EP0995877A1 - Méthode et système de transmission d'informations par onde électromagnétique - Google Patents

Méthode et système de transmission d'informations par onde électromagnétique Download PDF

Info

Publication number
EP0995877A1
EP0995877A1 EP99402571A EP99402571A EP0995877A1 EP 0995877 A1 EP0995877 A1 EP 0995877A1 EP 99402571 A EP99402571 A EP 99402571A EP 99402571 A EP99402571 A EP 99402571A EP 0995877 A1 EP0995877 A1 EP 0995877A1
Authority
EP
European Patent Office
Prior art keywords
tubes
transmitter
receiver
transmission
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99402571A
Other languages
German (de)
English (en)
Other versions
EP0995877B1 (fr
Inventor
Louis Soulier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geoservices Equipements SAS
Original Assignee
Geoservices SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geoservices SA filed Critical Geoservices SA
Publication of EP0995877A1 publication Critical patent/EP0995877A1/fr
Application granted granted Critical
Publication of EP0995877B1 publication Critical patent/EP0995877B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency

Definitions

  • the invention lies in the field of transmission of information from a hole drilled in the ground to the surface. More specifically, the invention relates to an optimized method of transmission of information between the bottom of a well drilled and the surface, the well being either already drilled and in during production, or during drilling.
  • the present invention relates to a method transmission of information from a well drilled at through layers of geological and cased formation at least in part by metal tubes, the method includes placing in said well a information transmitter / receiver operated by the using guided electromagnetic waves created by injecting an electrical signal through a connected dipole conductively to the metal tubes used for guiding waves emitted.
  • a information transmitter / receiver operated by the using guided electromagnetic waves created by injecting an electrical signal through a connected dipole conductively to the metal tubes used for guiding waves emitted.
  • Isolation can be done by setting place of tubes previously coated with a layer of insulating material.
  • the insulation can be carried out by the installation of an insulating material of the type cement to the right of said certain formations in the annular space between the tubes and the formations.
  • the invention also relates to a system for transmission of information from a well drilled in layers of geological formation and cased at least partly by metal tubes, the system comprising in said well a transmitter / receiver of information working by means of waves guided electromagnetics created by the injection of a electrical signal by a dipole conductively linked to metal tubes for guiding the waves emitted.
  • a transmitter / receiver of information working by means of waves guided electromagnetics created by the injection of a electrical signal by a dipole conductively linked to metal tubes for guiding the waves emitted.
  • at least some metal tubes arranged in line with the low resistivity layers include electrical insulation means with said training.
  • Insulated tubes can be coated with layer of insulating material.
  • Insulating layer may not cover the entire length of the tube.
  • the isolation means can understand an insulating material that fills the space annular between the tubes and the conductive formation, the material being the result of the hardening of a liquid composition.
  • the transmitter / receiver can be incorporated into the end of a column of production tubes.
  • the transmitter / receiver can also be incorporated into the end of a drill string.
  • the system according to the invention can be applied to an offshore drilling installation with wellhead underwater.
  • a control line of kill-line can be externally isolated electrically from the bottom of the sea to the surface
  • Zone 2 generally comprises at least one layer forming tank containing effluents to be produced.
  • the land layers 3 which are between layer 2 and the surface, reduce electromagnetic waves in such a way that it is impossible to effectively use the method of known electromagnetic wave transmission.
  • the layers 3a and 3b have resistivities much lower than 20 ⁇ .m, for example of the order of a few ⁇ .m, or even less than 1 ⁇ .m.
  • zone 3c at one resistivity greater than 20 ⁇ .m, for example a layer salt, a layer commonly encountered in drilling.
  • Df ⁇ F log 2 (1 + S / B) with ⁇ F useful modulation bandwidth, S signal and B the noise in the useful band.
  • the transmitter E modulates a very low frequency wave, said frequency being chosen low enough that the spread is possible.
  • the means of emission use waves of frequency included between 1 Hz and 10 Hz.
  • This wave, called frequency carrier is in an exemplary embodiment, modulated depending on the information to be transmitted, by skipping phase 0- ⁇ at a rhythm compatible with the frequency carrier.
  • Other types of modulation can be used, without departing from the scope of this invention.
  • the modulation rate is of the order of bit / second, but it can be adapted according to transmission needs. In the case of orders from downhole devices such as valves, use length codes adapted to the probability maximum error accepted. Coding can, as appropriate whether or not to be associated with detector codes and error correctors, such as redundant codes cyclic.
  • the wave transmitted by the transmitter E is received in surface by the receiver R of which one of the poles is connected at the wellhead and the other pole planted in the ground at sufficient distance from the wellhead.
  • E and R can become transmitters in turn and receiver.
  • Electronic means send / receive E can be advantageously arranged according to the technology described in document US-A-5394141, cited here with reference.
  • a first column of tubes 4 (surface column) is placed in well 1 and generally cemented over its entire height in the surface formation 3a.
  • a wellhead 5 installed on the surface column allows to receive the upper end of the other columns, techniques or production, as well as the safety valves.
  • a second column 6 is lowered into the drilled hole 7 at from the shoe of the surface column 4 and up the tank cover 2.
  • the annular space between hole 7 and casing tube column 6 is usually filled with cement at least to the hoof from the previous column, in this example the shoe the surface column 4.
  • a column of tubes of production 8 (tubing), whose role is to go back the effluent to the surface, passes through a packer 9 which seals the tank area relative to the annular space around the tubing 8.
  • the P1 and P2 poles of the dipole can be formed by the contact provided by the packer 9 with the metal column 6 and the contact provided by a blade centering device 10 placed higher in the column tubing 8.
  • the upper contact is directly made by the contact of the tubing with the column 6, taking into account the annular space generally weak and the geometry of the well.
  • a insulating fitting 11, located to the right of the transmitter, can be used in casing column 6 to separate the lower contact P1 of the upper contact P2. But this insulating fitting is not necessary if using the so-called "long dipole" constitution for the antenna transmission or reception. In this case, ensure that the P2 pole is far enough from the pole P1 and there can be no other contact between column 6 and tubings 8 along the length between the poles.
  • Tubes, casing or tubing according to the name known in the profession and standardized by API (American Petroleum Institute) include at their two ends a male thread and a sleeve, screwed onto the tube body or integral, including female thread corresponding so that we can assemble them these tubes to form a column.
  • the insulating layer will only be deposited on the body of the tube, between the male thread (which obviously can not be covered) and the sleeve. In effect, the layer near the threads would be destroyed by the jaws of the screwing means, and may even be would be inconvenient for the suspension of the column or hanging the jaws.
  • the insulating layer can be an epoxy coating loaded with ceramic, by example of the type of coating used as protection anticorrosion on maritime structures, pipelines, the drill rods.
  • Figure 2 illustrates the case of the transmission according to the invention during drilling of a well 20 using a drill string 21 fitted of a drilling tool 22 at its end.
  • a transmitter / receiver E is generally arranged in the lower part to transmit for example drilling, trajectometry, radiation parameters gamma, temperature, pressure, etc.
  • Well 1 is here cased on the surface by a column 23 and a column intermediate 24.
  • Zone 25 has low resistivity which too strongly attenuates the transmission by EM between E and R.
  • the ring finger between the column 23 and the formation and the ring finger between the column 24 and the formation will be filled with cement insulating.
  • the antenna is produced by the part of the lining between the insulating junction of the emitter E and the drilling tool 22. Note that in this case the signal from the transmitter E will be attenuated from E to the isolated or pseudo-isolated zone 27, then of the zone 26 to the surface receiver R.
  • a mathematical model propagation taking into account the characteristics electrical of the different casings and formations, allows predetermining the minimum lengths of isolation zones 26 and 27 in order to be able to guarantee the transmission.
  • Figure 3 shows an alternative arrangement of the emitter E in the drill string 21 and a example of application of the invention in the case of offshore drilling with an underwater wellhead 29.
  • the receiver R is located at the bottom of the sea with one of its receiving poles connected to the subsea wellhead and the other made up of a piece of metal, by example an anchor 37, placed a few tens of meters from the wellhead.
  • Communication between the surface and the bottom of the sea is done either by acoustic transmitter, either by electrical conductor installed along the casing.
  • Soils 30 near the bottom of water are generally geologically "young" and generally of low resistivity.
  • the column of surface 31 is therefore advantageously isolated, according to the invention, on the height corresponding to the formation 30.
  • the emitter E is here arranged at the end of a determined length of cable 32 to create a "long dipole".
  • the cable is fixed by a support 33 to inside of rods and is electrically connected to the transmitter located at a remote part of the rods 21.
  • the wellhead 29 is connected to the floating support of drilling by a so-called “marine riser" unit 35.
  • a high pressure line 36 (kill line or choke line) runs substantially parallel to the riser of the head floating support well.
  • Figure 4 shows in section a tube element 40 that can be used to casing a hole drilled in an area of too low resistivity.
  • a tube body made of steel 41 is obtained by hot rolling. We factory at the two ends a male thread 42 and 43.
  • a sleeve 44 having female threads 45 is screwed on one end.
  • the insulating coating (as defined above) is deposited on the central zone 48. Zones 46 and 47 can be left raw so that the jaws of the robots have direct contact with the steel of the tube, likewise with regard to the corners of the table of suspension of the casing column.
  • the present invention therefore has all the advantages electromagnetic wave transmission and more, allows an increase in performance than it either in wells equipped for production or in drilling course. It also allows you to use more broadly the EM transmission, especially in the case deep offshore.
  • the tubes thus coated are also more effectively cathodically protected since the current to be injected for cathodic protection will be decreased and moreover it will only pass in places not coated which therefore require potential electrical protection against electro-corrosion.
  • the coating can also promote cement adhesion on the tubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Earth Drilling (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

La présente invention concerne une méthode et un système de transmission d'informations depuis un puits (1; 20) foré à travers des couches (3) de formation géologique et cuvelé au moins en partie par des tubes métalliques (4; 23, 24; 31). La méthode comprend la mise en place dans ledit puits d'un émetteur/récepteur d'informations (E) fonctionnant par le moyen d'ondes électromagnétiques créées par l'injection d'un signal électrique par un dipôle (P1-P2) relié conductivement aux tubes métalliques servant au guidage des ondes émises. Dans la méthode, on identifie l'atténuation de la transmission par certaines couches de formation (3a, 3b; 25; 30) ayant une faible résistivité, puis on isole électriquement au moins partiellement les tubes métalliques disposés au droit des couches de faible résistivité. <IMAGE>

Description

L'invention se situe dans le domaine des transmissions d'informations depuis un trou foré dans le sol jusqu'à la surface. Plus particulièrement, l'invention concerne une méthode optimisée de transmission d'informations entre le fond d'un puits foré et la surface, le puits étant soit déjà foré et en cours de production, soit en cours de forage.
On connaít différents systèmes de transmission d'informations entre le fond d'un puits et la surface, par exemple par ondes de pression ("Mud pulse") dans un fluide en circulation dans le puits. Mais on sait que ce type de transmission a notamment pour inconvénients de ne pas correctement fonctionner, si ce n'est pas du tout, dans un fluide compressible, tel du gaz ou des liquides chargés en gaz, ou lorsqu'il y a une obstruction dans le canal de circulation qui perturbe l'écoulement, par exemple un moteur de fond, une vanne ou une duse. Par ailleurs, ce système est bien entendu inopérant en cours de production et de manoeuvre de garniture de forage.
On connaít également le système de transmission par ondes électromagnétiques guidées par les colonnes métalliques de tubes mis en place dans le puits. Ce système de transmission est notamment décrit dans le document FR 2681461 de la demanderesse, cité ici en référence. Les performances de la transmission électromagnétique (EM) sont dépendantes de la résistivité moyenne des formations géologiques environnantes au puits. Si la résistivité de certaines couches est trop faible, comme c'est le cas dans certains terrains sédimentaires tertiaires péri continentaux tels que, ceux de la Mer du Nord, ou du Golfe du Mexique, l'atténuation peut devenir trop importante le long du puits, ce qui exclu pratiquement l'utilisation d'un tel dispositif dans la majorité des puits offshore sauf à réduire drastiquement le débit d'informations que l'on transmet.
Ainsi, la présente invention concerne une méthode de transmission d'informations depuis un puits foré à travers des couches de formation géologique et cuvelé au moins en partie par des tubes métalliques, la méthode comprend la mise en place dans ledit puits d'un émetteur/récepteur d'informations fonctionnant par le moyen d'ondes électromagnétiques guidées créées par l'injection d'un signal électrique par un dipôle relié conductivement aux tubes métalliques servant au guidage des ondes émises. Selon la méthode, on identifie l'atténuation de la transmission par certaines couches de formation ayant une faible résistivité, on isole électriquement au moins partiellement les tubes métalliques disposés au droit desdites couches de faible résistivité.
On peut déterminer à l'aide d'un modèle mathématique la longueur minimale à isoler compte tenu des caractéristiques minimales de ladite transmission électromagnétique, notamment la distance de transmission et/ou le débit d'informations.
On peut effectuer l'isolation par la mise en place de tubes préalablement revêtus d'une couche de matière isolante.
Dans une variante, on peut effectuer l'isolation par la mise en place d'un matériau isolant du type ciment au droit desdites certaines formations dans l'espace annulaire entre les tubes et les formations. On peut disposer ledit émetteur/récepteur proche de l'extrémité inférieure d'une colonne de tubes de production pour transmettre des mesures de fond ou des commandes à des équipements de fond.
On peut aussi disposer ledit émetteur/récepteur proche de l'extrémité inférieure d'une garniture de forage pour transmettre des paramètres de fond ou de forage, ou des mesures de localisation.
L'invention concerne également un système de transmission d'informations depuis un puits foré dans des couches de formation géologique et cuvelé au moins en partie par des tubes métalliques, le système comprenant dans ledit puits un émetteur/récepteur d'informations fonctionnant par le moyen d'ondes électromagnétiques guidées créées par l'injection d'un signal électrique par un dipôle lié conductivement aux tubes métalliques servant au guidage des ondes émises. Dans le système, au moins certains tubes métalliques disposés au droit des couches de faible résistivité comportent des moyens d'isolation électrique avec ladite formation.
Les tubes isolés peuvent être revêtus d'une couche de matière isolante.
La couche isolante peut ne pas recouvrir entièrement toute la longueur du tube.
Dans le système, les moyens d'isolation peuvent comprendre un matériau isolant qui remplit l'espace annulaire entre les tubes et la formation conductrice, le matériau étant le résultat du durcissement d'une composition liquide.
L'émetteur/récepteur peut être incorporé à l'extrémité d'une colonne de tubes de production.
L'émetteur/récepteur peut aussi être incorporé à l'extrémité d'une garniture de forage.
Le système selon l'invention peut être appliqué à une installation de forage en mer avec tête de puits sous-marine.
Dans cette application, une conduite de contrôle de venues (kill-line) peut être extérieurement isolée électriquement du fond de la mer à la surface
La présente invention sera mieux comprise et ses avantages apparaítront plus clairement à la lecture des exemples suivants, nullement limitatifs, illustrés par les figures annexées parmi lesquelles:
  • La figure 1 représente schématiquement une mise en oeuvre de l'invention pour un puits en production.
  • La figure 2 illustre un autre mode de mise en oeuvre de l'invention dans le cas de l'opération de forage d'un puits.
  • La figure 3 illustre une variante en forage.
  • La figure 4 montre en coupe l'exemple d'un élément de tube de cuvelage revêtu extérieurement d'un isolant électrique.
  • La figure 5 représente un exemple d'atténuation du signal en fonction de la profondeur du forage et de la résistivité des formations traversées.
Sur la figure 1, on a représenté un puits 1 déjà foré jusqu'à atteindre une zone géologique 2. La zone 2 comporte généralement au moins une couche formant réservoir contenant des effluents à produire. Dans le cas présent, les couches de terrains 3, qui sont comprises entre la couche 2 et la surface, atténuent les ondes électromagnétiques de telle façon qu'il est impossible d'utiliser efficacement la méthode de transmission par ondes électromagnétiques connue. Par des mesures de logging, on a pu mesurer que les couches 3a et 3b ont des résistivités très inférieures à 20 Ω.m, par exemple de l'ordre de quelques Ω.m, ou même inférieures à 1 Ω.m. Par contre la zone 3c, à une résistivité supérieure à 20 Ω.m, par exemple une couche de sel, couche que l'on rencontre fréquemment en forage. Avant de forer un puits, dans lequel on aura à appliquer la technique objet de cette invention, il est presque toujours possible d'obtenir un log (enregistrement en fonction de la profondeur) de résistivité par exemple en l'extrapolant à partir des profils sismiques et des logs de puits forés dans cette zone. La courbe a de la figure 5 montre un exemple de cette courbe. Ce log nous permet alors ,à partir d'un modèle mathématique de propagation des ondes électromagnétiques le long des tiges de forage et des cuvelages du puits considéré, de calculer l'atténuation du signal électromagnétique entre le point d'émission E et le point de réception R. Le modèle utilisé sera par exemple du type décrit dans l'article SPE Drilling Engineering, June 1987, P.Degauque et R.Grudzinski. A partir de ce calcul on prédétermine, avant forage, le niveau de signal qu'on recevra, ou que l'on devrait recevoir, en surface tout au long de la descente de l'émetteur. La courbe b de la figure 5 montre un exemple de ce signal. Le signal obtenu lors du forage du puits sera enregistré et comparé en temps réel avec le signal calculé à partir du log prévisionnel permettant ainsi d'ajuster la position réelle des différentes couches géologiques et la valeur réelle de leur résistivité .Ceci n'est possible que grâce à la connaissance du courant émis par l'émetteur, ce qui est le cas pour l'émetteur considéré.
Connaissant l'atténuation maximale acceptable entre l'émetteur E et le récepteur R pour le débit d'informations souhaité, on pourra déterminer avec précision la longueur du casing à recouvrir en choisissant d'isoler d'abord les zones à faible résistivité telles que celles comprises entre 500 et 1000 m sur la figure 5.
Sur la figure 5, à partir des courbes a et b définies plus haut, on représente deux autres courbes c et d:
  • la courbe c représente le signal obtenu tout au long du puits dans le cas où on isole électriquement de manière parfaite l'extérieur du casing des formations environnantes sur l'intervalle 500 m à 1000 m. On constate que la réduction d'atténuation est de l'ordre de 35 dB selon les paramètres de propagation considérés (fréquence porteuse de 5Hz dans ce cas);
  • la courbe d représente le signal obtenu tout au long du puits dans le cas où on isole uniquement le corps des casings. Ceci revient à considérer, pour le modèle de propagation que nous avons, une isolation parfaite du casing sur 27 m, puis une conduction électrique sur 0,5 mètre. On constate alors que le gain total en atténuation est de l'ordre de 24 dB.
Grâce à cette méthode et connaissant le débit d'informations à obtenir, il sera toujours possible techniquement de déterminer et d'installer le cuvelage nécessaire à la transmission souhaitée.
Il est à noter que cela ne changerait pas la méthode si le signal électromagnétique était relayé par un émetteur/récepteur situé entre l'émetteur de fond de puits et la surface et en particulier si ce dernier était situé dans la zone non cuvelée du puits.
On rappelle que le débit d'information Df est calculé par la formule suivante: Df = ΔF log2 (1 + S/B)    avec ΔF largeur de bande utile de modulation, S signal et B le bruit dans la bande utile.
La transmission est effectuée par l'émetteur référencé E dans les figures 1, 2 et 3. L'émetteur E module une onde de très basse fréquence, ladite fréquence étant choisie assez basse pour que la propagation soit possible. De préférence, les moyens d'émission utilisent des ondes de fréquence comprise entre 1 Hz et 10 Hz. Cette onde, dite fréquence porteuse, est dans un exemple de réalisation, modulée en fonction des informations à transmettre, par saut de phase 0-π à un rythme compatible avec la fréquence porteuse. D'autres types de modulation peuvent être utilisés, sans sortir du cadre de la présente invention. Le débit de modulation est de l'ordre du bit/seconde, mais il peut être adapté en fonction des besoins de transmission. Dans le cas de commandes de dispositifs de fond tels que des vannes, on pourra utiliser des codes de longueur adaptée à la probabilité maximale d'erreur acceptée. Le codage peut selon le cas être associé ou non à des codes détecteurs et correcteurs d'erreurs, tels que des codes à redondance cyclique.
L'onde émise par l'émetteur E est reçue en surface par le récepteur R dont un des pôles est relié à la tête de puits et l'autre pôle planté dans le sol à une distance suffisante de la tête de puits. Dans la pratique, E et R peuvent devenir tour à tour émetteur et récepteur. Les moyens électroniques d'émission/réception E peuvent être avantageusement agencés selon la technologie décrite dans le document US-A-5394141, cité ici en référence. On peut également se référer à la publication SPE/IADC 25686 présentée par Louis Soulier et Michel Lemaitre à la SPE/IADC Drilling Conference tenue à Amsterdam les 23-25 Février 1993.
Sur la figure 1, une première colonne de tubes 4 (colonne de surface) est placée dans le puits 1 et généralement cimentée sur toute sa hauteur dans la formation de surface 3a. Une tête de puits 5 installée sur la colonne de surface permet de recevoir l'extrémité supérieure des autres colonnes, techniques ou de production, ainsi que les vannes de sécurité. Une deuxième colonne 6 est descendue dans le trou foré 7 à partir du sabot de la colonne de surface 4 et jusqu'à la couverture du réservoir 2. L'espace annulaire entre le trou 7 et la colonne de tubes casing 6 est généralement rempli de ciment au moins jusqu'au sabot de la colonne précédente, dans cet exemple le sabot de la colonne de surface 4. Un colonne de tubes de production 8 (tubing), dont le rôle est de remonter l'effluent jusqu'à la surface, passe à travers un packer 9 qui assure l'étanchéité de la zone réservoir par rapport à l'espace annulaire autour du tubing 8. Dans la partie inférieure de la colonne de tubing, est installé un émetteur/récepteur de type E. Pour la transmission EM, les pôles P1 et P2 du dipôle peuvent être constitués par le contact procuré par le packer 9 avec la colonne métallique 6 et le contact procuré par un centreur à lames 10 placé plus haut dans la colonne de tubing 8. Dans certains cas, le contact supérieur est directement fait par le contact du tubing avec la colonne 6, compte tenu de l'espace annulaire généralement faible et de la géométrie du puits. Un raccord isolant 11, situé au droit de l'émetteur, peut être utilisé dans la colonne de casing 6 pour séparer le contact inférieur P1 du contact supérieur P2. Mais ce raccord isolant n'est pas nécessaire si l'on utilise la constitution dite "long dipôle" pour l'antenne d'émission ou de réception. Dans ce cas, il faut veiller à ce que le pôle P2 soit suffisamment loin du pôle P1 et qu'il ne puisse pas y avoir d'autre contact entre la colonne 6 et les tubings 8 sur la longueur entre les pôles.
Selon l'invention, on améliore les performances de l'émetteur E en isolant électriquement la colonne 6 de la formation géologique très conductrice 3b. Cette isolation est représentée par la trame référencée 12. Il est important de noter que la zone 3c, que l'on connaít comme ayant une résistivité suffisante pour ne pas procurer une atténuation pénalisante, par exemple supérieure à environ 20 Q.m, n'a donc pas besoin d'être isolée électriquement. Dans cet exemple, les terrains de surface 3a ne sont pas favorables à une bonne transmission. La colonne de surface 4 sera, en fonction des besoins de débit d'information, également isolée de la formation 3a (représenté par la trame référencée 13).
Dans la présente invention, on peut réaliser ladite isolation des colonnes de tubes avec les terrains en recouvrant la paroi extérieure des tubes par une couche de matière isolante, ou presque isolante. En effet, on a vu que selon l'invention l'isolation électrique nécessaire est toute relative puisque des terrains de résistivité supérieure à 20 Ω.m sont suffisamment "isolants". De plus, l'isolation n'a pas besoin d'être continue sur toute la hauteur de l'épaisseur de la couche conductrice. Les tubes, casing ou tubing selon la dénomination connue dans la profession et normalisée par l'API (American Petroleum Institute) comprennent à leurs deux extrémités un filetage mâle et un manchon, vissé sur le corps du tube ou intégral, comportant le filetage femelle correspondant de façon à pouvoir assembler entre eux ces tubes afin de constituer une colonne. De préférence, la couche isolante ne sera déposée que sur le corps du tube, entre le filetage mâle (qui évidemment ne peut être recouvert) et le manchon. En effet, la couche près des filetages serait détruite par les mâchoires des moyens de vissage, et peut être même serait gênante pour la suspension de la colonne ou l'accrochage des mâchoires. La couche isolante peut être un revêtement époxy chargé de céramique, par exemple du type de revêtement utilisé comme protection anticorrosion sur les structures maritimes, les pipeline, les tiges de forage. Il pourrait s'agir également d'une couche de céramique déposée par plasma, de goudron, de préférence combiné avec du polyuréthanne, des bandes en matière plastique, telle du polyéthylène, PVC, un mélange de résine et de sable projeté sur le tube, un enrobage de fibres de verre imprégnées et bobinées autour du corps du tube. Tous les revêtements suffisamment isolant selon les besoins de la présente application, c'est à dire conduisant à une résistance électrique de fuite très supérieure à la résistance caractéristique de la ligne de propagation, peuvent convenir sans sortir du cadre de la présente invention. Dans la pratique, cette résistance caractéristique étant de l'ordre de quelques milliohms, il suffira d'avoir une résistance radiale d'isolement de l'ordre d'un ohm par segment de casing pour obtenir une bonne efficacité du dispositif.
Selon l'invention, on peut aussi réaliser l'isolation électrique des colonnes de tubes en utilisant un matériau isolant pour la cimentation des zones fortement conductrices, par exemple les annulaires 3a et 3b. On connaít dans la profession la méthode de circulation pour mettre en place un laitier de ciment de formulation déterminée au droit d'une zone géologique donnée. On utilisera donc cette technique conventionnelle pour placer du matériau isolant ou plutôt d'amélioration de la conductivité par rapport au terrain de résistivité basse.
La figure 2 illustre le cas du système de transmission selon l'invention en cours de forage d'un puits 20 à l'aide d'une garniture de forage 21 équipée d'un outil de forage 22 à son extrémité. Un émetteur/récepteur E est disposé généralement dans la partie inférieure pour transmettre par exemple des paramètres de forage, de trajectométrie, de rayonnement gamma, de température, de pression, etc. Le puits 1 est ici cuvelé en surface par une colonne 23 et une colonne intermédiaire 24. La zone 25 a une résistivité faible qui atténue trop fortement la transmission par EM entre E et R. Selon l'invention, on disposera des éléments de tubes isolés en 26 pour la colonne 23 et en 27 pour la colonne 24. Dans une variante, l'annulaire entre la colonne 23 et la formation et l'annulaire entre la colonne 24 et la formation seront remplis de ciment isolant. Ainsi, l'atténuation crée par la faible résistivité de la zone 25 sera très sensiblement diminuée, augmentant d'autant la capacité ou la rapidité de la transmission de E. Dans ce système, l'antenne est réalisée par la partie de la garniture comprise entre la jonction isolante de l'émetteur E et l'outil 22 de forage. On notera que dans ce cas le signal émis par l'émetteur E sera atténué de E jusqu'à la zone isolée ou pseudo-isolée 27, puis de la zone 26 jusqu'au récepteur R de surface. Un modèle mathématique de propagation prenant en compte les caractéristiques électriques des différents casings et des formations, permet de prédéterminer les longueurs minimales des zones d'isolement 26 et 27 afin de pouvoir garantir la transmission.
Il faut noter que la partie des tubes de la colonne 24 incluse dans la colonne 23 ne nécessite pas d'isolation.
La figure 3 montre une variante de disposition de l'émetteur E dans la garniture de forage 21 et un exemple d'application de l'invention dans le cas des forages offshore avec une tête de puits 29 sous-marine. Conventionnellement, dans le cas de forage ou d'exploitation avec tête de puits sous-marine, le récepteur R est situé au fond de la mer avec l'un de ses pôles de réception relié à la tête de puits sous-marine et l'autre constitué par une pièce de métal, par exemple une ancre 37, placée à quelques dizaines de mètres de la tête de puits. La communication entre la surface et le fond de la mer se fait soit par transmetteur acoustique, soit par conducteur électrique installé le long du casing. Les sols 30 proches du fond de l'eau sont généralement géologiquement "jeunes" et généralement de faible résistivité. La colonne de surface 31 est donc avantageusement isolée, selon l'invention, sur la hauteur correspondante à la formation 30. L'émetteur E est ici disposé au bout d'une longueur déterminée de câble 32 pour créer un "long dipôle". Le câble est fixé par un support 33 à l'intérieur de tiges et est relié électriquement à l'émetteur situé à une partie éloignée des tiges 21. La tête de puits 29 est reliée au support flottant de forage par un ensemble dit "marine riser" 35. Une conduite haute pression 36 (kill-line ou choke-line) longe sensiblement parallèlement le riser de la tête de puits au support flottant. On peut avantageusement isoler électriquement la conduite 36 pour coupler l'antenne de fond 37 avec la surface et ainsi obtenir la réception en surface, c'est à dire sur le support flottant où se termine la ligne 36.
Il est clair que la disposition "long dipôle" décrite sur la figure 3 s'applique dans toutes les autres configurations de forage et non pas uniquement dans le cas offshore. Dans le cas d'opérations où l'on utilise de la boue aérée par du gaz, ou même de la mousse, la transmission EM est la seule transmission possible et a des performances accrues grâce au perfectionnement selon l'invention.
La figure 4 montre en coupe un élément de tube 40 que l'on peut utiliser pour cuveler un trou foré dans une zone de trop faible résistivité. Un corps de tube en acier 41 est obtenu par laminage à chaud. On usine aux deux extrémités un filetage mâle 42 et 43. Un manchon 44 comportant des filetages femelles 45 est vissé sur l'une des extrémités. Le revêtement isolant (selon la définition donnée plus haut) est déposé sur la zone centrale 48. Les zones 46 et 47 peuvent être laissées brutes de façon que les mâchoires des robots de vissage aient directement un contact avec l'acier du tube, de même en ce qui concerne les coins de la table de suspension de la colonne de cuvelage.
Il est clair qu'il est tout à fait possible d'isoler entièrement la surface extérieure du tube de cuvelage, avant vissage ou après vissage, cependant cette opération se heurte à de nombreuses difficultés opératoires. Pratiquement et économiquement ce n'est pas souhaitable. C'est pourquoi, la présente invention qui ne nécessite pas d'isolement parfait est particulièrement avantageuse.
La présente invention a donc tous les avantages de la transmission par ondes électromagnétiques et de plus, permet un accroissement des performances que ce soit dans des puits équipés pour la production ou en cours de forage. Elle permet également d'utiliser plus largement la transmission EM, notamment dans le cas d'offshore profond.
Les tubes ainsi revêtus sont aussi plus efficacement protégés cathodiquement puisque le courant à injecter pour la protection cathodique sera diminué et par ailleurs il ne passera qu'aux endroits non revêtus qui de ce fait nécessitent un potentiel électrique de protection contre l'électro-corrosion. Le revêtement peut aussi favoriser l'adhérence du ciment sur les tubes.

Claims (14)

  1. Méthode de transmission d'informations depuis un puits foré à travers des couches de formation géologique et cuvelé au moins en partie par des tubes métalliques, ladite méthode comprend la mise en place dans ledit puits d'un émetteur/récepteur d'informations fonctionnant par le moyen d'ondes électromagnétiques guidées créées par l'injection d'un signal électrique par un dipôle relié conductivement aux tubes métalliques servant au guidage des ondes émises, caractérisée en ce que:
    on identifie l'atténuation de la transmission par certaines couches de formation ayant une faible résistivité,
    on isole électriquement au moins partiellement les tubes métalliques disposés au droit desdites couches de faible résistivité.
  2. Méthode selon la revendication 1, dans laquelle on détermine à l'aide d'un modèle mathématique la longueur minimale à isoler compte tenu des caractéristiques minimales de ladite transmission électromagnétique, notamment la distance de transmission et/ou le débit d'informations.
  3. Méthode selon l'une des revendications 1 ou 2, dans laquelle on effectue l'isolation par la mise en place de tubes préalablement revêtus d'une couche de matière isolante.
  4. Méthode selon l'une des revendications 1 ou 2, dans laquelle on effectue l'isolation par la mise en place d'un matériau isolant du type ciment au droit desdites certaines formations dans l'espace annulaire entre les tubes et les formations.
  5. Méthode selon l'une des revendications précédentes, dans laquelle on dispose ledit émetteur/récepteur proche de l'extrémité inférieure d'une colonne de tubes de production pour transmettre des mesures de fond ou des commandes à des équipements de fond.
  6. Méthode selon l'une des revendications 1 à 4, dans laquelle on dispose ledit émetteur/récepteur proche de l'extrémité inférieure d'une garniture de forage pour transmettre des paramètres de fond ou de forage, ou des mesures de localisation.
  7. Système de transmission d'informations depuis un puits foré dans des couches de formation géologique et cuvelé au moins en partie par des tubes métalliques, ledit système comprenant dans ledit puits un émetteur/récepteur d'informations fonctionnant par le moyen d'ondes électromagnétiques guidées créées par l'injection d'un signal électrique par un dipôle lié conductivement aux tubes métalliques servant au guidage des ondes émises, caractérisée en ce qu'au moins certains tubes métalliques disposés au droit desdites couches de faible résistivité comportent des moyens d'isolation électrique avec ladite formation.
  8. Système selon la revendication 7, dans lequel lesdits tubes isolés sont revêtus d'une couche de matière isolante.
  9. Système selon la revendication 8, dans lequel ladite couche isolante ne recouvre pas entièrement toute la longueur du tube.
  10. Système selon la revendication 7, dans lequel lesdits moyens d'isolation comprennent un matériau isolant qui remplit l'espace annulaire entre lesdits tubes et la formation conductrice, ledit matériau étant le résultat du durcissement d'une composition liquide.
  11. Système selon l'une des revendications 7 à 10, dans lequel ledit émetteur/récepteur est incorporé à l'extrémité d'une colonne de tubes de production.
  12. Système selon l'une des revendications 7 à 10, dans lequel ledit émetteur/récepteur est incorporé à l'extrémité d'une garniture de forage.
  13. Application du système selon l'une des revendications 7 à 12, à une installation de forage en mer avec tête de puits sous-marine.
  14. Application selon la revendication 13, dans laquelle une conduite de contrôle de venues (kill-line) est extérieurement isolée électriquement du fond de la mer à la surface.
EP99402571A 1998-10-23 1999-10-19 Méthode et système de transmission d'informations par onde électromagnétique Expired - Lifetime EP0995877B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9813304 1998-10-23
FR9813304A FR2785017B1 (fr) 1998-10-23 1998-10-23 Methode et systeme de transmission d'informations par onde electromagnetique

Publications (2)

Publication Number Publication Date
EP0995877A1 true EP0995877A1 (fr) 2000-04-26
EP0995877B1 EP0995877B1 (fr) 2003-05-07

Family

ID=9531909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99402571A Expired - Lifetime EP0995877B1 (fr) 1998-10-23 1999-10-19 Méthode et système de transmission d'informations par onde électromagnétique

Country Status (10)

Country Link
US (1) US6628206B1 (fr)
EP (1) EP0995877B1 (fr)
CN (1) CN1154251C (fr)
BR (1) BR9905102B1 (fr)
CA (1) CA2286435C (fr)
DE (1) DE69907597T2 (fr)
ES (1) ES2198865T3 (fr)
FR (1) FR2785017B1 (fr)
NO (1) NO315247B1 (fr)
RU (1) RU2206739C2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071837B2 (en) 1999-07-07 2006-07-04 Expro North Sea Limited Data transmission in pipeline systems
CN104937442A (zh) * 2012-12-28 2015-09-23 哈里伯顿能源服务公司 利用电绝缘材料的井下电磁遥测系统和相关方法
US20190032473A1 (en) * 2012-12-07 2019-01-31 Halliburton Energy Services, Inc. System for Drilling Parallel Wells for SAGD Applications

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0202248B1 (pt) * 2001-04-23 2014-12-09 Schlumberger Surenco Sa “Sistema de comunicação submarina e método utilizável com um poço submarino
FR2854425B1 (fr) * 2003-04-30 2005-07-29 Gaz De France Procede et dispositif de transmission d'informations entre une cavite saline et la surface du sol
US7145473B2 (en) * 2003-08-27 2006-12-05 Precision Drilling Technology Services Group Inc. Electromagnetic borehole telemetry system incorporating a conductive borehole tubular
US7170423B2 (en) * 2003-08-27 2007-01-30 Weatherford Canada Partnership Electromagnetic MWD telemetry system incorporating a current sensing transformer
US7080699B2 (en) * 2004-01-29 2006-07-25 Schlumberger Technology Corporation Wellbore communication system
US7249636B2 (en) 2004-12-09 2007-07-31 Schlumberger Technology Corporation System and method for communicating along a wellbore
GB2462757B (en) * 2005-01-31 2010-07-14 Baker Hughes Inc Telemetry system with an insulating connector
US7609169B2 (en) * 2006-08-31 2009-10-27 Precision Energy Services, Inc. Electromagnetic telemetry apparatus and methods for minimizing cyclical or synchronous noise
ATE513231T1 (de) 2007-01-26 2011-07-15 Prad Res & Dev Nv Bohrlochtelemetriesystem
CN101072050B (zh) * 2007-06-19 2010-08-25 北京意科通信技术有限责任公司 一种通过金属管道进行数据传输的系统
WO2009012328A1 (fr) * 2007-07-16 2009-01-22 Earth To Air Systems, Llc Améliorations dans la conception d'un système d'échange direct
TW200930963A (en) * 2008-01-02 2009-07-16 Rui-Zhao Chen Combination refrigerator
CN101824983A (zh) * 2010-05-06 2010-09-08 煤炭科学研究总院西安研究院 一种信号传输装置
CA2800170C (fr) * 2010-05-21 2017-02-21 Halliburton Energy Services, Inc. Systemes et procedes d'isolation de bha en fond de trou dans applications de telemetrie magnetique
IT1403940B1 (it) * 2011-02-16 2013-11-08 Eni Spa Sistema di rilevamento di formazioni geologiche
US9303507B2 (en) 2013-01-31 2016-04-05 Saudi Arabian Oil Company Down hole wireless data and power transmission system
CN106285660B (zh) * 2016-08-23 2020-03-10 中国石油天然气股份有限公司 一种多层砂岩油藏低阻油层识别方法及装置
RU2745858C1 (ru) * 2020-06-03 2021-04-02 Общество с ограниченной ответственностью "Научно-технологический центр Геомеханика" Способ мониторинга скважинных забойных параметров и устройство для его осуществления
CN113236236A (zh) * 2021-06-21 2021-08-10 哈尔滨工程大学 一种以油井管道作为信道的信号传输装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684946A (en) * 1983-05-06 1987-08-04 Geoservices Device for transmitting to the surface the signal from a transmitter located at a great depth
US4793409A (en) * 1987-06-18 1988-12-27 Ors Development Corporation Method and apparatus for forming an insulated oil well casing
US5394141A (en) * 1991-09-12 1995-02-28 Geoservices Method and apparatus for transmitting information between equipment at the bottom of a drilling or production operation and the surface
EP0816632A1 (fr) * 1996-07-01 1998-01-07 Geoservices Dispositif et méthode de transmission d'informations par onde électromagnétique
WO1998006924A2 (fr) * 1996-07-31 1998-02-19 Scientific Drilling International Procede et appareil de telemetrie a champ electrique et d'evaluation de formation combinees

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967201A (en) * 1974-01-25 1976-06-29 Develco, Inc. Wireless subterranean signaling method
US4001774A (en) * 1975-01-08 1977-01-04 Exxon Production Research Company Method of transmitting signals from a drill bit to the surface
EP0737322A4 (fr) * 1993-06-04 1997-03-19 Gas Res Inst Inc Procede et appareil de communication de signaux en provenance d'un trou de forage tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684946A (en) * 1983-05-06 1987-08-04 Geoservices Device for transmitting to the surface the signal from a transmitter located at a great depth
US4793409A (en) * 1987-06-18 1988-12-27 Ors Development Corporation Method and apparatus for forming an insulated oil well casing
US5394141A (en) * 1991-09-12 1995-02-28 Geoservices Method and apparatus for transmitting information between equipment at the bottom of a drilling or production operation and the surface
EP0816632A1 (fr) * 1996-07-01 1998-01-07 Geoservices Dispositif et méthode de transmission d'informations par onde électromagnétique
WO1998006924A2 (fr) * 1996-07-31 1998-02-19 Scientific Drilling International Procede et appareil de telemetrie a champ electrique et d'evaluation de formation combinees

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071837B2 (en) 1999-07-07 2006-07-04 Expro North Sea Limited Data transmission in pipeline systems
US20190032473A1 (en) * 2012-12-07 2019-01-31 Halliburton Energy Services, Inc. System for Drilling Parallel Wells for SAGD Applications
US10995608B2 (en) * 2012-12-07 2021-05-04 Halliburton Energy Services, Inc. System for drilling parallel wells for SAGD applications
CN104937442A (zh) * 2012-12-28 2015-09-23 哈里伯顿能源服务公司 利用电绝缘材料的井下电磁遥测系统和相关方法
EP2914986A4 (fr) * 2012-12-28 2016-09-21 Halliburton Energy Services Inc Système de télémétrie électromagnétique en fond de trou employant un matériau électriquement isolant et procédés apparentés

Also Published As

Publication number Publication date
NO995019D0 (no) 1999-10-14
CN1154251C (zh) 2004-06-16
DE69907597T2 (de) 2004-03-18
CN1251480A (zh) 2000-04-26
ES2198865T3 (es) 2004-02-01
FR2785017A1 (fr) 2000-04-28
EP0995877B1 (fr) 2003-05-07
BR9905102B1 (pt) 2010-08-24
BR9905102A (pt) 2000-10-03
CA2286435A1 (fr) 2000-04-23
NO995019L (no) 2000-04-25
US6628206B1 (en) 2003-09-30
NO315247B1 (no) 2003-08-04
FR2785017B1 (fr) 2000-12-22
DE69907597D1 (de) 2003-06-12
CA2286435C (fr) 2006-03-14
RU2206739C2 (ru) 2003-06-20

Similar Documents

Publication Publication Date Title
EP0995877B1 (fr) Méthode et système de transmission d&#39;informations par onde électromagnétique
CA2209423C (fr) Dispositif et methode de transmission d&#39;informations par onde electromagnetique
FR2681461A1 (fr) Procede et agencement pour la transmission d&#39;informations, de parametres et de donnees a un organe electro-magnetique de reception ou de commande associe a une canalisation souterraine de grande longueur.
US9631485B2 (en) Electro-acoustic transmission of data along a wellbore
AU2003279893B2 (en) Fiber optic amplifier for oilfield applications
US8711045B2 (en) Downhole telemetry system
US9181797B2 (en) Downhole telemetry signalling apparatus
US20150275657A1 (en) Telemetry System for Wireless Electro-Acoustical Transmission of Data Along a Wellbore
US20070227776A1 (en) Borehole Telemetry System
US8863861B2 (en) Downhole telemetry apparatus and method
EP1570157B1 (fr) Dispositif de transmission de données
FR2613842A1 (fr) Procede et appareil pour determiner la position d&#39;une interface de matieres dielectriquement differentes, en particulier dans une formation petrolifere
RU2612952C2 (ru) Скважинная электромагнитная телеметрическая система, использующая электроизоляционный материал, и соответствующие способы
US6208265B1 (en) Electromagnetic signal pickup apparatus and method for use of same
CA2261196C (fr) Methode et dispositif de surveillance permanente d&#39;une formation souterraine
EP1473256B1 (fr) Procédé et dispositif de transmission d&#39;informations entre une cavité saline et la surface du sol
WO2006008361A1 (fr) Train de tiges apte a la transmission d&#39;informations a haut debit dans un puits de forage
MXPA99009682A (en) Apparatus and method for information transmission by electromagnetic waves
FR3126139A1 (fr) Dispositif d’acquisition et communication de données entre colonnes de puits de pétrole ou de gaz
GB2589815A (en) Telemetry safety &amp; life of well monitoring system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001020

AKX Designation fees paid

Free format text: DE ES GB IT NL

17Q First examination report despatched

Effective date: 20020514

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69907597

Country of ref document: DE

Date of ref document: 20030612

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2198865

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040210

NLS Nl: assignments of ep-patents

Owner name: GEOSERVICES EQUIPEMENTS SAS

Effective date: 20080821

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090115 AND 20090121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181025

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181024

Year of fee payment: 20

Ref country code: GB

Payment date: 20181031

Year of fee payment: 20

Ref country code: ES

Payment date: 20181127

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181228

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69907597

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20191018

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191018

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191020