EP0992615B1 - Startkathoden aus Kupferband für die Kupferelektrolyse und Verfahren zu deren Herstellung - Google Patents

Startkathoden aus Kupferband für die Kupferelektrolyse und Verfahren zu deren Herstellung Download PDF

Info

Publication number
EP0992615B1
EP0992615B1 EP98118542A EP98118542A EP0992615B1 EP 0992615 B1 EP0992615 B1 EP 0992615B1 EP 98118542 A EP98118542 A EP 98118542A EP 98118542 A EP98118542 A EP 98118542A EP 0992615 B1 EP0992615 B1 EP 0992615B1
Authority
EP
European Patent Office
Prior art keywords
copper sheet
copper
soft
starting
cathodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98118542A
Other languages
German (de)
French (fr)
Other versions
EP0992615A1 (en
Inventor
Leon R.L.G. Cloostermans-Huwaert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lamitref Industries NV
Original Assignee
Lamitref Industries NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT98118542T priority Critical patent/ATE199172T1/en
Application filed by Lamitref Industries NV filed Critical Lamitref Industries NV
Priority to ES98118542T priority patent/ES2156425T3/en
Priority to EP98118542A priority patent/EP0992615B1/en
Priority to DE59800478T priority patent/DE59800478D1/en
Priority to CA002312375A priority patent/CA2312375C/en
Priority to JP2000574752A priority patent/JP2002526662A/en
Priority to PCT/EP1999/007070 priority patent/WO2000020661A1/en
Priority to BRPI9907135-5A priority patent/BR9907135B1/en
Priority to RU2000117461/02A priority patent/RU2221088C2/en
Priority to DE19982000T priority patent/DE19982000D2/en
Priority to AU60866/99A priority patent/AU762788B2/en
Priority to CNB998017329A priority patent/CN1283844C/en
Priority to IDW20001008A priority patent/ID24867A/en
Priority to MXPA00004551A priority patent/MXPA00004551A/en
Priority to US09/555,539 priority patent/US6350355B1/en
Priority to ARP990104924A priority patent/AR021841A1/en
Priority to PE1999000991A priority patent/PE20001209A1/en
Publication of EP0992615A1 publication Critical patent/EP0992615A1/en
Application granted granted Critical
Publication of EP0992615B1 publication Critical patent/EP0992615B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49991Combined with rolling

Definitions

  • the invention relates to starting cathodes made of copper tape for copper electrolysis as well a process for the production of the starting cathodes.
  • the invention had for its object to provide starting cathodes made of copper strip for copper electrolysis, which exclude a "memory effect" during copper electrolysis, with which a high production output of electrolytic copper can be achieved and which can also be produced from directly deformed copper strip material present as a coil are. Furthermore, a suitable method for the production of the starting cathodes is to be created, which is also particularly suitable for processing conventionally produced copper strip.
  • the frequency of short circuits could be reduced considerably and current yields of 98 to 99% were achieved.
  • the thickness of the copper band for the ear strips could also be reduced to preferably 0.3 to 0.5 mm.
  • the specified strength of the copper strip of 210 to 240 N / mm 2 is achieved, for example, by post-treatment on a skin pass mill.
  • the hard-rolled copper strip is soft-annealed at furnace temperatures of 700 to 750 ° C, preferably at 720 to 750 ° C, the furnace temperature being reduced from 750 ° C to 720 ° C in the direction of flow.
  • the throughput speed of the copper strip essentially depends on the strip width and the strip thickness. For starter sheets for starting cathodes with a width of 930 mm and a thickness of 0.3 to 0.8 mm, this is 20 to 55 m / min.
  • the copper strip can be produced in a conventional casting and rolling plant and wound up as a coil. The hard-rolled copper strip is then unwound in a separate system, soft annealed in an annealing furnace, treated in a subsequent degreasing and pickling unit (scale and oxide removal) and straightened in a straightening and dividing system and cut to the required length of 840 to 1250 mm.
  • the starting cathodes are separated, sorted and hung in the prepared receptacle for the crane for hanging in the electrolysis bath. It is of considerable advantage that no separate special system for producing the starter plates is required, but that a hard-rolled copper strip is produced which is known per se and which can also be obtained from a third party. This also applies to a further variant, according to which the hard-rolled copper strip is soft-annealed within the casting and rolling plant and is available as a soft-annealed copper strip in the form of a coiled coil for further processing into starting cathodes.
  • the soft annealing of the rolled copper strip can be carried out in a vertical or horizontal type annealing furnace. Before soft annealing, the copper strip should be degreased, brushed, rinsed with water and dried. After the annealing, it is advisable to pickle and neutralize the cooled copper strip.
  • SF-Cu was rolled on a conventional casting and rolling machine to a copper strip with a width of 930 mm and a thickness of 0.5 mm.
  • the hard-rolled copper strip has a tensile strength of 263 N / mm 2 and is available as a coiled coil.
  • Starting cathodes are manufactured under the following conditions in a separate system, consisting of a decoiler, annealing furnace, degreasing and pickling unit, straightening and compartment system as well as the assembly system for the ears and contact bars.
  • the unreeled, hard-rolled copper strip passes through a horizontal suspension belt furnace, the heating zones of which are set to temperatures in the range from 750 to 720 ° C.
  • the belt speed is 35 m / min.
  • Soft annealing takes place in a protective gas atmosphere.
  • the soft annealed, cooled copper strip has a tensile strength of 217 N / mm 2 .
  • the degreasing and pickling unit also removes scale and oxide.
  • the copper strip is cut into lengths of 970 mm and the starter plates 970 x 930 mm thus obtained are straightened.
  • starter sheets which are to be further assembled are completely flat and smooth, have no external damage, such as scratches, and are free of grease, emulsions and oil.
  • the dry, clean starter sheets are transported to a riveting machine to attach the necessary ear strips, which are made from 0.4 mm thick copper tape, which is made from the same type of material as the starter sheets. After attaching the "ears" to the starter plates, the contact rods are attached.
  • hard-rolled copper strip is produced from SF-Cu and coiled as a coil.
  • the 930 mm wide, hard-rolled copper strip has a thickness of 0.635 mm after the rolling process.
  • the copper strip is degreased, brushed, rinsed with clear water and dried.
  • the hard-rolled copper strip then runs through a floating belt furnace at a speed of 27.5 m / min, the furnace temperatures are in the range from 750 to 720 ° C.
  • the cooled copper strip has a tensile strength of 217 N / mm 2 . It is then pickled, neutralized, reeled up as a coil and stored temporarily.
  • the soft-annealed copper strip which is in the form of a coil, is unwound in a separate system and further processed into starting cathodes in a straightening and compartment system, as well as in the assembly system for the ears and contact rods, as in Example 1.
  • the sheet thickness of the ears attached to the starter cathodes is 0.5 mm.
  • Starting cathodes are produced analogously to Example 1, with the only difference that the casting and rolling system, the annealing furnace, the degreasing and pickling unit, the straightening and compartment system and the packaging system are arranged in one line. This eliminates the need to rewind and unwind the hard-rolled or soft-annealed copper strip according to Example 1 or Example 2.
  • the copper strip material consists of SF-Cu and is reduced to a thickness of 0.8 mm by the rolling process.
  • the temperatures in the suspension belt furnace are also 750 to 720 ° C, the throughput speed is 23 m / min.
  • the soft-annealed, cooled copper strip has a tensile strength of 232 N / mm 2 .
  • the dimensions of the starter plates are also 970 x 930 mm.
  • the ears riveted to the starter plates have a thickness of 0.6 mm.
  • the starting cathodes produced according to the above examples were used for electrolysis experiments and have the following parameters: Starting cathodes 970 x 930 mm made of SF-Cu S1 S2 S3 S4 Sheet thickness mm 0.5 0.635 0.8 0.5 Tensile strength N / mm 2 217 217 232 263 Ear thickness mm 0.4 0.5 0.6 0.4 annealed Yes Yes Yes No

Abstract

Die Erfindung betrifft Startkathoden aus Kupferband für die Kupferelektrolyse sowie ein Verfahren zur Herstellung der Startkathoden. Ausgehend von den Nachteilen des bekannten Standes der Technik war es Aufgabe, Startkathoden zu schaffen, die während der Kupferelektrolyse einen "Memory-Effekt" ausschließen, mit denen eine hohe Produktionsleistung an Elektrolytkupfer erreicht werden kann und die auch aus direkt verformten, als Coil vorliegendem Kupferbandmaterial herstellbar sind. Ferner soll ein geeignetes Verfahren zur Herstellung der Startkathoden geschaffen werden, das insbesondere auch zur Verarbeitung von konventionell hergestelltem Kupferband geeignet ist. Die vorgeschlagenen Startkathoden bestehen aus gewalztem Kupferband mit einer Dicke von 0,3 bis 1,2 mm, das nach dem Walzen weichgeglüht ist und eine Festigkeit von 210 bis 240 N/mm<2> aufweist. Das Kupferband wird auf die durch die Abmessungen des Elektrolysebades bestimmte Länge und Breite zugeschnitten ist und weist eine plane, gradarme und fettfreie Oberfläche auf. An der Einhängeseite der Bleche sind Ohrenstreifen aus Kupferband mit einer Dicke von 0,3 bis 0,6 mm befestigt.The invention relates to starting cathodes made of copper tape for copper electrolysis and a method for producing the starting cathodes. Starting from the disadvantages of the known prior art, it was an object to create start cathodes which rule out a "memory effect" during copper electrolysis, with which a high production output of electrolytic copper can be achieved and which also consist of directly deformed copper strip material which is present as a coil are producible. Furthermore, a suitable method for producing the starting cathodes is to be created, which is also particularly suitable for processing conventionally produced copper strip. The proposed starting cathodes consist of rolled copper strip with a thickness of 0.3 to 1.2 mm, which is soft-annealed after rolling and has a strength of 210 to 240 N / mm <2>. The copper tape is cut to the length and width determined by the dimensions of the electrolysis bath and has a flat, low-degree and fat-free surface. Ear strips made of copper tape with a thickness of 0.3 to 0.6 mm are attached to the hanging side of the sheets.

Description

Die Erfindung betrifft Startkathoden aus Kupferband für die Kupferelektrolyse sowie ein Verfahren zur Herstellung der Startkathoden.The invention relates to starting cathodes made of copper tape for copper electrolysis as well a process for the production of the starting cathodes.

In der Kupferelektrolyse wird das schmelzmetallurgisch hergestellte Kupfer-Rohmetall, das eine Reinheit von 99,0 bis 99,8 aufweist, anodisch vorwiegend als Cu 2+ gelöst und kathodisch hoch selektiv als Reinkupfer (High-Grade) abgeschieden. Für die kathodische Abscheidung werden entweder elektrolytisch erzeugte, dünne Unterlagen (Starterbleche) oder Permanentkathoden aus Edelstahl verwendet. Das im Rahmen der Kupferelektrolyse gewonnene Elektrolytkupfer besitzt einen Reinheitsgrad von 99,95 bis 99,99 % und wird zur Herstellung von Halbzeugen aus diesem Metall und seinen Legierungen eingesetzt.
Die zur Erzeugung von Starterblechen dienenden Unterlagen bestehen entweder aus kaltgewalztem poliertem Kupfer, Edelstahl oder Titan. Die Starterbleche werden in sogenannten Mutterblechbädern erzeugt. Nach einer elektrolytischen Abscheidung im wiederkehrenden Rhythmus von jeweils 24 Stunden auf den Mutterblechen erfolgt die Abtrennung der Niederschläge entweder mittels automatischer Strippingmaschine oder manuell. Diese als Unterlagen bezeichneten Bleche, welche in Länge und Breite annähernd den Anoden- bzw. Kathodenabmessungen entsprechen, sind 0,5 bis 1 mm dick und wiegen ca. 4 bis 7 kg. Die Präparation zu Starterblechen beinhaltet im Wesentlichen das ggf. erforderliche Beschneiden von ungeraden, rissigen Kanten, das Richten und das Anbringen von zwei Befestigungsstreifen ("Ohren" aus geschnittenen o.g. Unterlagen oder gewalztem Kupferband) an den Kathodenstab mittels automatischer Nietmaschine. Diese Technologie der Herstellung von "Starterblechen" ist veraltet und nicht mehr wirtschaftlich. Das ist ein seit langem bestehendes Problem für die Kupferindustrie, weil der Bedarf an Edelstahlblechen und der erforderliche hohe Qualitätsstandard für Starterbleche zu hohen Kosten sowohl hinsichtlich des Beschaffungs- als auch Arbeits-, Energie- und Zeitaufwandes sowie zu einer hohen Abfallrate bei der Starterblechproduktion führt. Zum Beispiel hat das Starterblech gewöhnlich ein Festmaß, das durch die Größe des Elektrolysebades begrenzt ist. Industriell ist es jedoch von Bedeutung, daß die Mutterblechanode wegen der hohen Energie- und Arbeitskosten bei der Anodenproduktion und der Wiederaufarbeitung der Anodenreste nach der elektrolytischen Metallabscheidung eine optimale Größe besitzt. Die Anode muß Jedoch eine nahezu vollständige und gleichmäßige Abdeckung des Mutterbleches aufweisen, so daß deshalb in der Praxis die Anodengröße der Größe der Mutterbleche und anderen Prozeßvariablen angepaßt wird, um die Herstellungskosten für Starterbleche zu senken. Das führt in der Regel zur Herstellung von zwei Anodensorten, welche sich in der Geometrie unterscheiden:

  • Mutterblechanoden und
  • Produktionsanoden.
Starterbleche neigen auch infolge nicht einheitlicher Dicke und Herstellungsmethode (Abziehen der Unterlagen vom Mutterblech) dazu, sich zu verbiegen oder einzurollen und im Produktionsbad nicht gerade zu hängen. Von Nachteil sind auch z.Z. noch unvermeidbare, rissige Kanten als Folge des Herstellungsverfahrens und eine nicht immer garantiert glatte Oberfläche.
Die bekannten Folgen sind Kurzschlüsse, die zu niedrigen Stromausbeuten und einer Senkung der Produktionsmenge führen, einhergehend mit einer Verschlechterung der KathodenqualitäL
Bei dem zwischenzeitlich in der Praxis zur Anwendung gelangten Kupferraffinierprozeß unter der Bezeichnung "ISA-Prozeß" werden aus Edelstahl bestehende Permanentkathoden eingesetzt. Auf diesen scheidet sich das Kupfer über einen Zeitraum von gewöhnlich 7 Tagen ab und wird mechanisch mittels automatischer Stripppingmaschine in Form von Blechen abgetrennt.
Der "ISA-Prozeß" ist sehr kostenaufwendig und führt zu hohen Gestehungskosten für das raffinierte Kupfer. Außerdem sind für den "ISA-Prozeß" große Bestände an Edelstahlblechen erforderlich, die zu zusätzlichen Lagerhaltungskosten führen.
Ein weiterer Nachteil des "ISA-Prozeßes" besteht darin, daß die zur Elektrolytregenerierung benötigten Starterbleche für die Entkupferungselektrolyse in der Regel von Fremdbetrieben zugekauft werden müssen.
Die Wirtschaftlichkeit einer Kupferelektrolyse ist im Wesentlichen von der Qualität der als Startkathoden eingesetzten Kupferbleche sowie deren Herstellungskosten abhängig.
In der WO 97142360 ist ein Verfahren zur Herstellung von Kupferkathodenstarterblechen beschrieben, bei dem raffiniertes Kupfer geschmolzen und anschließend durch kontinuierliche Gieß- und Walzverfahren zu Bändern mit einer Dicke von 0,635 bis 1,778 mm (0,025 bis 0,070 inch), was einer Reduzierung der Ausgangsmaterialdicke von 25 bis 98 % entspricht, verarbeitet werden. Dabei ist es erforderlich, daß das Gießen in horizontaler Lage erfolgt und auch in horizontaler Lage zu der Reduzieranlage, einem Walzwerk, transportiert wird. Das in der ersten Verfahrensstufe erhaltene Gießband sollte eine Dicke von 5,08 mm bis 38,1 mm (0,2 bis 1,5 inch) aufweisen. Weiterhin ist wesentlich, daß das gewalzte Band während oder nach dem Walzen weder gerollt noch anderweitig deformiert werden darf, um den sogenannten "Memory-Effekt" (eine horizontale Wölbung von einigen mm) beim Einsatz als Starterbleche auszuschließen. Der "Memory-Effekt" ist die Hauptursache für auftretende Kurzschlüsse während der Kupferelektrolyse.
Aus dem gewalzten Band werden die Starterbleche ausgeschnitten und in an sich bekannter Weise für den Elektrolyseprozeß konfektioniert.
Diese vorgeschlagene Verfahrensweise zur Herstellung von Kupferkathodenstarterblechen ist bedingt durch die hohen Anlagekosten sehr aufwendig. Die Anlage ist auf die üblichen Breitenabmessungen der Startkathoden ausgelegt und ausschließlich für die Herstellung von Startkathoden bestimmt. Bezogen auf die mögliche Kapazität einer solchen Anlage von ca. 200.000 VJahr und dem Jahresbedarf einer Elektrolyse von ca. 35 VJahr an Startkathoden ergeben sich Probleme hinsichtlich einer wirtschaftlichen Auslastung. Dadurch werden die Startkathoden in ihrem Gestehungspreis sehr teuer. Außerdem ist dieses Verfahren auf die Verarbeitung von Raffinatkupfer beschränkt. Von Nachteil ist außerdem, daß das gewalzte Kuperband zur Herstellung der Startkathoden weder gerollt noch anderweitig deformiert werden darf. Das hat zur Folge, daß das gewalzte Kupferband nicht als Coil aufgewickelt werden kann, sondern nur in Form von vorgefertigten Blechzuschnitten transportiert und zwischengelagert werden kann bzw. die gewalzten Bleche direkt innerhalb der Linie zu Startkathoden verarbeitet werden müssen. Ferner ist zu befürchten, daß infolge der durch die Walzvorgänge entstehenden Verformungen ein "Memory-Effekt" der Startkathoden während der Kupferelektrolyse nicht vollständig ausgeschlossen werden kann. In der vorgenannten Druckschrift sind auch keine Ergebnisse angegeben, die belegen, daß ein "Memory-Effekt" beim Einsatz der hergestellten Startkathoden nicht eintritt.In copper electrolysis, the crude metal, which is produced by melting metallurgy and has a purity of 99.0 to 99.8, is anodically predominantly dissolved as Cu 2+ and cathodically highly selectively deposited as pure copper (high-grade). Either electrolytically produced, thin substrates (starter plates) or permanent cathodes made of stainless steel are used for the cathodic deposition. The electrolytic copper obtained in the course of copper electrolysis has a degree of purity of 99.95 to 99.99% and is used to manufacture semi-finished products from this metal and its alloys.
The documents used to produce starter plates consist of either cold-rolled polished copper, stainless steel or titanium. The starter plates are produced in so-called mother plate baths. After an electrolytic deposition in a recurring rhythm of 24 hours on the mother plates, the precipitation is separated either using an automatic stripping machine or manually. These sheets, referred to as documents, which approximately correspond in length and width to the anode or cathode dimensions, are 0.5 to 1 mm thick and weigh approximately 4 to 7 kg. The preparation for starter sheets essentially includes the necessary cutting of odd, cracked edges, the straightening and the attachment of two fastening strips ("ears" from the above-mentioned documents or rolled copper tape) to the cathode rod using an automatic riveting machine. This technology of producing "starter plates" is outdated and no longer economical. This has been a long-standing problem for the copper industry because the need for stainless steel sheets and the required high quality standard for starter sheets lead to high costs in terms of procurement, labor, energy and time as well as a high waste rate in starter sheet production. For example, the starter sheet usually has a fixed size that is limited by the size of the electrolysis bath. From an industrial point of view, however, it is important that the mother plate anode has an optimal size because of the high energy and labor costs involved in anode production and the reprocessing of the anode residues after electrolytic metal deposition. However, the anode must have an almost complete and uniform coverage of the mother sheet, so that in practice the anode size is adapted to the size of the mother sheet and other process variables in order to reduce the production costs for starter sheets. This usually leads to the production of two types of anodes, which differ in their geometry:
  • Mother sheet metal anodes and
  • Production anodes.
Starter plates also tend to bend or curl and do not hang straight in the production bath due to the non-uniform thickness and production method (pulling off the underlays from the mother plate). Disadvantages are currently still unavoidable, cracked edges as a result of the manufacturing process and a not always guaranteed smooth surface.
The known consequences are short circuits, which lead to low current yields and a reduction in the production quantity, along with a deterioration in the cathode quality
In the meantime used in copper refining process under the name "ISA process", stainless steel permanent cathodes are used. The copper deposits on these over a period of usually 7 days and is mechanically separated in the form of sheets using an automatic stripping machine.
The "ISA process" is very expensive and leads to high production costs for the refined copper. In addition, large stocks of stainless steel sheets are required for the "ISA process", which lead to additional storage costs.
Another disadvantage of the "ISA process" is that the starter plates required for electrolyte regeneration for decoupling electrolysis generally have to be purchased from external companies.
The economic viability of copper electrolysis essentially depends on the quality of the copper sheets used as starting cathodes and their manufacturing costs.
WO 97142360 describes a process for the production of copper cathode starter sheets in which refined copper is melted and then by continuous casting and rolling processes to strips with a thickness of 0.635 to 1.778 mm (0.025 to 0.070 inch), which means a reduction in the starting material thickness of 25 up to 98%. It is necessary that the casting takes place in a horizontal position and is also transported in a horizontal position to the reducing system, a rolling mill. The casting tape obtained in the first stage of the process should have a thickness of 5.08 mm to 38.1 mm (0.2 to 1.5 inches). It is also essential that the rolled strip may not be rolled or deformed during or after rolling in order to exclude the so-called "memory effect" (a horizontal curvature of a few mm) when used as starter plates. The "memory effect" is the main cause of short circuits that occur during copper electrolysis.
The starter sheets are cut out of the rolled strip and assembled in a manner known per se for the electrolysis process.
This proposed procedure for the production of copper cathode starter sheets is very complex due to the high investment costs. The system is designed for the usual width dimensions of the starting cathodes and is intended exclusively for the production of starting cathodes. With regard to the possible capacity of such a system of approx. 200,000 V-year and the annual requirement for electrolysis of approx. 35 V-year for starting cathodes, problems arise with regard to economic utilization. This makes the starting cathodes very expensive in their cost price. This process is also limited to the processing of raffinate copper. Another disadvantage is that the rolled copper strip for the production of the starting cathodes must neither be rolled nor deformed in any other way. The consequence of this is that the rolled copper strip cannot be wound up as a coil, but can only be transported and temporarily stored in the form of prefabricated sheet metal blanks or the rolled sheets have to be processed directly within the line to form starting cathodes. It is furthermore to be feared that, due to the deformations resulting from the rolling processes, a "memory effect" of the starting cathodes during copper electrolysis cannot be completely ruled out. In the aforementioned publication there are also no results that prove that a "memory effect" does not occur when the starting cathodes produced are used.

Der Erfindung lag die Aufgabe zugrunde, Startkathoden aus Kupferband für die Kupferelektrolyse zu schaffen, die während der Kupferelektrolyse einen "Memory-Effekt" ausschließen, mit denen eine hohe Produktionsleistung an Elektrolytkupfer erreicht werden kann und die auch aus direkt verformten, als Coil vorliegendem Kupferbandmaterial herstellbar sind.
Ferner soll ein geeignetes Verfahren zur Herstellung der Startkathoden geschaffen werden, das insbesondere auch zur Verarbeitung von konventionell hergestelltem Kupferband geeignet ist.
The invention had for its object to provide starting cathodes made of copper strip for copper electrolysis, which exclude a "memory effect" during copper electrolysis, with which a high production output of electrolytic copper can be achieved and which can also be produced from directly deformed copper strip material present as a coil are.
Furthermore, a suitable method for the production of the starting cathodes is to be created, which is also particularly suitable for processing conventionally produced copper strip.

Erfindungsgemäß wird die Aufgabe durch die in den Ansprüchen 1 und 4 angegebenen Merkmale gelöst. Geeignete Ausgestaltungsvarianten für die neuen Startkathoden sind in den Ansprüchen 2 und 3 und für deren Herstellung in den Ansprüchen 5 bis 17 angegeben.
Durch den erfindungswesentlichen Verfahrensschritt, das gewalzte Kupferband einem zusätzlichen Weichglühvorgang zu unterziehen, ist es gelungen, den ansonsten beim Einsatz von Startkathoden in der Elektrolyse auftretenden "Memory-Effekt" zu beseitigen. Dadurch bedingt kommt es während der Kupferelektrolyse zu wesentlich weniger Kurzschlüssen und zu einer höheren Stromausbeute. Die Kupferelektrolyse kann somit effizienter und mit einer höheren Kathodenleistung durchgeführt werden. Vorteilhaft wirkt sich auch der Einsatz von Kupfersorten gemäß den DIN-Vorschriften 1708, 1787 und 17670 aus, die im Vergleich zu Elektrolyt- bzw. Raffinatkupfer höhere Gehalte an metallischen Verunreinigungen enthalten. Überraschenderweise zeigte sich, daß beim Einsatz von Startkathoden aus diesen Kupfersorten der Mengenanteil des reineren elektrolytisch abgeschiedenen Kupfers größer wird. Im Vergleich zu den gemäß der WO 97/42360 eingesetzten Starterblechen, die eine Mindestdicke von mindestens 0,635 mm aufweisen müssen, haben Versuche ergeben, daß beim Einsatz von gewalzten und weichgeglühten Starterblechen die Blechdicke auf einen Wert von unter 0,5 mm verringert werden kann, wobei 0,3 mm die untere Grenze bilden. Im Vergleich zu dickeren Starterblechen verringern sich dadurch die Materialeinsatzkosten und außerdem besteht die Möglichkeit, im Elektrolysebad eine höhere Anzahl an Startkathoden einzusetzen. Dies ist vor allem auch nur dadurch möglich, weil die gewalzten und weichgeglühten Starterbleche zu keinem "Memory-Effekt" führen. Beim Einsatz der erfindungsgemäßen Startkathoden in der Kupferelektrolyse konnte die Kurzschlußhäufigkeit erheblich reduziert werden und es wurden Stromausbeuten von 98 bis 99 % erreicht.
Infolge der geringeren Dicke der Starterbleche und deren geringeres Gewicht konnte auch die Dicke des Kupferbandes für die Ohrenstreifen auf vorzugsweise 0,3 bis 0,5 mm reduziert werden.
Die angegebene Festigkeit des Kupferbandes von 210 bis 240 N/mm2 wird z.B. durch eine Nachbehandlung auf einem Dressiergerüst erreicht.
Das Weichglühen des walzharten Kupferbandes erfolgt bei Ofentemperaturen von 700 bis 750 °C, vorzugsweise bei 720 bis 750 °C, wobei die Ofentemperatur in Durchlaufrichtung von 750 °C auf 720 °C reduziert wird. Die Durchlaufgeschwindigkeit des Kupferbandes ist im wesentlichen von der Bandbreite und der Banddicke abhängig. Für Starterbleche für Startkathoden mit einer Breite von 930 mm und einer Dicke von 0,3 bis 0,8 mm beträgt diese 20 bis 55 m/min. Zur Durchführung des Weichglühvorganges bieten sich verfahrenstechnisch verschiedene Möglichkeiten an. Das Kupferband kann innerhalb einer herkömmlichen Gieß- und Walzanlage hergestellt und als Coil aufgehaspelt werden. In einer gesonderten Anlage wird dann das walzharte Kupferband abgehaspelt, in einem Glühofen weichgeglüht, in einer anschließenden Entfettungs- und Beizeinheit (Zunder und Oxydentfernung) behandelt und in einer Richt- und Abteilanlage gerichtet und auf die erforderliche Länge von 840 bis 1250 mm zugeschnitten. Bei dieser Ausführungsvariante kann ein Dressieren des Kupferbandes entfallen. Danach werden die Ohren mittels einer Niet- und Richtmaschine angenietet und die Kontaktstäbe angebracht. In einer abschließenden Adjustageeinheit erfolgt das Vereinzeln, Sortieren und Einhängen der Startkathoden in die vorbereitete Aufnahme für den Kran zum Einhängen in das Elektrolysebad. Von wesentlichem Vorteil ist, daß keine gesonderte spezielle Anlage zur Herstellung der Starterbleche benötigt wird, sondern von einem in an sich bekannter Verfahrensweise hergestellten walzharten Kupferband ausgegangen wird, das auch von einem Dritten bezogen werden kann.
Dies trifft auch auf eine weitere Variante zu, gemäß der das walzharte Kupferband noch innerhalb der Gieß- und Walzanlage weichgeglüht wird und zur weiteren Verarbeitung zu Startkathoden als weichgeglühtes Kupferband in Form eines aufgehaspelten Coils vorliegt. Dies wird dann zur Herstellung der Startkathoden abgehaspelt und der Richt- und Abteilanlage zugeführt. Die weitere Verarbeitung erfolgt dann wie vorstehend beschrieben.
Ferner besteht die Möglichkeit, die Startkathoden innerhalb einer Fertigungslinie herzustellen, wobei dann die Verfahrensschritte des Aufhaspelns und Abhaspelns des Coils aus gewalztem bzw. weichgeglühtem Kupferband entfallen. Das Weichglühen des gewalzten Kupferbandes kann in einem Glühofen vertikaler oder horizontaler Bauart durchgeführt werden. Vor dem Weichglühen sollte das Kupferband entfettet, gebürstet, mit Wasser gespült und getrocknet werden. Nach dem Glühen ist es zweckmäßig, das abgekühlte Kupferband zu beizen und zu neutralisieren.
According to the invention the object is achieved by the features specified in claims 1 and 4. Suitable design variants for the new starting cathodes are specified in claims 2 and 3 and for their manufacture in claims 5 to 17.
The process step essential to the invention of subjecting the rolled copper strip to an additional soft annealing process has succeeded in eliminating the "memory effect" which otherwise occurs when starting cathodes are used in electrolysis. As a result, there are significantly fewer short circuits and a higher current efficiency during copper electrolysis. The copper electrolysis can thus be carried out more efficiently and with a higher cathode output. The use of copper types in accordance with DIN regulations 1708, 1787 and 17670, which contain higher levels of metallic impurities than electrolyte or raffinate copper, also has an advantageous effect. Surprisingly, it was found that when starting cathodes from these types of copper are used, the proportion of purer electrodeposited copper increases. In comparison to the starter plates used according to WO 97/42360, which must have a minimum thickness of at least 0.635 mm, tests have shown that when using rolled and soft-annealed starter plates, the plate thickness can be reduced to a value of less than 0.5 mm, with 0.3 mm forming the lower limit. Compared to thicker starter plates, this reduces the material costs and there is also the possibility of using a higher number of starting cathodes in the electrolysis bath. Above all, this is only possible because the rolled and soft-annealed starter plates do not lead to a "memory effect". When using the starting cathodes according to the invention in copper electrolysis, the frequency of short circuits could be reduced considerably and current yields of 98 to 99% were achieved.
As a result of the smaller thickness of the starter plates and their lower weight, the thickness of the copper band for the ear strips could also be reduced to preferably 0.3 to 0.5 mm.
The specified strength of the copper strip of 210 to 240 N / mm 2 is achieved, for example, by post-treatment on a skin pass mill.
The hard-rolled copper strip is soft-annealed at furnace temperatures of 700 to 750 ° C, preferably at 720 to 750 ° C, the furnace temperature being reduced from 750 ° C to 720 ° C in the direction of flow. The throughput speed of the copper strip essentially depends on the strip width and the strip thickness. For starter sheets for starting cathodes with a width of 930 mm and a thickness of 0.3 to 0.8 mm, this is 20 to 55 m / min. There are various procedural options for performing the soft annealing process. The copper strip can be produced in a conventional casting and rolling plant and wound up as a coil. The hard-rolled copper strip is then unwound in a separate system, soft annealed in an annealing furnace, treated in a subsequent degreasing and pickling unit (scale and oxide removal) and straightened in a straightening and dividing system and cut to the required length of 840 to 1250 mm. In this embodiment variant, there is no need to skin the copper strip. Then the ears are riveted using a riveting and straightening machine and the contact rods are attached. In a final adjustment unit, the starting cathodes are separated, sorted and hung in the prepared receptacle for the crane for hanging in the electrolysis bath. It is of considerable advantage that no separate special system for producing the starter plates is required, but that a hard-rolled copper strip is produced which is known per se and which can also be obtained from a third party.
This also applies to a further variant, according to which the hard-rolled copper strip is soft-annealed within the casting and rolling plant and is available as a soft-annealed copper strip in the form of a coiled coil for further processing into starting cathodes. This is then unwound to produce the starting cathodes and fed to the straightening and compartment system. Further processing then takes place as described above.
There is also the possibility of producing the starting cathodes within a production line, in which case the process steps of reeling and uncoiling the coil from rolled or soft-annealed copper strip are omitted. The soft annealing of the rolled copper strip can be carried out in a vertical or horizontal type annealing furnace. Before soft annealing, the copper strip should be degreased, brushed, rinsed with water and dried. After the annealing, it is advisable to pickle and neutralize the cooled copper strip.

Die Erfindung soll nachstehend an einigen Beispielen erläutert werden.The invention will be explained below using a few examples.

Beispiel 1 - Startkathoden S1 -Example 1 - Start cathodes S1 -

SF-Cu wurde auf einer herkömmlichen Gieß- und Walzanlage zu einem Kupferband mit einer Breite von 930 mm und einer Dicke von 0,5 mm gewalzt. Das walzharte Kupferband besitzt eine Zugfestigkeit von 263 N/mm2 und liegt als aufgehaspeltes Coil vor. In einer separaten Anlage, bestehend aus Abhaspelvorrichtung, Glühofen, Entfettungs- und Beizeinheit, Richt- und Abteilanlage sowie der Konfektionsierungsanlage für die Ohren und Kontaktstäbe, werden Startkathoden unter folgenden Bedingungen hergestellt. SF-Cu was rolled on a conventional casting and rolling machine to a copper strip with a width of 930 mm and a thickness of 0.5 mm. The hard-rolled copper strip has a tensile strength of 263 N / mm 2 and is available as a coiled coil. Starting cathodes are manufactured under the following conditions in a separate system, consisting of a decoiler, annealing furnace, degreasing and pickling unit, straightening and compartment system as well as the assembly system for the ears and contact bars.

Das abgehaspelte walzharte Kupferband durchläuft einen horizontalen Schwebebandofen, dessen Heizzonen auf Temperaturen im Bereich von 750 bis 720 °C eingestellt sind. Die Banddurchlaufgeschwindigkeit beträgt 35 m/min. Das Weichglühen erfolgt unter Schutzgasatmosphäre. Das weichgeglühte, abgekühlte Kupferband besitzt eine Zugfestigkeit von 217 N/mm2. Nach dem Weichglühen erfolgt in der Entfettungs- und Beizeinheit noch eine Entfernung von Zunder und gebildetem Oxyd. In der nachfolgenden Richt- und Abteilanlage wird das Kupferband in Längen von 970 mm geschnitten und die so erhaltenen Starterbleche 970 x 930 mm werden gerichtet. Wesentlich ist, daß die zur weiteren Konfektionierung gelangenden Starterbleche vollkommen plan und glatt sind, keinerlei äußerliche Beschädigungen, wie z.B. Kratzer, aufweisen und fett-, sowie emulsions- bzw. ölfrei sind. Die trockenen, sauberen Starterbleche werden zu einer Nietmaschine transportiert, um die erforderlichen Ohrenstreifen zu befestigen, die aus 0,4 mm dickem Kupferband gefertigt sind, das aus der gleichen Materialsorte wie die Starterbleche besteht. Nach dem Befestigen der "Ohren" an den Starterblechen werden noch die Kontaktstäbe angebracht.The unreeled, hard-rolled copper strip passes through a horizontal suspension belt furnace, the heating zones of which are set to temperatures in the range from 750 to 720 ° C. The belt speed is 35 m / min. Soft annealing takes place in a protective gas atmosphere. The soft annealed, cooled copper strip has a tensile strength of 217 N / mm 2 . After the soft annealing, the degreasing and pickling unit also removes scale and oxide. In the subsequent straightening and compartment system, the copper strip is cut into lengths of 970 mm and the starter plates 970 x 930 mm thus obtained are straightened. It is essential that the starter sheets which are to be further assembled are completely flat and smooth, have no external damage, such as scratches, and are free of grease, emulsions and oil. The dry, clean starter sheets are transported to a riveting machine to attach the necessary ear strips, which are made from 0.4 mm thick copper tape, which is made from the same type of material as the starter sheets. After attaching the "ears" to the starter plates, the contact rods are attached.

Beispiel 2 - Startkathoden S2 -Example 2 - starting cathodes S2 -

Innerhalb einer herkömmlichen Gieß- und Walzanlage mit integriertem Schwebebandofen als letzte Verfahrensstufe wird walzhartes Kupferband aus SF-Cu hergestellt und als Coil aufgehaspelt. Das 930 mm breite, walzharte Kupferband hat nach dem Walzvorgang eine Dicke von 0,635 mm. Nach dem Walzvorgang wird das Kupferband entfettet, gebürstet, mit klarem Wasser gespült und getrocknet. Das walzharte Kupferband durchläuft anschließend einen Schwebebandofen mit einer Geschwindigkeit von 27,5 m/min, die Ofentemperaturen liegen im Bereich von 750 bis 720 °C. Das abgekühlte Kupferband besitzt eine Zugfestigkeit von 217 N/mm2. Es wird danach noch gebeizt, neutralisiert, als Coil aufgehaspelt und zwischengelagert. In einer gesonderten Anlage wird das als Coil vorliegende, weichgeglühte Kupferband abgehaspelt und analog wie im Beispiel 1 in einer Richt- und Abteilanlage sowie der Konfektionierungsanlage für die Ohren und Kontaktstäbe zu Startkathoden weiterverarbeitet. Die Blechdicke der an den Starterkathoden befestigten Ohren beträgt 0,5 mm. In a conventional casting and rolling plant with an integrated floating belt furnace as the last stage of the process, hard-rolled copper strip is produced from SF-Cu and coiled as a coil. The 930 mm wide, hard-rolled copper strip has a thickness of 0.635 mm after the rolling process. After the rolling process, the copper strip is degreased, brushed, rinsed with clear water and dried. The hard-rolled copper strip then runs through a floating belt furnace at a speed of 27.5 m / min, the furnace temperatures are in the range from 750 to 720 ° C. The cooled copper strip has a tensile strength of 217 N / mm 2 . It is then pickled, neutralized, reeled up as a coil and stored temporarily. The soft-annealed copper strip, which is in the form of a coil, is unwound in a separate system and further processed into starting cathodes in a straightening and compartment system, as well as in the assembly system for the ears and contact rods, as in Example 1. The sheet thickness of the ears attached to the starter cathodes is 0.5 mm.

Beispiel 3 - Startkathoden S3 -Example 3 - starting cathodes S3 -

Analoge wie im Beispiel 1 werden Startkathoden hergestellt, lediglich mit dem Unterschied, daß die Gieß- und Walzanlage, der Glühofen, die Entfettungs- und Beizeinheit, die Richt- und Abteilanlage sowie die Konfektionierungsanlage in einer Linie angeordnet sind. Dadurch entfällt das gemäß Beispiel 1 oder Beispiel 2 notwendige Auf- und Abhaspeln des walzharten bzw. weichgeglühten Kupferbandes. Das Kupferbandmaterial besteht aus SF-Cu und wird durch den Walzvorgang auf eine Dicke von 0,8 mm reduziert. Die Temperaturen im Schwebebandofen betragen ebenfalls 750 bis 720 °C, die Durchlaufgeschwindigkeit liegt bei 23 m/min. Das weichgeglühte, abgekühlte Kupferband weist eine Zugfestigkeit von 232 N/mm2 auf. Die Abmessungen der Starterbleche betragen ebenfalls 970 x 930 mm. Die an den Starterblechen angenieteten Ohren haben eine Dicke von 0,6 mm.Starting cathodes are produced analogously to Example 1, with the only difference that the casting and rolling system, the annealing furnace, the degreasing and pickling unit, the straightening and compartment system and the packaging system are arranged in one line. This eliminates the need to rewind and unwind the hard-rolled or soft-annealed copper strip according to Example 1 or Example 2. The copper strip material consists of SF-Cu and is reduced to a thickness of 0.8 mm by the rolling process. The temperatures in the suspension belt furnace are also 750 to 720 ° C, the throughput speed is 23 m / min. The soft-annealed, cooled copper strip has a tensile strength of 232 N / mm 2 . The dimensions of the starter plates are also 970 x 930 mm. The ears riveted to the starter plates have a thickness of 0.6 mm.

Vergleichsbeispiel - Startkathoden S4 -Comparative example - start cathodes S4 -

Analog wie im Beispiel 1 wurden unter gleichen Bedingungen Startkathoden hergestellt, jedoch ohne Weichglühen.Analogous to example 1, starting cathodes became the same under the same conditions manufactured, but without soft annealing.

Die gemäß den vorgenannten Beispielen hergestellten Startkathoden wurden für Elektrolyseversuche eingesetzt und haben folgende Parameter: Startkathoden 970 x 930 mm aus SF-Cu S1 S2 S3 S4 Blechdicke mm 0,5 0,635 0,8 0,5 Zugfestigkeit N/mm2 217 217 232 263 Ohrendicke mm 0,4 0,5 0,6 0,4 weichgeglüht ja ja ja nein The starting cathodes produced according to the above examples were used for electrolysis experiments and have the following parameters: Starting cathodes 970 x 930 mm made of SF-Cu S1 S2 S3 S4 Sheet thickness mm 0.5 0.635 0.8 0.5 Tensile strength N / mm 2 217 217 232 263 Ear thickness mm 0.4 0.5 0.6 0.4 annealed Yes Yes Yes No

Jedes Elektrolysebad wurde mit 30 Anoden und 31 Kathoden besetzt. Der Anodenabstand beträgt 105 mm. Die Laufzeit einer Anodenreise wurde mit 21 Tagen festgelegt. Je Bad wird über den Elektrolyteinlauf ein Volumenstrom von 18 bis 20 l/min zugeführt. Die Qualität der eingesetzten Startkathoden wurde wie folgt bewertet.

  • A: Prüfung der Geradheit der verwendeten Starterbleche und produzierten Kathoden durch Ausmessen nach jeweils 2 Tagen nach Inbetriebnahme.
  • B: Stromausbeute des jeweiligen Bades nach 9 Tagen.
  • C: Anzahl der aufgetretenen Kurzschlüsse
Each electrolysis bath was populated with 30 anodes and 31 cathodes. The anode distance is 105 mm. The duration of an anode trip was set at 21 days. A volume flow of 18 to 20 l / min is fed to each bath via the electrolyte inlet. The quality of the starting cathodes used was assessed as follows.
  • A: Check the straightness of the starter plates used and the cathodes produced by measuring after 2 days after commissioning.
  • B: Current yield of the respective bath after 9 days.
  • C: Number of short circuits that occurred

Folgende Ergebnisse wurden erzielt: S1 S2 S3 S4 A gerade gerade vertikal bis 5 mm vertikal bis 20 mm B 99,18 98,38 96,56 95,82 C 2 1 4 6 The following results were achieved: S1 S2 S3 S4 A just just vertical to 5 mm vertical up to 20 mm B 99.18 98.38 96.56 95.82 C. 2 1 4th 6

Die Ergebnisse belegen, daß die erfindungsgemäßen Startkathoden S1 bis S3 beim Einsatz in der Kupferelektrolyse zu keinem "Memory-Effekt" führen. Im Gegensatz dazu kommt es beim Einsatz der nicht weichgeglühten Startkathoden S4 in der Kupferelektrolyse zu einem "Memory-Effekt" in erheblichem Ausmaß. Die besten Ergebnisse wurden mit den Startkathoden S1 erzielt, die vor allem hinsichtlich der erzielten Stromausbeute überlegen sind.The results show that the starting cathodes S1 to S3 according to the invention Use in copper electrolysis does not lead to a "memory effect". In contrast this occurs when the non-annealed S4 start cathodes are used in the Copper electrolysis to a "memory effect" to a considerable extent. The best Results were achieved with the S1 starting cathodes, which are mainly with regard to the achieved electricity yield are superior.

Claims (18)

  1. A starting cathodes of copper sheet for copper electrolysis consisting of milled copper sheet made of grades of copper according to the DIN standards 1708, 1787 and 17670, with a thickness of 0.3 to 1.2 mm, soft annealed after milling and having a strength of 210 to 240 N/mm2, and cut to the length and width determined by the dimensions of the electrolysis bath, where the sheet cut to size has a flat, fat-free, burless surface, and ear strips 0.3 to 0.6 mm thick are attached to the suspension side of the sheets.
  2. A starting cathodes according to claim 1, characterized in that they are 0.5 to 0.8 mm thick, and the ear strips are 0.3 to 0.4 mm thick.
  3. A starting cathodes according to one of claims 1 or 2, characterized in that the soft annealed copper sheet has a strength of 215 to 235 N/mm2 after cooling.
  4. A method of producing starting cathodes according to one of the preceding claims by the following process steps:
    a) producing a milled, mill-hard copper sheet with a thickness of 0.3 to 1.2 mm made of grades of copper according to the DIN standards 1708, 1787 and 17670,
    b) soft annealing the mill-hard copper sheet at furnace temperatures of 700 °C to 750 °C and at conveyance speeds of 20 to 70 m/min,
    c) degreasing the surfaces,
    d) cutting the cooled copper sheet to the desired starting sheet dimensions,
    e) mounting ear strips made of copper sheet 0.3 to 0.6 mm thick on the starting sheets and mounting the contact rods, and
    f) adjusting the starting cathodes.
  5. A method according to claim 4, characterized in that the mill-hard copper sheet manufactured according to process step a) is wound up to a coil.
  6. A method according to claim 5, characterized in that the mill-hard copper sheet is unwound from a coil and processed further according to process steps b) through e) in a separate fabrication line that operates continuously.
  7. A method according to claim 5, characterized in that the mill-hard copper sheet is unwound from a coil and processed further according to process steps b) through f) in a separate fabrication line which operates continuously.
  8. A method according to claim 4, characterized in that the soft copper sheet manufactured according to process steps a) and b) is wound up into a coil.
  9. A method according to claim 8, characterized in that the soft copper sheet is unwound from a coil and processed further according to process steps c) through e) in a separate fabrication line that operates continuously.
  10. A method according to claim 8, characterized in that the soft copper sheet is unwound from a coil and processed further according to process steps c) through f) in a separate fabrication line that operates continuously.
  11. A method according to one of claims 4 through 10, characterized in that the soft copper sheet is straightened before being cut to the desired starting sheet dimensions.
  12. A method according to one of claims 4 through 11, characterized in that the soft annealing is performed in an annealing furnace of a horizontal or vertical design.
  13. A method according to one of claims 4 through 12, characterized in that the soft annealing is performed under a protective gas or in a reducing atmosphere.
  14. A method according to one of claims 4 through 13, characterized in that the copper sheet is degreased, brushed, rinsed and dried before soft annealing.
  15. A method according to one of claims 4 through 14, characterized in that the copper sheet is cooled, pickled and neutralized after soft annealing.
  16. A method according to one of claims 4 through 15, characterized in that the mill-hard copper sheet has a thickness of 0.4 to 0.5 mm and is conveyed through the annealing furnace at a speed of 25 to 35 m/min, where the heating zones are set at temperatures of 750 °C to 720 °C.
  17. A method according to one of claims 4 through 15, characterized in that the mill-hard copper sheet has a thickness of 0.6 to 0.8 mm and is conveyed through the annealing furnace at a speed of 20 to 30 m/min, where the heating zones are set at temperatures of 750 °C to 720 °C.
  18. A use of a milled and following- soft annealed copper sheet in the form of a coil for producing starting cathodes for copper electrolysis.
EP98118542A 1998-10-01 1998-10-01 Startkathoden aus Kupferband für die Kupferelektrolyse und Verfahren zu deren Herstellung Expired - Lifetime EP0992615B1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
ES98118542T ES2156425T3 (en) 1998-10-01 1998-10-01 INITIATING CATODES CONSTITUTED OF COPPER TAPE FOR THE ELECTROLYSIS OF COPPER AND PROCESS FOR ITS MANUFACTURE.
EP98118542A EP0992615B1 (en) 1998-10-01 1998-10-01 Startkathoden aus Kupferband für die Kupferelektrolyse und Verfahren zu deren Herstellung
DE59800478T DE59800478D1 (en) 1998-10-01 1998-10-01 Copper cathode starting sheets for copper electrolysis and manufacture thereof
AT98118542T ATE199172T1 (en) 1998-10-01 1998-10-01 COPPER CATHODE STARTING SHEETS FOR COPPER ELECTROLYSIS AND MANUFACTURE THEREOF
RU2000117461/02A RU2221088C2 (en) 1998-10-01 1999-09-23 Starting cathode of copper band for electrolysis of copper and method for making it
JP2000574752A JP2002526662A (en) 1998-10-01 1999-09-23 Starting cathode comprising copper strip for copper electrolysis and method for producing the same
PCT/EP1999/007070 WO2000020661A1 (en) 1998-10-01 1999-09-23 Starting cathodes made of copper band for copper electrolysis and a method for the production thereof
BRPI9907135-5A BR9907135B1 (en) 1998-10-01 1999-09-23 Copper strap activation cathodes for cupric electrolysis and process for manufacturing activation cathodes.
CA002312375A CA2312375C (en) 1998-10-01 1999-09-23 Starting cathodes of copper strip for copper electrolysis and method of producing same
DE19982000T DE19982000D2 (en) 1998-10-01 1999-09-23 Starting cathodes made of copper tape for copper electrolysis and processes for their production
AU60866/99A AU762788B2 (en) 1998-10-01 1999-09-23 Starting cathodes made of copper band for copper electrolysis and a method for the production thereof
CNB998017329A CN1283844C (en) 1998-10-01 1999-09-23 Starting cathodes made of copper band for copper electrolysis and a method for the production thereof
IDW20001008A ID24867A (en) 1998-10-01 1999-09-23 COOKING CATEGODES OF COPPER FOR ELECTROLYSIS AND COPYING METHODS
MXPA00004551A MXPA00004551A (en) 1998-10-01 1999-09-23 Starting cathodes made of copper band for copper electrolysis and a method for the production thereof.
US09/555,539 US6350355B1 (en) 1998-10-01 1999-09-23 Starting cathodes made of copper band for copper electrolysis and a method for the production thereof
ARP990104924A AR021841A1 (en) 1998-10-01 1999-09-29 INITIATING CATTURES CONSTITUTED OF COPPER RIBBON FOR COPPER ELECTRICILISIS, AND PROCEDURE FOR THE MANUFACTURE OF SUCH CATHODS.
PE1999000991A PE20001209A1 (en) 1998-10-01 1999-09-30 INITIATING CATHODES CONSTITUTED OF COPPER TAPE FOR COPPER ELECTROLYSIS AND PROCEDURE FOR ITS MANUFACTURING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98118542A EP0992615B1 (en) 1998-10-01 1998-10-01 Startkathoden aus Kupferband für die Kupferelektrolyse und Verfahren zu deren Herstellung

Publications (2)

Publication Number Publication Date
EP0992615A1 EP0992615A1 (en) 2000-04-12
EP0992615B1 true EP0992615B1 (en) 2001-02-14

Family

ID=8232728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98118542A Expired - Lifetime EP0992615B1 (en) 1998-10-01 1998-10-01 Startkathoden aus Kupferband für die Kupferelektrolyse und Verfahren zu deren Herstellung

Country Status (16)

Country Link
US (1) US6350355B1 (en)
EP (1) EP0992615B1 (en)
JP (1) JP2002526662A (en)
CN (1) CN1283844C (en)
AR (1) AR021841A1 (en)
AT (1) ATE199172T1 (en)
AU (1) AU762788B2 (en)
BR (1) BR9907135B1 (en)
CA (1) CA2312375C (en)
DE (2) DE59800478D1 (en)
ES (1) ES2156425T3 (en)
ID (1) ID24867A (en)
MX (1) MXPA00004551A (en)
PE (1) PE20001209A1 (en)
RU (1) RU2221088C2 (en)
WO (1) WO2000020661A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383840B1 (en) * 2005-02-03 2016-04-13 Auto-Kabel Management GmbH Electrical flat ribbon conductor for motor vehicles
DE102006050705B4 (en) * 2006-10-24 2009-01-02 Auto-Kabel Management Gmbh battery lead
CN113369824B (en) * 2021-06-30 2022-04-29 福建紫金铜业有限公司 Production process of novel copper alloy plate strip material for welding

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1294694A (en) * 1969-11-04 1972-11-01 British Insulated Callenders Improvements in or relating to the electrolytic refining of copper
JPS5942166Y2 (en) * 1978-08-22 1984-12-08 三井金属鉱業株式会社 Beading press for seed plate
EP0417318B1 (en) * 1989-03-30 1995-06-07 Nippon Steel Corporation Method of producing rollable metal sheet based on quench-solidified thin cast sheet
US5286315A (en) * 1989-03-30 1994-02-15 Nippon Steel Corporation Process for preparing rollable metal sheet from quenched solidified thin cast sheet as starting material
DE4041854A1 (en) * 1990-12-24 1992-06-25 Kabelmetal Ag METHOD FOR PRODUCING A GREEN PATINA ON A SEMI-PRODUCT CONSTRUCTED FROM COPPER
JPH06136586A (en) * 1992-10-28 1994-05-17 Sumitomo Metal Mining Co Ltd Cathode plate for electrolysis
US5961797A (en) * 1996-05-03 1999-10-05 Asarco Incorporated Copper cathode starting sheets
JPH10212562A (en) * 1997-01-27 1998-08-11 Nippon Foil Mfg Co Ltd Final annealing method for copper foil coiled stock

Also Published As

Publication number Publication date
CN1283844C (en) 2006-11-08
CA2312375A1 (en) 2000-04-13
AR021841A1 (en) 2002-08-07
CA2312375C (en) 2008-05-13
JP2002526662A (en) 2002-08-20
ES2156425T3 (en) 2001-06-16
RU2221088C2 (en) 2004-01-10
CN1287580A (en) 2001-03-14
DE59800478D1 (en) 2001-03-22
ATE199172T1 (en) 2001-02-15
ID24867A (en) 2000-08-31
US6350355B1 (en) 2002-02-26
PE20001209A1 (en) 2000-12-28
MXPA00004551A (en) 2002-04-24
BR9907135A (en) 2000-10-03
BR9907135B1 (en) 2009-08-11
AU6086699A (en) 2000-04-26
EP0992615A1 (en) 2000-04-12
DE19982000D2 (en) 2002-07-25
AU762788B2 (en) 2003-07-03
WO2000020661A1 (en) 2000-04-13

Similar Documents

Publication Publication Date Title
EP1784273B1 (en) Method for producing metal strips
DE10052423C1 (en) Production of a magnesium hot strip comprises continuously casting a magnesium alloy melt to a pre-strip, and hot rolling the pre-strip directly from the casting heat at a specified roller starting temperature to form a hot strip
EP1918402B1 (en) Process for manufacturing steel flat products from a steel forming a complex phase structure
WO2002083967A1 (en) Method for producing almn strips or sheets
DE3330814C2 (en) Process for the manufacture of aluminum products
WO2000040765A1 (en) Steel band with good forming properties and method for producing same
EP0708843B1 (en) Method and plant for the manufacture of special steel blanks
DE2507561B2 (en) Process for the production of composite material for three-component bearings or sliding pieces
EP0992615B1 (en) Startkathoden aus Kupferband für die Kupferelektrolyse und Verfahren zu deren Herstellung
DE3033501C2 (en)
EP0013331B1 (en) Method for making profiles and the use of a fine grained steel for profiles
EP1200253A1 (en) Method for producing an aluminum composite material
EP1918404B1 (en) Process for manufacturing steel flat products from aluminium alloyed multi phase steel
DE4101919C2 (en) Process for the production of plates from the ductile metals nickel or copper and their use
DE1903554A1 (en) Process for the production of hot rolled steel strip
DE10055338C1 (en) Production of cold strip comprises hot rolling pre-material produced from steel, cold rolling hot strip to form cold strip, annealing at temperature which is lower than recrystallization temperature, cold deforming, and further annealing
DE1231279B (en) Process for the production of steel strip
EP2027946A1 (en) Method for manufacturing bands and films from TiA/6V4
DE102013107011A1 (en) Process for coating long Cu products with a metallic protective layer and a Cu long product provided with a metallic protective layer
EP0779372B1 (en) Overhead contact wire for high speed electrical railways and process for manufacturing the same
DE2530353A1 (en) NICKEL-CHROME-IRON ALLOY
DE2727055A1 (en) PROCESS FOR CONTINUOUSLY MANUFACTURING A COPPER STRAND
DE4018694A1 (en) METHOD FOR PRODUCING AN ANODE MATERIAL FOR ELECTROLYTIC APPLICATIONS
DE2347882A1 (en) ALUMINUM ALLOY ARCHITECTURAL SHEET PRODUCT AND METHOD OF MANUFACTURING
DD300311A7 (en) PROCESS FOR THE PRODUCTION OF COBALT WIRE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE DK ES FI FR GR IT NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

AKX Designation fees paid

Free format text: AT BE DE DK ES FI FR GR IT NL PT SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE DK ES FI FR GR IT NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010214

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010214

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20010214

REF Corresponds to:

Ref document number: 199172

Country of ref document: AT

Date of ref document: 20010215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59800478

Country of ref document: DE

Date of ref document: 20010322

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010514

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010518

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2156425

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20081027

Year of fee payment: 11

Ref country code: ES

Payment date: 20081027

Year of fee payment: 11

Ref country code: AT

Payment date: 20081023

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20081024

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081021

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081219

Year of fee payment: 11

BERE Be: lapsed

Owner name: *KAZ KUPFER G.M.B.H.

Effective date: 20091031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091002