EP0992597A1 - Deoxidation of copper melt by gas poling with hydrogen-nitrogen mixture - Google Patents

Deoxidation of copper melt by gas poling with hydrogen-nitrogen mixture Download PDF

Info

Publication number
EP0992597A1
EP0992597A1 EP99119000A EP99119000A EP0992597A1 EP 0992597 A1 EP0992597 A1 EP 0992597A1 EP 99119000 A EP99119000 A EP 99119000A EP 99119000 A EP99119000 A EP 99119000A EP 0992597 A1 EP0992597 A1 EP 0992597A1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
melt
gas
copper
deoxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99119000A
Other languages
German (de)
French (fr)
Other versions
EP0992597B1 (en
Inventor
Karl Fasshauer
Frank Steffner
Hans-Joachim Dauterstedt
Michael Albrecht
Eberhard Wernicke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Linde Gas AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH, Linde Gas AG filed Critical Linde GmbH
Publication of EP0992597A1 publication Critical patent/EP0992597A1/en
Application granted granted Critical
Publication of EP0992597B1 publication Critical patent/EP0992597B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/0052Reduction smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/006Pyrometallurgy working up of molten copper, e.g. refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ

Definitions

  • the invention relates to a process for polishing (deoxidizing) copper in molten liquid State in which a gaseous deoxidizer is passed into the melt becomes.
  • the last process step before casting is a reduction in the molten copper bath.
  • the technical term for this process stage is Poland.
  • the reducing agent used (various feedstocks) primarily has the task of reducing the oxygen content to a certain final size and expelling sulfur dioxide in the copper bath.
  • the technology currently used provides for the use of hardwood trunks that are pressed into the liquid copper bath using a crane. The very intensive reactions of the wood with the melt that occur bring about a reduction in the oxygen component and - if present - the sulfur dioxide component. It is always of the utmost importance that the most important, harmful additives have been slagged before the reduction process begins and that the surface of the bath has been removed cleanly.
  • the metal oxides in the slag which float on the copper bath are reduced to metals, appear as metal impurities in the anode copper and sometimes interfere with further processing by wet metallurgy.
  • approx. 7- 8 fm trunks with bound indoor crane and crane driver are required.
  • the process is discontinuous because new logs have to be made available after the imported wood has burned down.
  • the part of the wood that is not immersed in the copper bath burns outside the melt or the flame furnace and further reduces the overall efficiency to a total of approx. 35%.
  • As a result of the length dimension of the pole rods it is also impossible to completely avoid that exhaust gases are emitted into the furnace hall.
  • the high level of heat at the work gate puts a great strain on the employees working there (crane operators, 1st and 2nd refiners).
  • Polishing with CH 4 in anode operation was and is problematic because a very important requirement, the high starting temperature of the oxidized anode copper, can only be achieved with great effort.
  • natural gas poling could often be introduced at least as a partial process, particularly in the remelting work for the production of wire bars. Because the leading material was of cathode quality, the temperatures of approx. 1,250 ° C were reached even without major energy losses, which then allowed natural gas poling with two lances economically.
  • the technological conditions provided, with an oxygen content of approximately 800-1,000 ppm, to continue the pole process with logs until the end, because the O 2 removal at these contents is quick and the sampling and O 2 determinations did not cumulate .
  • the reducing agent in the examples mentioned cannot react directly with the oxygen in the copper, it must first be broken down into reactive constituents (CO / H 2 ), which, however, can only be achieved by supplying energy. Therefore, the considerations were made to use a gas as a reducing agent, which is already a reducing agent and supplies the process with energy through its "combustion". The use of hydrogen for this purpose has therefore already been proposed.
  • the flame furnace is stationary; the delivery exists made of CM material inside and fireclay outside and this is off in the range the 2nd layer down.
  • the furnace rack is on the front compared to the two permanently installed natural gas / oxygen burners.
  • the exhaust gas leaves the furnace chamber via an underground duct system to the furnace filter and through the work gate via the auxiliary hood filter system.
  • the oven is over two vault openings cold-charged and has a capacity of approx. 155 t total use with an anode output of around 135 - 140 t per batch.
  • Injection device or pole for H 2 addition 3/4 "gas pipe was used as the outer jacket, into which an approx. 3/8" pipe was inserted. Since the gas flow should flow through the inner pipe, both gas pipes were welded to the threaded head piece. The pipe length of the pollanze was 3 m. The lower part was thermally protected from plastic fabric combined with fireclay mortar and soda water glass. A pulpy mixture was produced from both components and pulled evenly, spirally over the outer tube via a spindle with a roller seat for the absorption of the tissue. The lance was covered at the lower end with a length of approx. 1.5 m.
  • the present invention is therefore based on the task, a simple feasible, functional and also effective deoxidation process based on to specify gaseous treatment agents.
  • a hydrogen is used as the deoxidation gas and a gas mixture containing 35 to 90% by volume, preferably nitrogen, Hydrogen is applied.
  • a deoxidation gas is preferably used Hydrogen-nitrogen mixture with 60 to 72 vol% hydrogen is applied.
  • H 2 / N 2 mixture shortened the effective pole time compared to poling with natural gas, and reduced wear on the pollances could be achieved.
  • the H 2 / N 2 mixture acts not only as a reducing agent but also as an energy source due to the exothermic reactions in the copper melt.
  • the flow rate per lance (H 2 / N 2 mixture) is advantageously in the range from 200 to 350 m 3 N / h and lance.
  • the ratio of the amount of hydrogen in m 3 N / batch of theoretical consumption to actual consumption results in utilization rates from 077 to greater than 1 (!). Due to this fact, it is likely that the swirling up of the copper bath in the immersion area of the pollanzes by the flame gases of the natural gas / oxygen furnace will result in a further, noteworthy reduction . In the example cases, an air ratio of ⁇ ⁇ 0 6 was observed for furnace heating. Compared to Tru with natural gas, the use of H 2 / N 2 mixture> 60/40 vol.% And the described atmospheric conditions increases the degree of energy efficiency by a factor of two.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Copper poling process employs a deoxidizing gas mixture of hydrogen and inert gas. Copper poling is carried out using a deoxidizing gas mixture of inert gas (preferably nitrogen) and 35-90 (especially 60-72) volume % hydrogen.

Description

Die Erfindung betrifft ein Verfahren zum Polen (Desoxideren) von Kupfer in schmelzflüssigem Zustand, bei dem ein gasförmiges Desoxidationsmittel in die Schmelze geleitet wird.The invention relates to a process for polishing (deoxidizing) copper in molten liquid State in which a gaseous deoxidizer is passed into the melt becomes.

Die Anwendung von Wasserstoffgas und Erdgas zur Desoxidation von Kupfer ist - neben der von Holz oder daraus gewonnenen Materialien - bekannt (vgl. DE-PS 34 27 435).The use of hydrogen gas and natural gas to deoxidize copper is - besides of wood or materials derived from it - known (cf. DE-PS 34 27 435).

Einleitende Betrachtung zur Reduktion von flüssigem KupferIntroductory consideration for the reduction of liquid copper

Im Raffinationsprozeß zur Erzeugung von Anodenkupfer erfolgt als letzte Prozeßstufe vor dem Gießen eine Reduktion im schmelzflüssigen Kupferbad. Der Fachausdruck für diese Prozeßstufe ist das Polen. Das eingesetzte Reduktionsmittel (verschiedene Einsatzstoffe) hat dabei vornehmlich die Aufgabe den Sauerstoffgehalt auf ein bestimmtes Endmaß zu senken und im Kupferbad befindliches Schwefeldioxid auszutreiben. Die derzeit angewendete Technologie sieht den Einsatz von Hartholzstämmen vor, die mittels Kran in das flüssige Kupferbad eingedrückt werden. Die dabei stattfindenden sehr intensiven Reaktionen des Holzes mit der Schmelze bewirken eine Senkung der Sauerstoffkomponente und - wenn vorhanden - der Schwefeldioxidkompontene. Es ist immer von größter Wichtigkeit, daß vor Beginn des Reduktionsprozesses die wichtigsten, schädlichen Beimengungen verschlackt worden sind und die Badoberfläche sauber abgezogen ist. Ansonsten werden die in der Schlacke sich befindlichen, auf dem Kufperbad schwimmenden Metalloxide zu Metallen reduziert, treten als Metallverunreinigungen wieder im Anodenkupfer auf und stören teilweise sehr erheblich in der Weiterverarbeitung auf naßmetallurgische Wege. Für den gesamten Reduktionsprozeß von 3-4 Stunden, werden ca. 7- 8 fm Stämme benötigt mit gebundenem Hallenkran und Kranfahrer. Der Prozeß läuft diskontinuierlich ab, weil nach dem Abbrennen des eingeführten Holzes neues Stämme bereitgestellt werden müssen.
Der Teil des Holzes, der nicht in das Kupferbad eintaucht, verbrennt außerhalb der Schmelze bzw. des Flammofens und senkt den Gesamtwirkungsgrad zusätzlich auf insgesamt ca. 35 %. Infolge der Längenabmessung der Polstangen ist ferner nicht völlig zu vermeiden, daß Abgase in die Ofenhalle emittiert werden. Die hohe Wärmeentwicklung am Arbeitstor belastet die dort tätigen Mitarbeiter sehr (Kranfahrer, 1. und 2. Raffinierer).
In the refining process for the production of anode copper, the last process step before casting is a reduction in the molten copper bath. The technical term for this process stage is Poland. The reducing agent used (various feedstocks) primarily has the task of reducing the oxygen content to a certain final size and expelling sulfur dioxide in the copper bath. The technology currently used provides for the use of hardwood trunks that are pressed into the liquid copper bath using a crane. The very intensive reactions of the wood with the melt that occur bring about a reduction in the oxygen component and - if present - the sulfur dioxide component. It is always of the utmost importance that the most important, harmful additives have been slagged before the reduction process begins and that the surface of the bath has been removed cleanly. Otherwise, the metal oxides in the slag which float on the copper bath are reduced to metals, appear as metal impurities in the anode copper and sometimes interfere with further processing by wet metallurgy. For the entire reduction process of 3-4 hours, approx. 7- 8 fm trunks with bound indoor crane and crane driver are required. The process is discontinuous because new logs have to be made available after the imported wood has burned down.
The part of the wood that is not immersed in the copper bath burns outside the melt or the flame furnace and further reduces the overall efficiency to a total of approx. 35%. As a result of the length dimension of the pole rods, it is also impossible to completely avoid that exhaust gases are emitted into the furnace hall. The high level of heat at the work gate puts a great strain on the employees working there (crane operators, 1st and 2nd refiners).

Einsatz von Wasserstoff zum PolenUse of hydrogen for poling

Der Polprozeß ist bekanntermaßen schon mit verschiedensten Reduktionsmitteln durchgeführt worden. Neben der ursprünglichen Methode mit Holzstämmen wurde z.B. in den 80-er Jahren Erdöl der Sorte HT-B unter 2 % Schwefel-Gehalt zur Anodenerzeugung verwendet. Fast gleichzeitig wurden Versuche gefahren, mit CH4 die Reduktionsphase zu gestalten.
Das erstgenannte Ölen brachte jedoch große Umweltprobleme mit sich, wenn der anfallende Kohlenstoff im Abgas keine Nachbehandlung und Filterung erfuhr.
As is known, the pole process has already been carried out with a wide variety of reducing agents. In addition to the original method with logs, crude oil of the HT-B type with a sulfur content of less than 2% was used for anode production in the 1980s. Attempts were made almost simultaneously to design the reduction phase with CH 4 .
The first-mentioned oiling, however, posed major environmental problems if the resulting carbon in the exhaust gas did not undergo any aftertreatment and filtering.

Das Polen mit CH4 im Anodenbetrieb war und ist problematisch, weil eine sehr wichtige Voraussetzung, die hohe Starttemperatur des oxidierten Anodenkupfers, nur mit großem Aufwand erreichbar ist.
Jedoch konnte insbesondere bei der Umschmelzarbeit zur Herstellung von Drahtbarren das Erdgaspolen häufig zumindest als Teilprozeß eingeführt werden.
Dadurch, daß das Vorlaufmaterial Kathodenqualität besaß, wurden auch ohne große energetische Verluste die Temperaturen von ca. 1.250°C erreicht, welche dann ein Erdgaspolen mit zwei Lanzen wirtschaftlich zuließen. Die technologische Bedingungen sahen begründet vor, bei einem Sauerstoffgehalt von etwa 800 -1.000 ppm, den Polprozeß mit Holzstämmen bis zum Ende weiterzuführen, weil die O2-Entfernung bei diesen Gehalten schnell vor sich geht und die Probenahme sowie O2-Bestimmungen nicht miteinander kumulierten.
Polishing with CH 4 in anode operation was and is problematic because a very important requirement, the high starting temperature of the oxidized anode copper, can only be achieved with great effort.
However, natural gas poling could often be introduced at least as a partial process, particularly in the remelting work for the production of wire bars.
Because the leading material was of cathode quality, the temperatures of approx. 1,250 ° C were reached even without major energy losses, which then allowed natural gas poling with two lances economically. The technological conditions provided, with an oxygen content of approximately 800-1,000 ppm, to continue the pole process with logs until the end, because the O 2 removal at these contents is quick and the sampling and O 2 determinations did not cumulate .

Da in den genannten Bespielen das Reduktionsmittel nicht unmittelbar mit dem Sauerstoff im Kupfer reagieren kann, muß zunächst eine Aufspaltung in reaktionsfähige Bestandteile (CO/H2) erfolgen, die allerdings nur mit Energiezuführung zu erreichen ist. Deshalb gingen die Überlegungen dahin, ein Gas als Reduktionsstoff einzusetzen, welches schon Reduktionsmittel ist und dem Prozeß durch seine "Verbrennung" Energie zuführt. Daher wurde der Einsatz von Wasserstoff für diesen Zweck bereits vorgeschlagen.Since the reducing agent in the examples mentioned cannot react directly with the oxygen in the copper, it must first be broken down into reactive constituents (CO / H 2 ), which, however, can only be achieved by supplying energy. Therefore, the considerations were made to use a gas as a reducing agent, which is already a reducing agent and supplies the process with energy through its "combustion". The use of hydrogen for this purpose has therefore already been proposed.

Beispiel für Wasserstoff-PolungExample of hydrogen polarity

Im Flammofen eines Anodenbetriebes einer ehemaligen Kupferhütte wurde eine Wasserstoff-Polung durchgeführt. Der Flammofen ist stationär; die Zustellung besteht aus CM-Material innen sowie aus Schamott außen und diese ist im Herdbereich ab der 2. Schicht nach unten angeordnet. Der Ofenabstich befindet sich stirnseitig gegenüber der beiden festinstallierten Erdgas/Sauerstoffbrenner. Das Abgas verläßt den Ofenraum über ein unterirdisch geführtes Kanalsystem zum Ofenfilter sowie durch das Arbeitstor über das System des Nebenhaubenfilters. Der Ofen wird über zwei Gewölbe-Öffnungen kalt beschickt und besitzt ein Fassungsvermögen von ca. 155 t Gesamteinsatz bei einem Anodenausbringen von etwa 135 - 140 t pro Charge.One was in the flame furnace of an anode plant in a former copper smelter Hydrogen polarization performed. The flame furnace is stationary; the delivery exists made of CM material inside and fireclay outside and this is off in the range the 2nd layer down. The furnace rack is on the front compared to the two permanently installed natural gas / oxygen burners. The exhaust gas leaves the furnace chamber via an underground duct system to the furnace filter and through the work gate via the auxiliary hood filter system. The oven is over two vault openings cold-charged and has a capacity of approx. 155 t total use with an anode output of around 135 - 140 t per batch.

Weitere Ofendaten:Further furnace data:

ChargenzeitBatch time
= 28 - 30 Stunden= 28 - 30 hours
ErdgasverbrauchNatural gas consumption
= 105 m3/t An.= 105 m 3 / t an.
O2-VerbrauchO2 consumption
= 185 m3/t An.= 185 m 3 / t an.
SchlackenabfallSlag waste
= 10 % v. Vorlf.= 10% of Vorlf.
AnodenkupferAnode copper
= 99,2 % Cu= 99.2% Cu
KupferbadoberflächeCopper bath surface
= ca. 24 - 26 m2 = approx. 24 - 26 m 2

Eindüsvorrichtung bzw. Pollanze für die H2-Zugabe: Es wurde Gasrohr 3/4 " als Außenmantel benutzt in das ein ca. 3/8" Rohr eingeschoben wurde. Da der Gasstrom durch das innere Rohr fließen sollte wurden am Kopfstück mit Gewindeausführung beide Gasrohre verschweißt. Die Rohrlänge der Pollanze betrug 3 m. Der unter Teil erfuhr einen Thermoschutz aus Kunststoff-Gewebe in Verbund mit Schamottmörtel und Natronwasserglas. Aus beiden Komponenten wurde in breiiges Gemisch erzeugt und über eine Spindel mit Rollensitz für die Aufnahme des Gewebes gleichmäßig, spiralenförmig über das Außenrohr gezogen. In einer Länge von ca. 1,5 m wurde die Lanze am unteren Ende damit überzogen.Injection device or pole for H 2 addition: 3/4 "gas pipe was used as the outer jacket, into which an approx. 3/8" pipe was inserted. Since the gas flow should flow through the inner pipe, both gas pipes were welded to the threaded head piece. The pipe length of the pollanze was 3 m. The lower part was thermally protected from plastic fabric combined with fireclay mortar and soda water glass. A pulpy mixture was produced from both components and pulled evenly, spirally over the outer tube via a spindle with a roller seat for the absorption of the tissue. The lance was covered at the lower end with a length of approx. 1.5 m.

Die Gesamtausführung einer derartigen Pollanze erfüllte damit folgende Faktoren:

  • Hohe Standzeit durch mechanische Stabilität (Doppelrohr) und Feuerfestschutz durch das Aufbringen der Isolation in Selbstherstellung.
  • Dichte Verbindung durch Verschraubung am Lanzenende mit einem flexiblen Metallschlauch mit Kugelhahn.
  • Gute Ausströmgeschwindigkeit am ´Übergang mit Lanze zu Flüssigkupfer bei einem konstant eingestellten Druck.
  • Einfache Herstellung; unkomplizierte Handhabung beim Wechsel und während des Polprozesses; geringe Fertigungskosten.
The overall design of such a pollanze thus met the following factors:
  • Long service life due to mechanical stability (double pipe) and fire protection through the application of insulation in self-production.
  • Tight connection by screwing at the end of the lance with a flexible metal hose with ball valve.
  • Good outflow speed at the transition from lance to liquid copper at a constant pressure.
  • Easy manufacture; uncomplicated handling when changing and during the pole process; low manufacturing costs.

Ablauf:Procedure:

  • Einleitung des Polvorgangs: Vor dem Polvorgang wird das Leitungssystem mit Stickstoff gespült: Spüldauer 2 min. Initiation of the pole process: Before the pole process, the pipe system is flushed with nitrogen: flushing time 2 min.
  • Polvorgang mit Wasserstoff: Polen unter Wasserstoff-Eintrag über die beschriebene, in die Cu-Schmelze eintauchende Pollanze oder auch mehrere Pollanzen. Pole process with hydrogen: Poles with hydrogen entry via the described pole lance immersed in the Cu melt or also several pole lances.
  • Abschluß-Stickstoff-Spülung.Final nitrogen purge.

Die Anwendung von Wasserstoffgas zur Desoxidation ergibt jedoch folgende Nachteile:

  • die Pollanzen unterliegen einem relativ hohen Verschleiß;
  • insbesondere gegen Ende der Desoxidationsprozesses langer Zeitbedarf bis Desoxidationsziel erreicht ist.
However, using hydrogen gas for deoxidation has the following disadvantages:
  • the pollanzes are subject to relatively high wear;
  • especially towards the end of the deoxidation process, it takes a long time until the deoxidation target is reached.

Der vorliegenden Erfindung liegt daher die Aufgabenstellung zugrunde, ein einfach durchführbares, funktionsfähiges und auch effektives Desoxidationsverfahren auf der Basis gasförmiger Behandlungsmittel anzugeben.The present invention is therefore based on the task, a simple feasible, functional and also effective deoxidation process based on to specify gaseous treatment agents.

Erfindungsgemäß wird dies dadurch gelöst, daß als Desoxidationgas ein Wasserstoff und Inertgas, vorzugsweise Stickstoff, enthaltendes Gasgemisch mit 35 bis 90 Vol-% Wasserstoff angewandt wird. Vorzugsweise wird erfindungsgemäß als Desoxidationgas ein Wasserstoff-Stickstoff-Gemisch mit 60 bis 72 Vol-% Wasserstoff angewandt wird. Weitere Ausgestaltungsvarianten sind den anhängenden Unteransprüchen zu entnehmen.According to the invention, this is achieved in that a hydrogen is used as the deoxidation gas and a gas mixture containing 35 to 90% by volume, preferably nitrogen, Hydrogen is applied. According to the invention, a deoxidation gas is preferably used Hydrogen-nitrogen mixture with 60 to 72 vol% hydrogen is applied. Further Design variants can be found in the appended subclaims.

Überraschenderweis konnte festgestellt werden, daß durch den Einsatz eines H2/N2-Gemisches eine Verkürzung der effektiven Polzeit im Vergleich zum Polen mit Erdgas erzielt sowie eine Verringerung des Verschleißes der Pollanzen erreicht werden kann. Das H2/N2-Gemisch wirkt nicht nur als Reduktionsmittel sondern gleichzeitig als Energietträger aufgrund der exothermen Reaktionen in der Kupferschmelze.Surprisingly, it was found that the use of an H 2 / N 2 mixture shortened the effective pole time compared to poling with natural gas, and reduced wear on the pollances could be achieved. The H 2 / N 2 mixture acts not only as a reducing agent but also as an energy source due to the exothermic reactions in the copper melt.

Im folgenden wird ein Ausführungsbeispiel der Erfindung beschrieben:
Es wird ein Polvorgang mit einem Ofen und mit einer Eindüsvorrichtung wie oben beschrieben vorgestellt. Vor dem Polvorgang wird das Leitungssystem mit Stickstoff gespült. Hierzu erfolgen folgende Bedienschritte:

  • Eintauchen der Eindüsungslanze in die Cu-Schmelze,
  • Schließen der Hauptabsperrung für Wasserstoff und der Absperrung sowie der Hauptabsperrung für Stickstoff aus dem Tank,
  • Öffnen de Strangabsperrung für Wasserstoff,
  • Öffnen des angeschlossenen Stickstoff-Bündels,
  • Öffnen der Hauptabsperrung für Stickstoff - Spüldauer 2 min.
An exemplary embodiment of the invention is described below:
A poling process with an oven and with an injection device as described above is presented. Before the pole process, the piping system is flushed with nitrogen. The following operating steps are carried out:
  • Immersing the injection lance in the Cu melt,
  • Closing the main barrier for hydrogen and the barrier as well as the main barrier for nitrogen from the tank,
  • Opening the line shut-off for hydrogen,
  • Opening the connected nitrogen bundle,
  • Opening the main shut-off for nitrogen purging time 2 min.

Zum Polen erfolgt:For Poland:

  • Schließen des angeschlossenen Stickstoff-Bündels,Closing the connected nitrogen bundle,
  • Schließen der Hauptabsperrung für Stickstoff,Closing the main nitrogen barrier,
  • Öffnen der Hauptabsperrung für Wasserstoff sowie einer Absperrung sowie der Hauptabsperrung für Stickstoff aus dem Tank,Opening the main barrier for hydrogen and a barrier as well as the Main shut-off for nitrogen from the tank,
  • Polen unter Wasserstoff-Stickstoff-Eintrag.Poland under hydrogen nitrogen entry.
Beendigung des Polvorgangs:End of the pole process:

Zur Beendigung des Polvorgangs wird das Leistungssystem erneut mit Stickstoff gespült. Bedienschritte:

  • Die Eindüsenlanzen verbleiben in der Cu-Schmelze,
  • Schließen de Hauptabsperrung für Wasserstoff,
  • Öffnen des angeschlossenen Stickstoff-Bündels,
  • Öffnen der Hauptabsperrung für Stickstoff,
  • Spüldauer 2 min.,
  • Schließen des angeschlossenen Stickstoff-Bündels,
  • Schließen der Hauptabsperrung für Stickstoff,
  • Schließen der Strangabsperrung für Wasserstoff und der Absperrung sowie der Hauptabsperrung für Stickstoff aus dem Tank,
  • Herausziehen der Eindüsungslanzen aus der Cu-Schmelze
  • Druckentlastung des Leitungssystems durch kurzzeitiges Öffnen einer Strangabsperrung für Wasserstoff.
To end the pole process, the power system is flushed again with nitrogen. Operating steps:
  • The nozzle lances remain in the Cu melt,
  • Closing the main barrier to hydrogen,
  • Opening the connected nitrogen bundle,
  • Opening the main nitrogen barrier,
  • Rinsing time 2 min.,
  • Closing the connected nitrogen bundle,
  • Closing the main nitrogen barrier,
  • Closing the string shut-off for hydrogen and the shut-off as well as the main shut-off for nitrogen from the tank,
  • Pull the injection lances out of the Cu melt
  • Relief of pressure in the pipeline system by briefly opening a line shut-off for hydrogen.

Ergebnis der geschilderten H2/N2-Polung:Result of the described H 2 / N 2 polarity:

Der Verschleiß der Pollanzen ist gegenüber der Verfahrensweise mit reinem Wasserstoff deutlich reduziert. Die Pollanzen konnten für bis zu 3 Chargen wiederverwendet werden.
Der Volumenanteil von H2 im H2/N2 Gemisch liegt besonders vorteilhaft im Bereich 60 bis 72 Vol.-%.
Durchschnittliche H2/N2 Verbräuche bezogen auf den Versuchszeitraum:

  • H2 = 8,474 m3 N / t Anoden
  • N2 = 4,45 m3 N / t Anoden.
The wear of the pollanzas is significantly reduced compared to the procedure with pure hydrogen. The pollanzas could be reused for up to 3 batches.
The volume fraction of H 2 in the H 2 / N 2 mixture is particularly advantageously in the range from 60 to 72% by volume.
Average H 2 / N 2 consumption based on the test period:
  • H 2 = 8.474 m 3 N / t anodes
  • N 2 = 4.45 m 3 N / t anodes.

Die Durchflußmenge je Lanze (H2/N2-Gemisch) bewegen sich vorteilhaft im Bereich von 200 - 350 m3 N/h und Lanze. Dabei wurden mit Einblasdrücken von 10 bar vor Lanze und einem Lanzenaustrittsquerschnitt von 1,2265 * 10-4 m2 (di = 12,5 mm) günstige Ergebnisse erreicht. The flow rate per lance (H 2 / N 2 mixture) is advantageously in the range from 200 to 350 m 3 N / h and lance. Favorable results were achieved with blowing pressures of 10 bar in front of the lance and a lance outlet cross section of 1.2265 * 10 -4 m 2 (d i = 12.5 mm).

Zur Ermittlung der optimalen Zustellung der Pollanzen konnte - bezogen auf die vorhandenen Verhältnisse - festgestellt werden, daß mit der Erhöhung des Versorgungsdruckes und mit der damit verbundenen geringeren Austrittsquerschnitten d = 10 mm und steigender Austrittsgeschwindigkeit über 12 bar hinaus keine Intensivierung der Reduktion erreicht werden konnte. Nachteilig bei diesen Versuchen mit Einblasdrücken bis 15 bar war der höhere Verschleiß der Pollanzen. Die Einsatzdauer pro Lanze lag maximal nur bei einer Charge.
Mit der gewählten Lanzenkonstruktion sind Austrittsgeschwindigkeiten in Höhe der Schallgeschwindigkeit erreicht worden. Die Uberdrücke am Austrittsquerschnitt werden auf etwa 2 - 3 bar geschätzt.
Bei der Verwendung von Düsen ergeben sich, bezogen auf den Vordruck von 10 bar, höhere Staudrücke am Austritt der Lanzen etwa 5 - 6 bar. Dadurch werden auch höhere Austrittsgeschwindigkeiten erreicht, die unter Umständen noch zu einer weiteren Intensivierung der Reduktion führen können.
In order to determine the optimal delivery of the pollanzas, it could be determined - based on the existing conditions - that with the increase in the supply pressure and the associated smaller outlet cross-sections d = 10 mm and increasing outlet speed beyond 12 bar, the reduction could not be intensified. A disadvantage of these tests with blowing pressures up to 15 bar was the higher wear of the pole ends. The maximum period of use per lance was only one batch.
With the chosen lance construction, exit speeds equal to the speed of sound have been achieved. The overpressures at the outlet cross section are estimated to be around 2 - 3 bar.
When using nozzles, based on the pre-pressure of 10 bar, higher dynamic pressures at the outlet of the lances result in about 5 - 6 bar. As a result, higher exit speeds are also achieved, which under certain circumstances can lead to a further intensification of the reduction.

Energetische EffizienzEnergetic efficiency

Von den bisher bekannten Verfahren zur Reduktion von Kupferschmelzen mit dem Einsatz von

  • Holz (sog. Polstangen)
  • Heizöl, L u. M (Steinkohleheizöl) und
  • Erdgas, H
geht der Trend bei der Herstellung von Kupferanoden hin zum Gaspolen mit der Verwendung von Erdgas der Gruppe H.
Obwohl für einen Vergleich des Nutzungsgrades die jeweilige Ofentype, das Chargengewicht und die eingesetzten kupferhaltigen Vorlaufmaterialien von Einfluß sind, kann doch - bezogen auf einen Sauerstoffgehalt im Bad von ≤ 1 % - eine Vergleichbarkeit zu den in der entsprechenden Fachliteratur für angegebene spezifische Verbräuche bei der Herstellung von Kupfer-Anoden zur Bewertung des Nutzungsgrades angenommen werden.
Der Produktionslauf zur Herstellung der Kupferanoden im Chargenregime mit der Untergliederung der Prozeßstufen ist:
  • Einsetzen,
  • Einschmelzen,
  • Oxidieren,
  • Polen,
  • Vergießen und
  • Vorbereiten.
Of the previously known methods for reducing copper melts with the use of
  • Wood (so-called pole poles)
  • Heating oil, L u. M (hard coal heating oil) and
  • Natural gas, H
the trend in the production of copper anodes is towards gas poling with the use of natural gas from group H.
Although the respective type of furnace, the batch weight and the copper-containing pre-run materials used have an influence on a comparison of the degree of utilization, a comparison with the specific consumption stated in the relevant technical literature for the specific consumption in the bath can - based on an oxygen content in the bath of ≤ 1% of copper anodes to assess the degree of utilization.
The production run for the production of copper anodes in the batch regime with the breakdown of the process stages is:
  • Deploy,
  • Melting,
  • Oxidize,
  • Poland,
  • Shedding and
  • To prepare.

Bezogen auf das Chargenregime werden für den Polvorgang im Mittel etwa 10 % der Zeitdauer benötigt. Zur Bewertung des Nutzungsgrades kann in erster Näherung die durchschnittlich zu reduzierende Sauerstoffmenge mit 9 kg / t Anoden zu Grunde gelegt werden. Dies entspricht bei einem Nutzungsgrad = 1.Based on the batch regime, an average of around 10% the time needed. To evaluate the degree of utilization can in a first approximation the average oxygen quantity to be reduced with 9 kg / t anodes be placed. This corresponds to a degree of utilization = 1.

Es gilt:

Figure 00080001
The following applies:
Figure 00080001

H2-Bedarf pro t: 9 3222,4 *0,5 = 12,6 m3 N/t Anoden H 2 requirement per t: 9 32 22.4 * 0.5 = 12.6 m 3rd N / t anodes

Zusammenstellung der Ist-Polgas-Verbräuche sowie der theoretisch erforderlichen Wasserstoffverbrauchsmengen: Chargennummer Chargengewicht H2-Ist verbrauch m3 N/Charge N2-Ist Verbrauch M3 N/Charge H2/N2 Verhältnis Theoretischer H2-Verbrauch m3 N/Charge 39 133,3 1.003 900 40 134,4 1.240 300 41 145,7 1.028 400 71,98/28,02 1.285 44 139,3 1.058 600 63,8/36,2 1.073 45 140,5 1.086 650 62,55/37,45 1.261 46 129,8 1.086 250 - - (Fertigpolen mit Holz) 47 140,3 1.396 750 65,05/34,95 1.604 50 139,4 1.168 450 72,19/27,81 1.550 51 134,7 1.304 750 63,48/36,52 1.371 52 126 1.040 650 61,54/38,46 1.177 55 135,7 1.222 600 67/33 1.581 56 144,8 912 600 60,32/39,68 1.521 57 144,5 1.049 650 61,74/38,26 987 58 139 1.360 650 66,77/33,23 1.332 61 139 1.587 1.000 61,34/38,66 1.230 Compilation of the actual Polgas consumption and the theoretically required hydrogen consumption quantities: Batch number Batch weight H 2 -is consumption m 3 N / batch N 2 -Is consumption M 3 N / batch H 2 / N 2 ratio Theoretical H 2 consumption m 3 N / batch 39 133.3 1,003 900 40 134.4 1,240 300 41 145.7 1,028 400 71.98 / 28.02 1,285 44 139.3 1,058 600 63.8 / 36.2 1,073 45 140.5 1,086 650 62.55 / 37.45 1,261 46 129.8 1,086 250 - - (finished polish with wood) 47 140.3 1,396 750 65.05 / 34.95 1,604 50 139.4 1,168 450 72.19 / 27.81 1,550 51 134.7 1,304 750 63.48 / 36.52 1,371 52 126 1,040 650 61.54 / 38.46 1,177 55 135.7 1,222 600 67/33 1,581 56 144.8 912 600 60.32 / 39.68 1,521 57 144.5 1,049 650 61.74 / 38.26 987 58 139 1,360 650 66.77 / 33.23 1,332 61 139 1,587 1,000 61.34 / 38.66 1,230

Aus dem Verhältnis der Wassertoffmengen in m3 N / Charge theoretischer Verbrauch zu Ist-Verbrauch resultieren Nutzungsgrade von 077 bis größer 1(!). Aufgrund dieser Tatsache ist wahrscheinlich, daß durch die Aufwirbelung des Kupferbades im Eintauchbereich der Pollanzen durch die Flammengase der Erdgas/Sauerstoff-Feuerung eine weitere, nennenswerte Reduktion erfolgt.
In den Beispielfällen wurde zur Ofenbeheizung eine Luftverhältniszahl von λ ≥ 0 6 eingehalten. Im Vergleich zum Polen mit Erdgas wird bei der Verwendung von H2/N2-Gemisch > 60/40 Vol.% und den geschilderten Atmosphärenverhältnissen der energetische Nutzungsgrad um das 2-fache erhöht.
The ratio of the amount of hydrogen in m 3 N / batch of theoretical consumption to actual consumption results in utilization rates from 077 to greater than 1 (!). Due to this fact, it is likely that the swirling up of the copper bath in the immersion area of the pollanzes by the flame gases of the natural gas / oxygen furnace will result in a further, noteworthy reduction .
In the example cases, an air ratio of λ ≥ 0 6 was observed for furnace heating. Compared to Poland with natural gas, the use of H 2 / N 2 mixture> 60/40 vol.% And the described atmospheric conditions increases the degree of energy efficiency by a factor of two.

Durch den Einsatz von Wasserstoff und Stickstoff in den angegebenen Mengenverhältnissen und deren Einleitung - vorteilhafter Weise in einem Eintauchwinkel von größer 30 bis 90° - mit einem definierten Volumenstrom und mit einem derfinierten Versorgungsdruck sowie durch die Einhaltung einer reduzierenden Ofenatmosphäre ergeben sich besonders vorteilhafte Bedingungen beim Polen. Besonders gute Ergebnisse wurden insbesondere mit einer Befeuerung des Raffinierofens mit Erdgas/Sauerstoff erzielt.
Durch die Aufwirbelung des Kupferbades bei den Pollanzen durch das Reduktionsmittel einerseits und durch die Flammengase andererseits entstehen offensichtlich ausgesprochen günstige Reduktionsbedingungen mit nennenswerter Reduktion auch über dem Schmelzebad, wo 1300 bis 1400 °C herrschen. Die Luftverhältniszahl der Heizbrenner beträgt hierbei vorteilhafterweise zwischen 0,5 und 0, 8, vorzugsweise liegt sich im Bereich von 0,6 bis 0,7.
The use of hydrogen and nitrogen in the specified proportions and their introduction - advantageously at an immersion angle of greater than 30 to 90 ° - with a defined volume flow and with a defined supply pressure, as well as by maintaining a reducing furnace atmosphere, results in particularly advantageous conditions when poling . Particularly good results were achieved in particular by firing the refinery with natural gas / oxygen.
The swirling up of the copper bath at the pollanzas by the reducing agent on the one hand and by the flame gases on the other hand obviously creates extremely favorable reduction conditions with a noteworthy reduction also above the melt bath, where the temperature is between 1300 and 1400 ° C. The air ratio of the heating burners is advantageously between 0.5 and 0.8, preferably in the range from 0.6 to 0.7.

Insgesamt ergibt sich mit dem geschilderten Verfahren,

  • also einem Verfahren zur Desoxidation von Kupferschmelzen in einen Raffinierofen mit direkter Flammbeheizung und mit Einblasen eines brennbaren, gasförmigen Reduktionsmittels in die Schmelze, das dadurch gekennzeichnet ist,
    daß als Reduktionsmittel ein Gemisch aus Wasserstoff und Stickstoff in einem Volumenverhältnis von 60 zu 40 bis 72 zu 28 eingesetzt wird und
    daß im Ofenraum eine desoxidierende Atmosphäre durch entsprechende Einstellung der Ofenbeheizung, d.h. der Heizbrenner, auf eine Lufverhältniszahl von 0,5 bis 0,8 eingehalten wird,
  • ein hochwirksames, schnelles und gut praktikables Verfahren zur Desoxidation und Raffination von Kupfer.
  • Overall, with the described method,
  • a process for deoxidizing copper melts in a refining furnace with direct flame heating and with blowing a combustible, gaseous reducing agent into the melt, which is characterized in that
    that a mixture of hydrogen and nitrogen in a volume ratio of 60 to 40 to 72 to 28 is used as the reducing agent and
    that a deoxidizing atmosphere in the furnace space is maintained by an appropriate setting of the furnace heating, ie the heating burner, to an air ratio of 0.5 to 0.8,
  • a highly effective, fast and well practicable process for the deoxidation and refining of copper.
  • Claims (7)

    Verfahren zum Polen (Desoxideren) von Kupfer in schmelzflüssigem Zustand, bei dem ein gasförmiges Desoxidationsmittel in die Schmelze geleitet wird,
    dadurch gekennzeichnet, daß als Desoxidationgas ein Wasserstoff und Inertgas, vorzugsweise Stickstoff, enthaltendes Gasgemisch mit 35 bis 90 Vol-% Wasserstoff angewandt wird.
    Process for polishing (deoxidizing) copper in the molten state, in which a gaseous deoxidizing agent is passed into the melt,
    characterized in that a gas mixture containing hydrogen and inert gas, preferably nitrogen, containing 35 to 90% by volume of hydrogen is used as the deoxidation gas.
    Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Desoxidationgas ein Wasserstoff-Stickstoff-Gemisch mit 50 bis 75 Vol-%, vorzugsweise 60 bis 72 Vol-%, Wasserstoff angewandt wird.Process according to Claim 1, characterized in that a hydrogen-nitrogen mixture containing 50 to 75% by volume, preferably 60 to 72% by volume, of hydrogen is used as the deoxidation gas. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß über der Schmelze eine desoxidierende Atmosphäre erzeugt wird.A method according to claim 1 or 2, characterized in that a deoxidizing atmosphere is generated over the melt. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die desoxidierende Atmosphäre über der Schmelze durch entsprechende Einstellung der Heizbrenner erzeugt wird.Method according to one of claims 1 to 3, characterized in that the deoxidizing atmosphere is generated above the melt by appropriate adjustment of the heating burner. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das gasförmige Desoxidationsmittel in und auf die Schmelze geleitet wird und damit zumindest ein Teil der reduzierenden Atmosphäre über der Schmelze erzeugt wird.Method according to one of claims 1 to 3, characterized in that the gaseous deoxidizing agent is passed into and onto the melt and thus at least part of the reducing atmosphere is generated above the melt. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß im Falle von Rohrlanzen das Desoxidationsgas mit Vordrucken von 5 bis 15 bar, vorzugsweise 8 bis 12 bar, in die Schmelze eingebracht wird.Method according to one of claims 1 to 5, characterized in that in the case of pipe lances, the deoxidizing gas is introduced into the melt at admission pressures of 5 to 15 bar, preferably 8 to 12 bar. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß im Falle von Rohrlanzen die Durchflußmenge je Lanze (H2/N2-Gemisch) im Bereich von 200 - 350 m3 N/h eingestellt wird, wobei Lanzenaustrittsquerschnitte von 1 bis 1,5 * 10-4 m2 (= cm 2) eingehalten werden.A method according to claim 6, characterized in that in the case of tubular lances, the flow rate per lance (H 2 / N 2 mixture) is set in the range from 200 to 350 m 3 N / h, lance outlet cross sections from 1 to 1.5 * 10 -4 m 2 (= cm 2 ) are observed.
    EP99119000A 1998-09-29 1999-09-27 Deoxidation of copper melt by gas poling with hydrogen-nitrogen mixture Expired - Lifetime EP0992597B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19844667 1998-09-29
    DE19844667A DE19844667A1 (en) 1998-09-29 1998-09-29 Process for polishing copper

    Publications (2)

    Publication Number Publication Date
    EP0992597A1 true EP0992597A1 (en) 2000-04-12
    EP0992597B1 EP0992597B1 (en) 2002-07-24

    Family

    ID=7882666

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99119000A Expired - Lifetime EP0992597B1 (en) 1998-09-29 1999-09-27 Deoxidation of copper melt by gas poling with hydrogen-nitrogen mixture

    Country Status (4)

    Country Link
    EP (1) EP0992597B1 (en)
    AT (1) ATE221135T1 (en)
    DE (2) DE19844667A1 (en)
    ES (1) ES2180245T3 (en)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2002008476A1 (en) * 2000-07-21 2002-01-31 Norddeutsche Affinerie Aktiengesellschaft Method and device for reducing the oxygen content of a copper melt
    DE102022122729A1 (en) 2022-09-07 2024-03-07 Sms Group Gmbh Device for copper production with improved CO2 balance

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10007441A1 (en) * 2000-02-18 2001-08-23 Linde Gas Ag Poling copper in the molten state comprises feeding a gas mixture of hydrogen, nitrogen and carbon monoxide as gaseous deoxidizing agent into the melt
    US8030082B2 (en) 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials
    CN100462455C (en) * 2007-08-24 2009-02-18 云南铜业压铸科技有限公司 Method for smelting pure copper or high-copper alloy raw material

    Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3529956A (en) * 1969-06-03 1970-09-22 Anaconda Co Refining copper
    DE1919850A1 (en) * 1969-04-18 1971-04-15 Noranda Mines Ltd Deoxidation of copper melts
    US3844772A (en) * 1973-02-28 1974-10-29 Du Pont Deoxidation of copper
    US3987224A (en) * 1975-06-02 1976-10-19 General Electric Company Oxygen control in continuous metal casting system
    DE2711369A1 (en) * 1976-03-18 1977-09-22 Centre Rech Metallurgique Refining a metal esp. copper - with reducing gas and oxygen mixt. eliminates need for poling
    GB2225024A (en) * 1988-11-21 1990-05-23 Mitsubishi Metal Corp Method and apparatus for manufacturing, oxygen-free copper

    Patent Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1919850A1 (en) * 1969-04-18 1971-04-15 Noranda Mines Ltd Deoxidation of copper melts
    US3529956A (en) * 1969-06-03 1970-09-22 Anaconda Co Refining copper
    US3844772A (en) * 1973-02-28 1974-10-29 Du Pont Deoxidation of copper
    US3987224A (en) * 1975-06-02 1976-10-19 General Electric Company Oxygen control in continuous metal casting system
    DE2711369A1 (en) * 1976-03-18 1977-09-22 Centre Rech Metallurgique Refining a metal esp. copper - with reducing gas and oxygen mixt. eliminates need for poling
    GB2225024A (en) * 1988-11-21 1990-05-23 Mitsubishi Metal Corp Method and apparatus for manufacturing, oxygen-free copper

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    J.J. OUDIZ: "Poling processes for copper refining", JOURNAL OF METALS, vol. 25, no. 12, December 1973 (1973-12-01), Warrendale, Pa, USA, pages 35 - 38, XP002126913 *

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2002008476A1 (en) * 2000-07-21 2002-01-31 Norddeutsche Affinerie Aktiengesellschaft Method and device for reducing the oxygen content of a copper melt
    US7264767B2 (en) 2000-07-21 2007-09-04 Norddeutsche Affinerie Aktiengesellschaft Method and device for reducing the oxygen content of a copper melt
    DE102022122729A1 (en) 2022-09-07 2024-03-07 Sms Group Gmbh Device for copper production with improved CO2 balance

    Also Published As

    Publication number Publication date
    DE59902099D1 (en) 2002-08-29
    EP0992597B1 (en) 2002-07-24
    ES2180245T3 (en) 2003-02-01
    ATE221135T1 (en) 2002-08-15
    DE19844667A1 (en) 2000-03-30

    Similar Documents

    Publication Publication Date Title
    DE60031206T2 (en) Method for starting a direct melting process
    EP0992597B1 (en) Deoxidation of copper melt by gas poling with hydrogen-nitrogen mixture
    EP0627012B1 (en) Process for desulphurising irons melts with minimal slag production and suitable device therefor
    DE3423247A1 (en) METHOD AND DEVICE FOR PRODUCING STEEL FROM SCRAP
    DE2405737A1 (en) PROCESS FOR SELECTIVE DECARBONING OF STEEL ALLOYS
    EP2986743A1 (en) Method and plant for the production of ferro-alloys with low carbon content in a vacuum converter
    DE3904415C1 (en)
    EP0122910A1 (en) Method of operating a metallurgical plant
    DE1907543B2 (en) PROCESS AND DEVICE FOR CONTINUOUS REFINING OF METALS
    DE102005005832B4 (en) Recuperative burner and method for heating an industrial furnace using the burner
    DE2714825A1 (en) METHOD AND DEVICE FOR TREATMENT OF FRESH EXHAUST GAS
    DE2911763A1 (en) METHOD AND DEVICE FOR REGULATING THE PARTS OF THE AIR COMPONENTS OF OXYGEN, NITROGEN, CARBON DIOXIDE AND WATER CONTENT IN REACTION PROCESSES OF THE METALLURGICAL AREA
    EP1349815B1 (en) Device and method for melting glass
    DE338121C (en) Process for the production of steel in electric ovens
    DE2711369A1 (en) Refining a metal esp. copper - with reducing gas and oxygen mixt. eliminates need for poling
    AT212350B (en) Method and device for cleaning steel baths with the aid of gases
    DE2259533A1 (en) BOTTOM BUBBLING FRESHING PROCESS
    AT216033B (en) Blowing lance for a hearth furnace, especially Siemens-Martin furnace
    DE2404288A1 (en) PROCESS FOR RECOVERY OF REACTION GASES FROM BOTTOM-BUBBLED BY MEANS OF PURE OXYGEN AND HYDROCARBONS COOLED STEEL CONVERTERS AND DEVICE
    WO2022033921A1 (en) Process for producing raw steel and aggregate for production thereof
    AT268351B (en) Process for degassing carbonaceous iron and steel melts
    DE102021122230A1 (en) Process for the production of a manganese-containing melt
    WO2009052894A1 (en) Tuyère implant for cupola or shaft furnaces
    DE203958C (en)
    DE19947343A1 (en) Melting zinc-containing materials containing heavy metals comprises reductively moving the burner and/or the liquid slag so the zinc is converted into the gas phase

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20000222

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: LINDE TECHNISCHE GASE GMBH

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: LINDE GAS AG

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    17Q First examination report despatched

    Effective date: 20001116

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: LINDE AG

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020724

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020724

    REF Corresponds to:

    Ref document number: 221135

    Country of ref document: AT

    Date of ref document: 20020815

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59902099

    Country of ref document: DE

    Date of ref document: 20020829

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020927

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020930

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020930

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020923

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20021024

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20021024

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2180245

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    Ref document number: 0992597E

    Country of ref document: IE

    BERE Be: lapsed

    Owner name: *LINDE A.G.

    Effective date: 20020930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030401

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030425

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030930

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030930

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20050904

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20060908

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20060913

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FI

    Payment date: 20060914

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20060922

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20060927

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20060930

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20061023

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070401

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20070401

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20060906

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070928

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20070927

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070927

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070927

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080401

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20080531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071001

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070927

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20070928

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070928

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070927