgebende Matrix aus reinem Kohlenstoff überführt wird.So far the task on a process for producing a Turbine blade which is directed along a Major axis from a root area over an airfoil area extends to a head region, it is inventively solved in that a plurality of carbon fibers are processed such that the carbon fibers form form the turbine blade, being between the carbon fibers Resin is arranged, which when heated under airtight Closure in a matrix surrounding the carbon fibers is transferred from pure carbon.

Hierdurch ist eine Turbinenschaufel mit hinreichenden thermischen und mechanischen Festigkeitseigenschaften herstellbar, die sowohl in einem massiven als auch dünnwandigen Bereich eine im wesentlichen gleiche Werkstoffstruktur aufweist. Die Prozeßparameter des Verfahrens - z.B. das Wickeln und Kleben bei der Verarbeitung der Kohlenstoffasern, die Temperatur und Dauer des Erhitzungsvorganges sowie die Art des verwendeten Kunstharzes, etc. - sind der Größe und den gewünschten Festigkeitseigenschaften der Turbinenschaufel angepaßt.This makes a turbine blade with sufficient thermal and mechanical strength properties can be produced, that in both a solid and thin-walled area has an essentially identical material structure. The Process parameters of the process - e.g. the wrapping and gluing in processing the carbon fibers, the temperature and Duration of the heating process and the type of used Resin, etc. - are the size and the desired strength properties adapted to the turbine blade.

Anhand der in der Zeichnung dargestellten Ausführungsbeispiele werden die Turbinenschaufeln sowie das Verfahren zur Herstellung der Turbinenschaufel näher erläutert. Darin zeigen:

FIG 1
eine Längsansicht einer Turbinenschaufel,
FIG 2
eine Turbinenschaufel mit einer Schutzschicht im Querschnitt,
FIG 3
eine Turbinenschaufel mit mindestens einem Hohlraum im Querschnitt,
FIG 4
einen Abschnitt der Turbinenschaufel nach FIG 2 mit einem Hohlraum und Abstandshaltern,
FIG 5
einen Ausschnitt einer Draufsicht auf die Turbinenschaufel, und
FIG 6
schematisch eine Turbinenanlage.
The turbine blades and the method for producing the turbine blade are explained in more detail with reference to the exemplary embodiments shown in the drawing. In it show:
FIG. 1
2 shows a longitudinal view of a turbine blade,
FIG 2
a turbine blade with a protective layer in cross section,
FIG 3
a turbine blade with at least one cavity in cross section,
FIG 4
2 a section of the turbine blade according to FIG. 2 with a cavity and spacers,
FIG 5
a section of a plan view of the turbine blade, and
FIG 6
schematically a turbine plant.

Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
In FIG 1 ist eine sich entlang einer Hauptachse 2 von einem Fußbereich 4 über einem Schaufelblattbereich 6 zu einem Kopfbereich 8 erstreckende Turbinenschaufel 1, insbesondere eine Laufschaufel einer stationären Gasturbine, dargestellt. Der Schaufelblattbereich 6 weist eine Schaufelaußenwand 10, einen Anströmbereich 12 sowie einen Abströmbereich 14 auf. Die nicht näher dargestellte Gasturbine wird im Betrieb von einem heißen Arbeitsmedium 16 ("Heißgas") durchströmt, welches die Turbinenschaufel 1 in den Anströmbereich 12 anströmt und entlang der Schaufelaußenwand 10 bis zu dem Abströmbereich 14 vorbeiströmt. Die Turbinenschaufel 1 ist aus kohlefaserverstärkten Kohlenstoff gebildet. Dieser Werkstoff ist ein sogenannter Faserverbundwerkstoff, der sowohl als Matrix als auch als Faser Kohlenstoff aufweist. Durch den Einsatz von kohlefaserverstärktem Kohlenstoff eignet sich die Turbinenschaufel 1 aufgrund der besonders hohen mechanischen und thermischen Festigkeit für einen Einsatz bis zu Temperaturen von 2800 K.
Corresponding parts are provided with the same reference symbols in all figures.
1 shows a turbine blade 1, in particular a moving blade of a stationary gas turbine, which extends from a base area 4 over a blade area 6 to a head area 8 along a main axis 2. The airfoil area 6 has an airfoil outer wall 10, an inflow area 12 and an outflow area 14. During operation, a hot working medium 16 (“hot gas”) flows through the gas turbine (not shown in any more detail), which flows against the turbine blade 1 into the inflow region 12 and flows past along the outer wall 10 of the blade up to the outflow region 14. The turbine blade 1 is formed from carbon fiber reinforced carbon. This material is a so-called fiber composite material which has carbon both as a matrix and as a fiber. By using carbon fiber-reinforced carbon, the turbine blade 1 is suitable for use up to temperatures of 2800 K due to its particularly high mechanical and thermal strength.

Zur Erhöhung der Oxidationsbeständigkeit der aus kohlefaserverstärktem Werkstoff aufgebauten Turbinenschaufel 1 weist diese gemäß FIG 2 zumindest im Schaufelblattbereich 6 eine die Schaufelaußenwand 10 umgebende, insbesondere dabei auch die äußere Begrenzung der Schaufelaußenwand 10 bildende, Schutzschicht 18 auf. Als Schutzschicht 18 dient dabei eine Keramikschicht, die auf dem Basiswerkstoff, dem kohlefaserverstärkten Kohlenstoff, aufgebracht ist. Beispielsweise ist die Keramikschicht aus Siliziumcarbid gebildet. Siliziumcarbid eignet sich insbesondere aufgrund seiner guten Verarbeitbarkeit sowie aufgrund der guten Verbindungseigenschaften mit Kohlenstoff. Die Keramikschicht weist dabei an ihrer dünnsten Stelle einen Wert der Schichtdicke zwischen 0,5 und 5 mm auf.To increase the oxidation resistance of carbon fiber reinforced Turbine blade 1 constructed of material has this according to FIG. 2 at least in the airfoil area 6 surrounding the blade outer wall 10, in particular also in the process forming the outer boundary of the blade outer wall 10, Protective layer 18. A serves as protective layer 18 Ceramic layer on the base material, the carbon fiber reinforced Carbon is applied. For example the ceramic layer is formed from silicon carbide. silicon carbide is particularly suitable due to its good processability as well as due to the good connection properties Carbon. The ceramic layer has its thinnest Set a value for the layer thickness between 0.5 and 5 mm.

In der FIG 3 ist eine alternative Ausgestaltung der Turbinenschaufel 1 zu sehen, welche anstelle einer festen Keramikschicht einen aus einem Schutzgas S gebildeten Schutzfilm zur Vermeidung von Oxidation aufweist. Dazu ist die Turbinenschaufel 1 zweischalig, insbesondere doppelwandig ausgeführt. Eine Zuführung 20 ist von einer Schaufelinnenwand 22 umgeben. Die Zuführung 20 erstreckt sich als Hohlraum entlang der Hauptachse 2 der Turbinenschaufel 1 (vergleiche Figur 1). Die Schaufelinnenwand 22 ist tragend ausgeführt und erstreckt sich ebenfalls entlang der Hauptachse 2. Sie kann wie herkömmliche Turbinenteile aus Metall gefertigt sein, besteht bevorzugt aber aus dem gleichen Werkstoff wie die Außenwand 10.3 shows an alternative embodiment of the turbine blade 1 to see which instead of a solid ceramic layer a protective film formed from a protective gas S. Avoiding oxidation. This is the turbine blade 1 double-skin, in particular double-walled. A feed 20 is surrounded by a blade inner wall 22. The feed 20 extends as a cavity along the Main axis 2 of the turbine blade 1 (see FIG. 1). The Blade inner wall 22 is carried and extends also along the main axis 2. It can be like conventional Turbine parts are made of metal but preferably made of the same material as the outer wall 10th

Das Schutzgas S wird über die Zuführung 20 durch den Fußbereich 4 in den Schaufelblattbereich 6 hineingeführt (siehe auch Figur 1). Das Schutzgas S ist insbesondere Erdgas, Wasserdampf oder Inertgas, welches von einer nicht dargestellten Zuführleitung der Turbinenschaufel 1 zugeführt wird. Der Schaufelinnenwand 22 liegt hierbei die Schaufelaußenwand 10 gegenüber. Zwischen der Schaufelaußenwand 10 und der Schaufelinnenwand 22 sind eine Mehrzahl von Hohlräumen 24 mit einer im wesentlichen flächigen, entlang der Schaufelwände 22, 10 sich erstreckenden Ausdehnung angeordnet. Jeder Hohlraum 24 ist über einen zugehörigen Einlaß 26 mit der Zuführung 20 für das Schutzgas S strömungstechnisch verbunden. Zur Bildung der Hohlräume 24 sind zwischen der Schaufelaußenwand 10 und der Schaufelinnenwand 22 eine Anzahl von Abstandshaltern 28 vorgesehen.The protective gas S is supplied via the feed 20 through the foot area 4 into the blade area 6 (see also Figure 1). The protective gas S is in particular natural gas, water vapor or inert gas, which is from a not shown Feed line of the turbine blade 1 is supplied. The The blade inner wall 22 is the blade outer wall 10 across from. Between the outer blade wall 10 and the Vane inner wall 22 has a plurality of cavities 24 one essentially flat, along the blade walls 22, 10 extending extent arranged. Everyone Cavity 24 is via an associated inlet 26 with the feed 20 for the shielding gas S connected fluidically. To form the cavities 24 are between the outer blade wall 10 and the blade inner wall 22 a number of spacers 28 provided.

Das über den Einlaß 26 in den jeweils zugehörigen Hohlraum 24 einströmende Schutzgas S wird über eine Anzahl von Abführungen 30 in der Schaufelaußenwand 10 in die Strömung des Arbeitsmediums 16 geführt. Die Abführungen 30 sind dabei hinsichtlich der Anzahl und der Form derart ausgeführt, daß das Schutzgas S unmittelbar an der Schaufelaußenwand 10 entlang strömt, wodurch ein anliegender Schutzfilm auf der Außenoberfläche der Schaufelaußenwand 10 gebildet wird.That via the inlet 26 into the respectively associated cavity 24 Inerting shielding gas S is released through a number of outlets 30 in the blade outer wall 10 in the flow of the working medium 16 out. The discharges 30 are in this regard the number and shape carried out such that the Shielding gas S directly along the outer wall 10 of the blade flows, causing an attached protective film on the outer surface the blade outer wall 10 is formed.

FIG 4 zeigt - nach Entfernung der Außenwand 10 - einen Ausschnitt einer Turbinenschaufel 1 gemäß FIG 3 im Bereich der Hohlräume 24 mit mehreren Einlässen 26 sowie mehreren Abstandshaltern 28, die rasterartig angeordnet sind. Durch diese rasterartige Anordnung der Abstandshalter 28 sind die Hohlräume 24 entsprechend regelmäßig gebildet. Die rasterförmige Anordnung übernimmt die Abstützung der Schaufelaußenwand 10 gegenüber der Schaufelinnenwand 22.4 shows - after removal of the outer wall 10 - a section a turbine blade 1 according to FIG 3 in the area of Cavities 24 with multiple inlets 26 and multiple spacers 28, which are arranged in a grid. By this grid-like arrangement of the spacers 28 are the Cavities 24 are formed accordingly regularly. The grid-shaped The arrangement supports the outer wall of the bucket 10 opposite the blade inner wall 22.

FIG 5 zeigt einen Ausschnitt einer Draufsicht auf die Turbinenschaufel 1 mit einer Mehrzahl kreisrunder Abführungen 30. Die Abführungen 30 sind vorzugsweise Bohrungen ausgestaltet, die unmittelbar hintereinander angeordnet jeweils eine Reihe bilden, wobei die Reihen zueinander versetzt gegeneinander angeordnet sind. Hierdurch wird eine besonders effiziente und gleichmäßige Verteilung des aus den Abführungen 30 ausströmenden Schutzgases S erreicht. Benachbarte Reihen von Abführungen 30 sind dabei jeweils mit einem Abstand D1 voneinander angeordnet. Innerhalb einer Reihe haben die Abführungen 30 jeweils einen Abstand D2. Der Abstand D1 zwischen zwei benachbarten Reihen ist in etwa gleich oder etwas geringer als der Abstand D2 zwischen benachbarten Abführungen 30 innerhalb einer Reihe von Abführungen 30. Der Durchmesser der im Querschnitt kreisförmigen Abführungen 30 sowie das zu wählende Lochraster sind abhängig von dem zu erzielenden Massenstrom und Druck des Schutzgases S.5 shows a section of a top view of the turbine blade 1 with a plurality of circular exhausts 30. The outlets 30 are preferably bores, arranged one behind the other, one row at a time form, with the rows offset from each other are arranged. This makes a particularly efficient and uniform distribution of the outflowing from the outlets 30 Shielding gas S reached. Adjacent rows of exhausts 30 are each at a distance D1 from each other arranged. The exhausts have 30 within a row each a distance D2. The distance D1 between two neighboring ones Rows are approximately the same or slightly less than the distance D2 between adjacent drains 30 within a series of drains 30. The diameter of the cross section circular discharges 30 and the one to be selected Hole patterns depend on the mass flow to be achieved and pressure of the protective gas S.

FIG 6 zeigt eine Turbinenanlage 32 mit einem Verdichter 34, einer Brennkammer 36 und einer mehrstufigen Turbine 38. Das in der Brennkammer 36 durch Verbrennung erzeugte heiße Arbeitsmedium, z.B. ein Heißgas, wird dabei in den jeweiligen Stufen der Turbine 38 entspannt. In Abhängigkeit von den in der Turbine 38 auftretenden Temperaturen weist die erste Turbinenstufe 40 mindestens eine Reihe von Turbinenschaufeln 1 auf, welche im wesentlichen aus kohlefaserverstärkten Werkstoff gebildet sind. In Abhängigkeit von den Temperatur- und Druckverhältnissen in der zweiten und dritten Turbinenstufe 42 bzw. 44 weisen diese sowohl Reihen von konventionellen Turbinenschaufeln - z.B. gegossene metallische Turbinenschaufel - als auch Turbinenschaufeln 1 aus kohlefaserverstärkten Kohlenstoff auf. Dabei werden Turbinenschaufeln 1 mit unterschiedlichen Schutzschichten 18 eingesetzt.6 shows a turbine system 32 with a compressor 34, a combustion chamber 36 and a multi-stage turbine 38 hot working medium generated by combustion in the combustion chamber 36, e.g. a hot gas is used in the respective Stages of the turbine 38 relaxed. Depending on the in the temperatures occurring in the turbine 38 have the first turbine stage 40 at least one row of turbine blades 1 on which is essentially made of carbon fiber reinforced material are formed. Depending on the temperature and Pressure ratios in the second and third turbine stages 42 and 44 both have rows of conventional ones Turbine blades - e.g. cast metallic turbine blade - And turbine blades 1 made of carbon fiber reinforced Carbon on. Here, turbine blades 1 with different Protective layers 18 used.

Die Vorteile der Erfindung bestehen insbesondere darin, daß durch eine aus kohlefaserverstärktem Kohlenstoff gebildete Turbinenschaufel 1, welche zumindest im Schaufelblattbereich 6 von einer Schutzschicht 18 umgeben ist, eine besonders hohe Turbineneintrittstemperatur ermöglicht wird. Darüber hinaus ist besonders vorteilhaft die Tatsache, daß eine Kühlung aufgrund der hohen Temperaturbeständigkeit des Werkstoffs der Turbinenschaufel 1 nicht mehr erforderlich ist. Ein weiterer Vorteil besteht darin, daß aufgrund des geringeren spezifischen Massen (Massendichte) der Turbinenschaufel 1 im Betrieb bei Rotation die rotierende Masse gegenüber einer herkömmlich gegossenen Turbinenschaufel um den Faktor 10 reduziert ist, wodurch die Festigkeit der Turbinenschaufel 1 deutlich verbessert ist. Ferner ermöglicht die Verwendung von kohlefaserverstärkten Kohlenstoff eine deutliche Reduzierung der Wärmedehnung der Turbinenschaufel 1, wodurch Spaltverluste vermieden, zumindest aber reduziert, sind. Bei dem Einsatz von Erdgas zum Aufbau der Schutzschicht 18 wird darüber hinaus durch das in dem Arbeitsraum der Gasturbine eingebrachte Erdgas eine Zwischenverbrennung oder Nachverbrennung ermöglicht, die zusätzlich eine Wirkungsgraderhöhung herbeiführt.The advantages of the invention are in particular that by one formed from carbon fiber reinforced carbon Turbine blade 1, which at least in the airfoil area 6 is surrounded by a protective layer 18, one in particular high turbine inlet temperature is made possible. About that In addition, the fact that a Cooling due to the high temperature resistance of the material the turbine blade 1 is no longer required. Another advantage is that due to the lower specific masses (mass density) of the turbine blade 1 in operation when rotating, the rotating mass versus one conventionally cast turbine blade reduced by a factor of 10 , whereby the strength of the turbine blade 1 is significantly improved. Furthermore, the use of carbon fiber reinforced carbon a significant reduction the thermal expansion of the turbine blade 1, causing gap losses avoided, or at least reduced. When using of natural gas to build up the protective layer 18 out through the introduced in the working space of the gas turbine Natural gas an intermediate combustion or afterburning enables, which also brings about an increase in efficiency.

Claims (12)

  1. Turbine blade (1) which extends along a major axis (2) from a root region (4) via a blade leaf region (6) acted upon by hot gas to a head region (8) and is formed essentially from carbon-fibre-reinforced carbon, at least the blade leaf region (6) having a blade outer wall (10) with carbon-fibre-reinforced carbon, said blade outer wall being surrounded by a protective layer (18), which is formed at least by a gaseous protective film composed of a protective gas (S), characterized in that at least in the blade leaf region (6) a feed (20) for the protective gas (S) is provided, which is surrounded by a blade inner wall (22).
  2. Turbine blade (1) according to Claim 1, in which the protective layer (18) has, in addition to the protective film, a ceramic layer.
  3. Turbine blade (1) according to Claim 2, in which the ceramic layer is silicon carbide.
  4. Turbine blade (1) according to Claim 2, in which the ceramic layer has a minimum value in terms of its layer thickness of between 0.5 and 5 mm.
  5. Turbine blade (1) according to Claim 1, in which natural gas, water vapour or inert gas is provided as protective gas (S).
  6. Turbine blade (1) according to Claim 1, in which, between the blade outer wall (10) and the blade inner wall (22), a plurality of cavities (24) are formed, which in each case are flow-connected to the feed (20) by at least one associated inlet (26).
  7. Turbine blade (1) according to Claim 6, in which a plurality of spacers (28), which are arranged in the manner of a grid, are provided for forming the cavities (24).
  8. Turbine blade (1) according to Claim 7, in which the spacers (28) are composed of carbon-fibre-reinforced carbon.
  9. Turbine blade (1) according to one of Claims 6 to 8, in which, in the blade outer wall (10), a plurality of discharges (30) are provided, which guide the protective gas (S) outwards from each cavity (24).
  10. Turbine blade (1) according to one of the preceding claims, in which the wall thickness of the blade outer wall (10) and/or of the blade inner wall (22) have/has a minimum value of between 0.5 mm and 5 mm.
  11. Turbine blade (1) according to one of the preceding claims, designed as a moving blade or guide blade of a turbine (38), in particular of a gas or steam turbine.
  12. Turbine plant (32) with a compressor (34), a combustion chamber (36) and a multistage turbine (38), in the respective stages (40, 42, 44) of which a working medium generated in the combustion chamber (36) can be expanded, at least one stage (40, 42, 44) comprising at least one row of turbine blades (1) according to one of Claims 1 to 11.
EP00925036A 1999-03-09 2000-03-09 Turbine blade and method for producing a turbine blade Expired - Lifetime EP1173657B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19910380 1999-03-09
DE19910380 1999-03-09
PCT/DE2000/000734 WO2000053896A1 (en) 1999-03-09 2000-03-09 Turbine blade and method for producing a turbine blade

Publications (2)

Publication Number Publication Date
EP1173657A1 EP1173657A1 (en) 2002-01-23
EP1173657B1 true EP1173657B1 (en) 2003-08-20

Family

ID=7900273

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00925036A Expired - Lifetime EP1173657B1 (en) 1999-03-09 2000-03-09 Turbine blade and method for producing a turbine blade

Country Status (6)

Country Link
US (1) US6769866B1 (en)
EP (1) EP1173657B1 (en)
JP (1) JP2002539350A (en)
CA (1) CA2366842A1 (en)
DE (1) DE50003371D1 (en)
WO (1) WO2000053896A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010041786A1 (en) 2010-09-30 2012-04-05 Siemens Aktiengesellschaft Component i.e. moving blade, for environment of hot gas path of e.g. aircraft gas turbine utilized for sucking and compressing air, has internal channel for supplying protective gas near to layer/layer system or inside of layer/layer system
DE102012205055A1 (en) 2012-03-29 2013-10-02 Siemens Aktiengesellschaft Gas turbine component for high temperature applications

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1428981A1 (en) * 2002-12-11 2004-06-16 Siemens Aktiengesellschaft Turbine blade with a protective coating
WO2004113587A1 (en) * 2003-06-10 2004-12-29 Ishikawajima-Harima Heavy Industries Co., Ltd. Metal component, turbine component, gas turbine engine, surface processing method, and steam turbine engine
FR2858352B1 (en) * 2003-08-01 2006-01-20 Snecma Moteurs COOLING CIRCUIT FOR TURBINE BLADE
US7464554B2 (en) * 2004-09-09 2008-12-16 United Technologies Corporation Gas turbine combustor heat shield panel or exhaust panel including a cooling device
US7255535B2 (en) * 2004-12-02 2007-08-14 Albrecht Harry A Cooling systems for stacked laminate CMC vane
US7435058B2 (en) 2005-01-18 2008-10-14 Siemens Power Generation, Inc. Ceramic matrix composite vane with chordwise stiffener
US7600966B2 (en) * 2006-01-17 2009-10-13 United Technologies Corporation Turbine airfoil with improved cooling
US7690893B2 (en) * 2006-07-25 2010-04-06 United Technologies Corporation Leading edge cooling with microcircuit anti-coriolis device
US7866948B1 (en) 2006-08-16 2011-01-11 Florida Turbine Technologies, Inc. Turbine airfoil with near-wall impingement and vortex cooling
DE102007039402A1 (en) * 2006-09-14 2008-03-27 General Electric Co. Hybrid ceramic matrix composite turbine blade assembly and associated method
US7625180B1 (en) * 2006-11-16 2009-12-01 Florida Turbine Technologies, Inc. Turbine blade with near-wall multi-metering and diffusion cooling circuit
US7789625B2 (en) * 2007-05-07 2010-09-07 Siemens Energy, Inc. Turbine airfoil with enhanced cooling
US7857588B2 (en) * 2007-07-06 2010-12-28 United Technologies Corporation Reinforced airfoils
US8105033B2 (en) * 2008-06-05 2012-01-31 United Technologies Corporation Particle resistant in-wall cooling passage inlet
US8511994B2 (en) * 2009-11-23 2013-08-20 United Technologies Corporation Serpentine cored airfoil with body microcircuits
US8801886B2 (en) 2010-04-16 2014-08-12 General Electric Company Ceramic composite components and methods of fabricating the same
US8961133B2 (en) * 2010-12-28 2015-02-24 Rolls-Royce North American Technologies, Inc. Gas turbine engine and cooled airfoil
US9011077B2 (en) 2011-04-20 2015-04-21 Siemens Energy, Inc. Cooled airfoil in a turbine engine
US8734925B2 (en) * 2011-10-19 2014-05-27 Hexcel Corporation High pressure molding of composite parts
US8500401B1 (en) * 2012-07-02 2013-08-06 Florida Turbine Technologies, Inc. Turbine blade with counter flowing near wall cooling channels
US9410437B2 (en) * 2012-08-14 2016-08-09 General Electric Company Airfoil components containing ceramic-based materials and processes therefor
US9527262B2 (en) * 2012-09-28 2016-12-27 General Electric Company Layered arrangement, hot-gas path component, and process of producing a layered arrangement
KR101465048B1 (en) * 2013-03-21 2014-11-26 두산중공업 주식회사 Blade for turbine
US10329925B2 (en) 2013-07-15 2019-06-25 United Technologies Corporation Vibration-damped composite airfoils and manufacture methods
DE102015213090A1 (en) * 2015-07-13 2017-01-19 Siemens Aktiengesellschaft Blade for a turbomachine and method for its production
US9850763B2 (en) * 2015-07-29 2017-12-26 General Electric Company Article, airfoil component and method for forming article
CA2935398A1 (en) 2015-07-31 2017-01-31 Rolls-Royce Corporation Turbine airfoils with micro cooling features
US11230935B2 (en) 2015-09-18 2022-01-25 General Electric Company Stator component cooling
US10704395B2 (en) * 2016-05-10 2020-07-07 General Electric Company Airfoil with cooling circuit
US10633979B2 (en) 2017-05-24 2020-04-28 General Electric Company Turbomachine rotor blade pocket
US11293347B2 (en) * 2018-11-09 2022-04-05 Raytheon Technologies Corporation Airfoil with baffle showerhead and cooling passage network having aft inlet

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717419A (en) 1971-07-09 1973-02-20 Susquehanna Corp Turbine blade
US3763926A (en) 1971-09-15 1973-10-09 United Aircraft Corp Apparatus for casting of directionally solidified articles
DE3327659A1 (en) 1983-07-30 1985-02-14 MTU Motoren- und Turbinen-Union München GmbH, 8000 München METHOD FOR PRODUCING A COMPOSITE BODY FROM CERAMIC OR FIBER-REINFORCED CERAMIC, AND A SANDWICH PRODUCTION PRODUCED BY THIS METHOD
US4671997A (en) 1985-04-08 1987-06-09 United Technologies Corporation Gas turbine composite parts
DE3521782A1 (en) * 1985-06-19 1987-01-02 Mtu Muenchen Gmbh HYBRID SHOVEL MADE OF METAL AND CERAMIC
US5667359A (en) 1988-08-24 1997-09-16 United Technologies Corp. Clearance control for the turbine of a gas turbine engine
JPH0791660B2 (en) * 1989-08-30 1995-10-04 株式会社日立製作所 Ground equipment with heat-resistant walls for environmental protection
US5405242A (en) 1990-07-09 1995-04-11 United Technologies Corporation Cooled vane
JPH0813713B2 (en) 1990-10-11 1996-02-14 東芝セラミックス株式会社 SiC coated C / C composite
US5403153A (en) * 1993-10-29 1995-04-04 The United States Of America As Represented By The Secretary Of The Air Force Hollow composite turbine blade
JP3136385B2 (en) * 1993-12-08 2001-02-19 株式会社日立製作所 Heat-resistant oxidation-resistant high-strength member and method for producing the same
GB9418949D0 (en) * 1994-09-20 1994-11-09 Helliwell Brian J 90% thermal efficient gas turbine engine
US5702232A (en) * 1994-12-13 1997-12-30 United Technologies Corporation Cooled airfoils for a gas turbine engine
DE102004054930A1 (en) 2004-11-13 2006-05-18 Mtu Aero Engines Gmbh Rotor of a turbomachine, in particular gas turbine rotor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010041786A1 (en) 2010-09-30 2012-04-05 Siemens Aktiengesellschaft Component i.e. moving blade, for environment of hot gas path of e.g. aircraft gas turbine utilized for sucking and compressing air, has internal channel for supplying protective gas near to layer/layer system or inside of layer/layer system
DE102012205055A1 (en) 2012-03-29 2013-10-02 Siemens Aktiengesellschaft Gas turbine component for high temperature applications
WO2013143886A1 (en) 2012-03-29 2013-10-03 Siemens Aktiengesellschaft Coated gas turbine component for high-temperature applications, having a duct system for protective gas
DE102012205055B4 (en) 2012-03-29 2020-08-06 Detlef Haje Gas turbine component for high temperature applications, and method for operating and producing such a gas turbine component

Also Published As

Publication number Publication date
JP2002539350A (en) 2002-11-19
US6769866B1 (en) 2004-08-03
DE50003371D1 (en) 2003-09-25
WO2000053896A1 (en) 2000-09-14
CA2366842A1 (en) 2000-09-14
EP1173657A1 (en) 2002-01-23

Similar Documents

Publication Publication Date Title
EP1173657B1 (en) Turbine blade and method for producing a turbine blade
EP1322838B1 (en) Moving blade for a turbo-machine and turbo-machine
EP1155760B1 (en) Method for producing a casting of high thermal load
EP3191244B1 (en) Method for manufacturing a rotor blade and blade obtained thereby
EP1828544B1 (en) Method to produce a component comprising an embedded channel and component
DE60129779T2 (en) Installation of cooling ducts in turbine parts
EP1757773B1 (en) Hollow turbine airfoil
WO2005049312A1 (en) High-temperature layered system for dissipating heat and method for producing said system
EP1819905A1 (en) Coating system, use and method of manufacturing such a coating system
EP1974071B1 (en) Component for arrangement in the duct of a turbine engine and spray method for production of a coating
CH703758B1 (en) Blade shell, with ribs of an ablative material.
DE3019920A1 (en) DEVICE FOR MINIMIZING AND STABILIZING THE VIBREL TIP GAUGE OF AXIAL TURBINES FOR GAS TURBINE ENGINES
WO2007134883A1 (en) Method of repairing a component, and a component
EP2097616B1 (en) Component with diagonally extending recesses in the surface and method for operating a turbine
EP2101938A1 (en) Method for producing a pattern for the precision-cast representation of a component having at least one cavity
EP2737103B1 (en) Method for applying an anti-wear protective coating to a flow engine component
DE102017128324A1 (en) Components with separable outer wall plugs for modulated film cooling
EP2243574A1 (en) Casting device for creating a turbine rotor blade of a gas turbine and turbine rotor blade
DE102019126740A1 (en) TURBINE NOZZLE CASE MADE OF CERAMIC MATRIX COMPOSITE AND ASSEMBLY PROCESS
WO2006069822A1 (en) Method for the production of a hole
WO2007080058A1 (en) Ceramic solid component, ceramic layer having a high porosity, use of said layer, and a component comprising said layer
WO2018024759A1 (en) Method for producing a channel structure and component
EP1508399B1 (en) Blade for a turbine engine and method to prevent the crack propagation in a blade for a turbine engine
EP3689500A1 (en) Component, in particular for a thermal flow engine and method for producing such a component
WO2019185231A1 (en) Turbine blade having an oxidation-resistance blade airfoil tip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50003371

Country of ref document: DE

Date of ref document: 20030925

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060308

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060324

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060331

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060522

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070309

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070309