EP0992597B1 - Deoxidation of copper melt by gas poling with hydrogen-nitrogen mixture - Google Patents

Deoxidation of copper melt by gas poling with hydrogen-nitrogen mixture Download PDF

Info

Publication number
EP0992597B1
EP0992597B1 EP99119000A EP99119000A EP0992597B1 EP 0992597 B1 EP0992597 B1 EP 0992597B1 EP 99119000 A EP99119000 A EP 99119000A EP 99119000 A EP99119000 A EP 99119000A EP 0992597 B1 EP0992597 B1 EP 0992597B1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
copper
melt
der
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99119000A
Other languages
German (de)
French (fr)
Other versions
EP0992597A1 (en
Inventor
Karl Fasshauer
Frank Steffner
Hans-Joachim Dauterstedt
Michael Albrecht
Eberhard Wernicke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0992597A1 publication Critical patent/EP0992597A1/en
Application granted granted Critical
Publication of EP0992597B1 publication Critical patent/EP0992597B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/0052Reduction smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/006Pyrometallurgy working up of molten copper, e.g. refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ

Definitions

  • the invention relates to a process for polishing (deoxidizing) copper in molten liquid State in which a gaseous deoxidizer is passed into the melt becomes.
  • the last process step before casting is a reduction in the molten copper bath.
  • the technical term for this process stage is Poland.
  • the reducing agent used (various feedstocks) primarily has the task of reducing the oxygen content to a certain final size and expelling sulfur dioxide in the copper bath.
  • the technology currently used provides for the use of hardwood trunks that are pressed into the liquid copper bath using a crane. The very intensive reactions of the wood with the melt that occur bring about a reduction in the oxygen component and - if present - the sulfur dioxide component. It is always of the utmost importance that the most important, harmful additives have been slagged before the reduction process begins and that the surface of the bath has been removed cleanly.
  • Polishing with CH 4 in anode operation was and is problematic because a very important requirement, the high starting temperature of the oxidized anode copper, can only be achieved with great effort.
  • natural gas poling could often be introduced at least as a partial process, particularly in the remelting work for the production of wire bars. Because the leading material was of cathode quality, the temperatures of approx. 1,250 ° C were reached even without major energy losses, which then allowed natural gas poling with two lances economically.
  • the technological conditions provided, with an oxygen content of approximately 800-1,000 ppm, to continue the pole process with logs until the end, because the O 2 removal at these contents is quick and the sampling and O 2 determinations did not cumulate ,
  • the reducing agent cannot react directly with the oxygen in the copper, it must first be broken down into reactive components (CO / H 2 ), which can, however, only be achieved by supplying energy. Therefore, the considerations were made to use a gas as a reducing agent, which is already a reducing agent and supplies the process with energy through its "combustion". The use of hydrogen for this purpose has therefore already been proposed.
  • Injection device or pole for H 2 addition 3/4 "gas pipe was used as the outer jacket, into which an approx. 3/8" pipe was inserted. Since the gas flow should flow through the inner pipe, both gas pipes were welded to the threaded head piece. The pipe length of the pollanze was 3 m. The lower part was thermally protected from plastic fabric combined with fireclay mortar and soda water glass. A pulpy mixture was produced from both components and pulled evenly, spirally over the outer tube via a spindle with a roller seat for the absorption of the tissue. The lance was covered at the lower end with a length of approx. 1.5 m.
  • GB-A-22 25 024 discloses a generic method for polishing copper, in which a hydrogen / inert gas mixture with a Hydrogen content between 0.5 and 50 vol% is used. Furthermore, the US-A-3 844 772 another generic method for polishing copper, in which ammonia cracked as deoxidation gas is used.
  • the object of the present invention is an easy to carry out Functional and effective deoxidation process based on gaseous Specify treatment agents.
  • this is achieved in that a mixture of as reducing agent Hydrogen and nitrogen are used in a volume ratio of 60 to 40 to 72 to 28 and that in the furnace room a deoxidizing atmosphere by appropriate Setting the stove heating, d. H. the heating burner, to an air ratio of 0.5 to 0.8 is observed.
  • the flow rate per lance (H 2 / N 2 mixture) is advantageously in the range from 200 to 350 m 3 N / h and lance.
  • the ratio of the amount of hydrogen in m 3 N / batch of theoretical consumption to actual consumption results in utilization rates from 077 to greater than 1 (!). Due to this fact, it is likely that the swirling up of the copper bath in the immersion area of the pollances by the flame gases of the natural gas / oxygen furnace will result in a further, noteworthy reduction . In the example cases, an air ratio of ⁇ ⁇ 0.6 was maintained for furnace heating. Compared to Tru with natural gas, the use of H 2 / N 2 mixture> 60/40 vol.% And the described atmospheric ratios increases the degree of energy efficiency by a factor of two.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Copper poling process employs a deoxidizing gas mixture of hydrogen and inert gas. Copper poling is carried out using a deoxidizing gas mixture of inert gas (preferably nitrogen) and 35-90 (especially 60-72) volume % hydrogen.

Description

Die Erfindung betrifft ein Verfahren zum Polen (Desoxideren) von Kupfer in schmelzflüssigem Zustand, bei dem ein gasförmiges Desoxidationsmittel in die Schmelze geleitet wird.The invention relates to a process for polishing (deoxidizing) copper in molten liquid State in which a gaseous deoxidizer is passed into the melt becomes.

Die Anwendung von Wasserstoffgas und Erdgas zur Desoxidation von Kupfer ist - neben der von Holz oder daraus gewonnenen Materialien - bekannt (vgl. DE-PS 34 27 435).The use of hydrogen gas and natural gas to deoxidize copper is - besides of wood or materials derived from it - known (cf. DE-PS 34 27 435).

Einleitende Betrachtung zur Reduktion von flüssigem KupferIntroductory consideration for the reduction of liquid copper

Im Raffinationsprozeß zur Erzeugung von Anodenkupfer erfolgt als letzte Prozeßstufe vor dem Gießen eine Reduktion im schmelzflüssigen Kupferbad. Der Fachausdruck für diese Prozeßstufe ist das Polen. Das eingesetzte Reduktionsmittel (verschiedene Einsatzstoffe) hat dabei vornehmlich die Aufgabe den Sauerstoffgehalt auf ein bestimmtes Endmaß zu senken und im Kupferbad befindliches Schwefeldioxid auszutreiben. Die derzeit angewendete Technologie sieht den Einsatz von Hartholzstämmen vor, die mittels Kran in das flüssige Kupferbad eingedrückt werden. Die dabei stattfindenden sehr intensiven Reaktionen des Holzes mit der Schmelze bewirken eine Senkung der Sauerstoffkomponente und - wenn vorhanden - der Schwefeldioxidkompontene. Es ist immer von größter Wichtigkeit, daß vor Beginn des Reduktionsprozesses die wichtigsten, schädlichen Beimengungen verschlackt worden sind und die Badoberfläche sauber abgezogen ist. Ansonsten werden die in der Schlacke sich befindlichen, auf dem Kufperbad schwimmenden Metalloxide zu Metallen reduziert, treten als Metallverunreinigungen wieder im Anodenkupfer auf und stören teilweise sehr erheblich in der Weiterverarbeitung auf naßmetallurgische Wege. Für den gesamten Reduktionsprozeß von 3 - 4 Stunden, werden ca. 7 - 8 fm Stämme benötigt mit gebundenem Hallenkran und Kranfahrer. Der Prozeß läuft diskontinuierlich ab, weil nach dem Abbrennen des eingeführten Holzes neues Stämme bereitgestellt werden müssen.
Der Teil des Holzes, der nicht in das Kupferbad eintaucht, verbrennt außerhalb der Schmelze bzw. des Flammofens und senkt den Gesamtwirkungsgrad zusätzlich auf insgesamt ca. 35 %. Infolge der Längenabmessung der Polstangen ist ferner nicht völlig zu vermeiden, daß Abgase in die Ofenhalle emittiert werden. Die hohe Wärmeentwicklung am Arbeitstor belastet die dort tätigen Mitarbeiter sehr (Kranfahrer, 1. und 2. Raffinierer).
In the refining process for the production of anode copper, the last process step before casting is a reduction in the molten copper bath. The technical term for this process stage is Poland. The reducing agent used (various feedstocks) primarily has the task of reducing the oxygen content to a certain final size and expelling sulfur dioxide in the copper bath. The technology currently used provides for the use of hardwood trunks that are pressed into the liquid copper bath using a crane. The very intensive reactions of the wood with the melt that occur bring about a reduction in the oxygen component and - if present - the sulfur dioxide component. It is always of the utmost importance that the most important, harmful additives have been slagged before the reduction process begins and that the surface of the bath has been removed cleanly. Otherwise, the metal oxides in the slag that float on the copper bath are reduced to metals, appear as metal impurities in the anode copper, and sometimes interfere with further processing by wet metallurgy. For the entire reduction process of 3 - 4 hours, approx. 7 - 8 fm trunks with bound indoor crane and crane driver are required. The process is discontinuous because new logs have to be made available after the imported wood has burned down.
The part of the wood that is not immersed in the copper bath burns outside the melt or the flame furnace and further reduces the overall efficiency to a total of approx. 35%. As a result of the length dimension of the pole rods, it is also impossible to completely avoid that exhaust gases are emitted into the furnace hall. The high level of heat at the work gate puts a great strain on the employees working there (crane operators, 1st and 2nd refiners).

Einsatz von Wasserstoff zum PolenUse of hydrogen for poling

Der Polprozeß ist bekanntermaßen schon mit verschiedensten Reduktionsmitteln durchgeführt worden. Neben der ursprünglichen Methode mit Holzstämmen wurde z.B. in den 80-er Jahren Erdöl der Sorte HT-B unter 2 % Schwefel-Gehalt zur Anodenerzeugung verwendet. Fast gleichzeitig wurden Versuche gefahren, mit CH4 die Reduktionsphase zu gestalten. Das erstgenannte Ölen brachte jedoch große Umweltprobleme mit sich, wenn der anfallende Kohlenstoff im Abgas keine Nachbehandlung und Filterung erfuhr.As is known, the pole process has already been carried out with a wide variety of reducing agents. In addition to the original method with logs, crude oil of the HT-B type with a sulfur content of less than 2% was used for anode production in the 1980s. Attempts were made almost simultaneously to design the reduction phase with CH 4 . The first-mentioned oiling, however, posed major environmental problems if the resulting carbon in the exhaust gas did not undergo any aftertreatment and filtering.

Das Polen mit CH4 im Anodenbetrieb war und ist problematisch, weil eine sehr wichtige Voraussetzung, die hohe Starttemperatur des oxidierten Anodenkupfers, nur mit großem Aufwand erreichbar ist.
Jedoch konnte insbesondere bei der Umschmelzarbeit zur Herstellung von Drahtbarren das Erdgaspolen häufig zumindest als Teilprozeß eingeführt werden.
Dadurch, daß das Vorlaufmaterial Kathodenqualität besaß, wurden auch ohne große energetische Verluste die Temperaturen von ca. 1.250°C erreicht, welche dann ein Erdgaspolen mit zwei Lanzen wirtschaftlich zuließen. Die technologische Bedingungen sahen begründet vor, bei einem Sauerstoffgehalt von etwa 800 -1.000 ppm, den Polprozeß mit Holzstämmen bis zum Ende weiterzuführen, weil die O2-Entfernung bei diesen Gehalten schnell vor sich geht und die Probenahme sowie O2-Bestimmungen nicht miteinander kumulierten.
Polishing with CH 4 in anode operation was and is problematic because a very important requirement, the high starting temperature of the oxidized anode copper, can only be achieved with great effort.
However, natural gas poling could often be introduced at least as a partial process, particularly in the remelting work for the production of wire bars.
Because the leading material was of cathode quality, the temperatures of approx. 1,250 ° C were reached even without major energy losses, which then allowed natural gas poling with two lances economically. The technological conditions provided, with an oxygen content of approximately 800-1,000 ppm, to continue the pole process with logs until the end, because the O 2 removal at these contents is quick and the sampling and O 2 determinations did not cumulate ,

Da in den genannten Bespielen das Reduktionsmittel nicht unmittelbar mit dem Sauerstoff im Kupfer reagieren kann, muß zunächst eine Aufspaltung in reaktionsfähige Bestandteile (CO/H2) erfolgen, die allerdings nur mit Energiezuführung zu erreichen ist. Deshalb gingen die Überlegungen dahin, ein Gas als Reduktionsstoff einzusetzen, welches schon Reduktionsmittel ist und dem Prozeß durch seine "Verbrennung" Energie zuführt. Daher wurde der Einsatz von Wasserstoff für diesen Zweck bereits vorgeschlagen.Since in the examples mentioned the reducing agent cannot react directly with the oxygen in the copper, it must first be broken down into reactive components (CO / H 2 ), which can, however, only be achieved by supplying energy. Therefore, the considerations were made to use a gas as a reducing agent, which is already a reducing agent and supplies the process with energy through its "combustion". The use of hydrogen for this purpose has therefore already been proposed.

Beispiel für Wasserstoff-PolungExample of hydrogen polarity

Im Flammofen eines Anodenbetriebes einer ehemaligen Kupferhütte wurde eine Wasserstoff-Polung durchgeführt. Der Flammofen ist stationär; die Zustellung besteht aus CM-Material innen sowie aus Schamott außen und diese ist im Herdbereich ab der 2. Schicht nach unten angeordnet. Der Ofenabstich befindet sich stirnseitig gegenüber der beiden festinstallierten Erdgas/Sauerstoffbrenner. Das Abgas verläßt den Ofenraum über ein unterirdisch geführtes Kanalsystem zum Ofenfilter sowie durch das Arbeitstor über das System des Nebenhaubenfilters. Der Ofen wird über zwei Gewölbe-Öffnungen kalt beschickt und besitzt ein Fassungsvermögen von ca. 155 t Gesamteinsatz bei einem Anodenausbringen von etwa 135- 140 t pro Charge.
Weitere Ofendaten:

Chargenzeit =
28 - 30 Stunden
Erdgasverbrauch =
105 m3/t An.
O2-Verbrauch =
185 m3/t An.
Schlackenabfall =
10 % v. Vorlf.
Anodenkupfer =
99,2 % Cu
Kupferbadoberfläche =
ca. 24 - 26 m2
Hydrogen polarization was carried out in the flame furnace of an anode plant in a former copper smelter. The flame furnace is stationary; the infeed consists of CM material on the inside and fireclay on the outside and is arranged in the stove area from the 2nd layer downwards. The furnace racking is located on the front opposite the two permanently installed natural gas / oxygen burners. The exhaust gas leaves the furnace space via an underground duct system to the furnace filter and through the work gate via the system of the auxiliary hood filter. The furnace is fed cold through two vault openings and has a total capacity of approx. 155 t with an anode output of approx. 135-140 t per batch.
Further furnace data:
Batch time =
28-30 hours
Natural gas consumption =
105 m 3 / t an.
O2 consumption =
185 m 3 / t an.
Slag waste logo CNRS logo INIST
10% of Vorlf.
Anode copper =
99.2% Cu
Copper bath surface
approx. 24 - 26 m 2

Eindüsvorrichtung bzw. Pollanze für die H2-Zugabe: Es wurde Gasrohr 3/4 " als Außenmantel benutzt in das ein ca. 3/8" Rohr eingeschoben wurde. Da der Gasstrom durch das innere Rohr fließen sollte wurden am Kopfstück mit Gewindeausführung beide Gasrohre verschweißt. Die Rohrlänge der Pollanze betrug 3 m. Der unter Teil erfuhr einen Thermoschutz aus Kunststoff-Gewebe in Verbund mit Schamottmörtel und Natronwasserglas. Aus beiden Komponenten wurde in breiiges Gemisch erzeugt und über eine Spindel mit Rollensitz für die Aufnahme des Gewebes gleichmäßig, spiralenförmig über das Außenrohr gezogen. In einer Länge von ca. 1,5 m wurde die Lanze am unteren Ende damit überzogen.Injection device or pole for H 2 addition: 3/4 "gas pipe was used as the outer jacket, into which an approx. 3/8" pipe was inserted. Since the gas flow should flow through the inner pipe, both gas pipes were welded to the threaded head piece. The pipe length of the pollanze was 3 m. The lower part was thermally protected from plastic fabric combined with fireclay mortar and soda water glass. A pulpy mixture was produced from both components and pulled evenly, spirally over the outer tube via a spindle with a roller seat for the absorption of the tissue. The lance was covered at the lower end with a length of approx. 1.5 m.

Die Gesamtausführung einer derartigen Pollanze erfüllte damit folgende Faktoren:

  • Hohe Standzeit durch mechanische Stabilität (Doppelrohr) und Feuerfestschutz durch das Aufbringen der Isolation in Selbstherstellung.
  • Dichte Verbindung durch Verschraubung am Lanzenende mit einem flexiblen Metallschlauch mit Kugelhahn.
  • Gute Ausströmgeschwindigkeit am Übergang mit Lanze zu Flüssigkupfer bei einem konstant eingestellten Druck.
  • Einfache Herstellung; unkomplizierte Handhabung beim Wechsel und während des Polprozesses; geringe Fertigungskosten.
The overall design of such a pollanze thus met the following factors:
  • Long service life due to mechanical stability (double pipe) and fire protection through the application of insulation in self-production.
  • Tight connection by screwing at the end of the lance with a flexible metal hose with ball valve.
  • Good outflow speed at the transition from lance to liquid copper at a constant pressure.
  • Easy manufacture; uncomplicated handling when changing and during the pole process; low manufacturing costs.

Ablauf:

  • Einleitung des Polvorgangs: Vor dem Polvorgang wird das Leitungssystem mit Stickstoff gespült: Spüldauer 2 min.
  • Polvorgang mit Wasserstoff: Polen unter Wasserstoff-Eintrag über die beschriebene, in die Cu-Schmelze eintauchende Pollanze oder auch mehrere Pollanzen.
  • Abschluß-Stickstoff-Spülung.
Procedure:
  • Initiation of the pole process: Before the pole process, the pipe system is flushed with nitrogen: flushing time 2 min.
  • Pole process with hydrogen: Poles with hydrogen entry via the described pole lance immersed in the Cu melt or also several pole lances.
  • Close-nitrogen purge.

Die Anwendung von Wasserstoffgas zur Desoxidation ergibt jedoch folgende Nachteile:

  • die Pollanzen unterliegen einem relativ hohen Verschleiß;
  • insbesondere gegen Ende der Desoxidationsprozesses langer Zeitbedarf bis Desoxidationsziel erreicht ist.
However, using hydrogen gas for deoxidation has the following disadvantages:
  • the pollanzes are subject to relatively high wear;
  • especially towards the end of the deoxidation process, it takes a long time until the deoxidation target is reached.

Aus der GB-A-22 25 024 ist ein gattungsgemäßes Verfahren zum Polen von Kupfer bekannt, bei dem als Reduktions- bzw. Desoxidationgas ein Wasserstoff/Inertgas-Gemisch mit einem Wasserstoffgehalt zwischen 0.5 und 50 Vol-% zur Anwendung kommt. Ferner offenbart die US-A-3 844 772 ein weiteres gattungsgemäßes Verfahren zum Polen von Kupfer, bei dem als Desoxidationgas gespaltenes Ammoniak verwendet wird.GB-A-22 25 024 discloses a generic method for polishing copper, in which a hydrogen / inert gas mixture with a Hydrogen content between 0.5 and 50 vol% is used. Furthermore, the US-A-3 844 772 another generic method for polishing copper, in which ammonia cracked as deoxidation gas is used.

Der vorliegenden Erfindung liegt die Aufgabenstellung zugrunde, ein einfach durchführbares, funktionsfähiges und auch effektives Desoxidationsverfahren auf der Basis gasförmiger Behandlungsmittel anzugeben.The object of the present invention is an easy to carry out Functional and effective deoxidation process based on gaseous Specify treatment agents.

Erfindungsgemäß wird dies dadurch gelöst, dass als Reduktionsmittel ein Gemisch aus Wasserstoff und Stickstoff in einem Volumenverhältnis von 60 zu 40 bis 72 zu 28 eingesetzt wird und dass im Ofenraum eine desoxidierende Atmosphäre durch entsprechende Einstellung der Ofenbeheizung, d. h. der Heizbrenner, auf eine Lufverhältniszahl von 0,5 bis 0,8 eingehalten wird. Damit ergibt sich ein hochwirksames, schnelles und gut praktikables Verfahren zur Desoxidation und Raffination von Kupfer.According to the invention, this is achieved in that a mixture of as reducing agent Hydrogen and nitrogen are used in a volume ratio of 60 to 40 to 72 to 28 and that in the furnace room a deoxidizing atmosphere by appropriate Setting the stove heating, d. H. the heating burner, to an air ratio of 0.5 to 0.8 is observed. This results in a highly effective, fast and well practicable Process for deoxidizing and refining copper.

Im folgenden wird ein Ausführungsbeispiel der Erfindung beschrieben:
Es wird ein Polvorgang mit einem Ofen und mit einer Eindüsvorrichtung wie oben beschrieben vorgestellt. Vor dem Polvorgang wird das Leitungssystem mit Stickstoff gespült. Hierzu erfolgen folgende Bedienschritte:

  • Eintauchen der Eindüsungslanze in die Cu-Schmelze,
  • Schließen der Hauptabsperrung für Wasserstoff und der Absperrung sowie der Hauptabsperrung für Stickstoff aus dem Tank,
  • Öffnen de Strangabsperrung für Wasserstoff,
  • Öffnen des angeschlossenen Stickstoff-Bündels,
  • Öffnen der Hauptabsperrung für Stickstoff - Spüldauer 2 min.
Zum Polen erfolgt:
  • Schließen des angeschlossenen Stickstoff-Bündels,
  • Schließen der Hauptabsperrung für Stickstoff,
  • Öffnen der Hauptabsperrung für Wasserstoff sowie einer Absperrung sowie der Hauptabsperrung für Stickstoff aus dem Tank,
  • Polen unter Wasserstoff-Stickstoff-Eintrag.
An exemplary embodiment of the invention is described below:
A poling process with an oven and with an injection device as described above is presented. Before the pole process, the piping system is flushed with nitrogen. The following operating steps are carried out:
  • Immersing the injection lance in the Cu melt,
  • Closing the main barrier for hydrogen and the barrier as well as the main barrier for nitrogen from the tank,
  • Opening the line shut-off for hydrogen,
  • Opening the connected nitrogen bundle,
  • Opening the main shut-off for nitrogen purging time 2 min.
For Poland:
  • Closing the connected nitrogen bundle,
  • Closing the main nitrogen barrier,
  • Opening the main barrier for hydrogen and a barrier as well as the main barrier for nitrogen from the tank,
  • Poland under hydrogen nitrogen entry.

Beendigung des Polvorgangs:End of the pole process:

Zur Beendigung des Polvorgangs wird das Leistungssystem erneut mit Stickstoff gespült. Bedienschritte:

  • Die Eindüsenlanzen verbleiben in der Cu-Schmelze,
  • Schließen de Hauptabsperrung für Wasserstoff,
  • Öffnen des angeschlossenen Stickstoff-Bündels,
  • Öffnen der Hauptabsperrung für Stickstoff,
  • Spüldauer 2 min.,
  • Schließen des angeschlossenen Stickstoff-Bündels,
  • Schließen der Hauptabsperrung für Stickstoff,
  • Schließen der Strangabsperrung für Wasserstoff und der Absperrung sowie der Hauptabsperrung für Stickstoff aus dem Tank,
  • Herausziehen der Eindüsungslanzen aus der Cu-Schmelze,
  • Druckentlastung des Leitungssystems durch kurzzeitiges Öffnen einer Strangabsperrung für Wasserstoff.
To end the pole process, the power system is flushed again with nitrogen. Operating steps:
  • The nozzle lances remain in the Cu melt,
  • Closing the main barrier to hydrogen,
  • Opening the connected nitrogen bundle,
  • Opening the main nitrogen barrier,
  • Rinsing time 2 min.,
  • Closing the connected nitrogen bundle,
  • Closing the main nitrogen barrier,
  • Closing the string shut-off for hydrogen and the shut-off as well as the main shut-off for nitrogen from the tank,
  • Pulling the injection lances out of the Cu melt,
  • Relief of pressure in the pipeline system by briefly opening a line shut-off for hydrogen.

Ergebnis der geschilderten H2/N2-Polung:Result of the described H 2 / N 2 polarity:

Der Verschleiß der Pollanzen ist gegenüber der Verfahrensweise mit reinem Wasserstoff deutlich reduziert. Die Pollanzen konnten für bis zu 3 Chargen wiederverwendet werden.
Der Volumenanteil von H2 im H2/N2-Gemisch liegt besonders vorteilhaft im Bereich 60 bis 72 Vol.-%.
Durchschnittliche H2/N2 Verbräuche bezogen auf den Versuchszeitraum:

  • H2 = 8,474 m3 N / t Anoden
  • N2 = 4,45 m3 N / t Anoden.
The wear of the pollanzas is significantly reduced compared to the procedure with pure hydrogen. The pollanzas could be reused for up to 3 batches.
The volume fraction of H 2 in the H 2 / N 2 mixture is particularly advantageously in the range from 60 to 72% by volume.
Average H 2 / N 2 consumption based on the test period:
  • H 2 = 8.474 m 3 N / t anodes
  • N 2 = 4.45 m 3 N / t anodes.

Die Durchflußmenge je Lanze (H2/N2-Gemisch) bewegen sich vorteilhaft im Bereich von 200 - 350 m3 N/h und Lanze. Dabei wurden mit Einblasdrücken von 10 bar vor Lanze und einem Lanzenaustrittsquerschnitt von 1,2265 * 10-4 m2 (di = 12,5 mm) günstige Ergebnisse erreicht. The flow rate per lance (H 2 / N 2 mixture) is advantageously in the range from 200 to 350 m 3 N / h and lance. Favorable results were achieved with blowing pressures of 10 bar in front of the lance and a lance outlet cross section of 1.2265 * 10 -4 m 2 (d i = 12.5 mm).

Zur Ermittlung der optimalen Zustellung der Pollanzen konnte - bezogen auf die vorhandenen Verhältnisse - festgestellt werden, daß mit der Erhöhung des Versorgungsdruckes und mit der damit verbundenen geringeren Austrittsquerschnitten d = 10 mm und steigender Austrittsgeschwindigkeit über 12 bar hinaus keine Intensivierung der Reduktion erreicht werden konnte. Nachteilig bei diesen Versuchen mit Einblasdrücken bis 15 bar war der höhere Verschleiß der Pollanzen. Die Einsatzdauer pro Lanze lag maximal nur bei einer Charge.
Mit der gewählten Lanzenkonstruktion sind Austrittsgeschwindigkeiten in Höhe der Schallgeschwindigkeit erreicht worden. Die Überdrücke am Austrittsquerschnitt werden auf etwa 2 - 3 bar geschätzt.
Bei der Verwendung von Düsen ergeben sich, bezogen auf den Vordruck von 10 bar, höhere Staudrücke am Austritt der Lanzen etwa 5 - 6 bar. Dadurch werden auch höhere Austrittsgeschwindigkeiten erreicht, die unter Umständen noch zu einer weiteren Intensivierung der Reduktion führen können.
In order to determine the optimal delivery of the pollanzas, it could be determined - based on the existing conditions - that with the increase in the supply pressure and the associated smaller outlet cross-sections d = 10 mm and increasing outlet speed beyond 12 bar, the reduction could not be intensified. A disadvantage of these tests with blowing pressures up to 15 bar was the higher wear of the pole ends. The maximum period of use per lance was only one batch.
With the chosen lance construction, exit speeds equal to the speed of sound have been achieved. The overpressures at the outlet cross section are estimated to be around 2-3 bar.
When using nozzles, based on the pre-pressure of 10 bar, higher dynamic pressures at the outlet of the lances result in about 5 - 6 bar. As a result, higher exit speeds are also achieved, which under certain circumstances can lead to a further intensification of the reduction.

Energetische EffizienzEnergetic efficiency

Von den bisher bekannten Verfahren zur Reduktion von Kupferschmelzen mit dem Einsatz von

  • Holz (sog. Polstangen)
  • Heizöl, L u. M (Steinkohleheizöl) und
  • Erdgas, H
geht der Trend bei der Herstellung von Kupferanoden hin zum Gaspolen mit der Verwendung von Erdgas der Gruppe H.
Obwohl für einen Vergleich des Nutzungsgrades die jeweilige Ofentype, das Chargengewicht und die eingesetzten kupferhaltigen Vorlaufmaterialien von Einfluß sind, kann doch - bezogen auf einen Sauerstoffgehalt im Bad von ≤ 1 % - eine Vergleichbarkeit zu den in der entsprechenden Fachliteratur für angegebene spezifische Verbräuche bei der Herstellung von Kupfer-Anoden zur Bewertung des Nutzungsgrades angenommen werden.
Der Produktionslauf zur Herstellung der Kupferanoden im Chargenregime mit der Untergliederung der Prozeßstufen ist:
  • Einsetzen,
  • Einschmelzen,
  • Oxidieren,
  • Polen,
  • Vergießen und
  • Vorbereiten.
Of the previously known methods for reducing copper melts with the use of
  • Wood (so-called pole poles)
  • Heating oil, L u. M (hard coal heating oil) and
  • Natural gas, H
the trend in the production of copper anodes is towards gas poling with the use of natural gas from group H.
Although the respective type of furnace, the batch weight and the copper-containing pre-run materials used have an influence on a comparison of the degree of utilization, a comparison with the specific consumption stated in the relevant technical literature for the specific consumption in the bath can - based on an oxygen content in the bath of ≤ 1% of copper anodes to assess the degree of utilization.
The production run for the production of copper anodes in the batch regime with the breakdown of the process stages is:
  • Deploy,
  • meltdown,
  • Oxidize,
  • Poland,
  • Shedding and
  • To prepare.

Bezogen auf das Chargenregime werden für den Polvorgang im Mittel etwa 10 % der Zeitdauer benötigt. Zur Bewertung des Nutzungsgrades kann in erster Näherung die durchschnittlich zu reduzierende Sauerstoffmenge mit 9 kg / t Anoden zu Grunde gelegt werden. Dies entspricht bei einem Nutzungsgrad = 1.Based on the batch regime, an average of around 10% the time needed. To evaluate the degree of utilization can in a first approximation the average oxygen quantity to be reduced with 9 kg / t anodes be placed. This corresponds to a degree of utilization = 1.

Es gilt: Cu2O + H2 = 2 Cu + H2O H2 + O2 / 2= 1 H2O H2-Bedarf pro t: 9 3222,4 * 0,5 = 12,6 m3 N/t Anoden The following applies: Cu 2 O + H 2 = 2 Cu + H 2 O H 2 + O 2/2 = 1 H 2 O H 2 -Required per t: 9 32 22.4 * 0.5 = 12.6 m 3 N / t anodes

Zusammenstellung der Ist-Polgas-Verbräuche sowie der theoretisch erforderlichen Wasserstoffverbrauchsmengen: Chargennummer Chargengewicht H2-Ist verbrauch m3 N/Charge N2-Ist Verbrauch M3 N/Charge H2/N2 Verhältnis Theoretischer H2-Verbrauch m3 N/Charge 39 133,3 1.003 900 40 134,4 1.240 300 41 145,7 1.028 400 71,98/28,02 1.285 44 139,3 1.058 600 63,8/36,2 1.073 45 140,5 1.086 650 62,55/37,45 1.261 46 129,8 1.086 250 - - (Fertigpolen mit Holz) 47 140,3 1.396 750 65,05/34,95 1.604 50 139,4 1.168 450 72,19/27,81 1.550 51 134,7 1.304 750 63,48/36,52 1.371 52 126 1.040 650 61,54/38,46 1.177 55 135,7 1.222 600 67/33 1.581 56 144,8 912 600 60,32/39,68 1.521 57 144,5 1.049 650 61,74/38,26 987 58 139 1.360 650 66,77/33,23 1.332 61 139 1.587 1.000 61,34/38,66 1.230 Compilation of the actual Polgas consumption and the theoretically required hydrogen consumption quantities: Batch number batch weight H 2 -is consumption m 3 N / batch N 2 -Is consumption M 3 N / batch H 2 / N 2 ratio Theoretical H 2 consumption m 3 N / batch 39 133.3 1003 900 40 134.4 1240 300 41 145.7 1028 400 71.98 / 28.02 1285 44 139.3 1058 600 63.8 / 36.2 1073 45 140.5 1086 650 62.55 / 37.45 1261 46 129.8 1086 250 - - (ready-made poles with wood) 47 140.3 1396 750 65.05 / 34.95 1604 50 139.4 1168 450 72.19 / 27.81 1550 51 134.7 1304 750 63.48 / 36.52 1371 52 126 1040 650 61.54 / 38.46 1177 55 135.7 1222 600 67/33 1581 56 144.8 912 600 60.32 / 39.68 1521 57 144.5 1049 650 61.74 / 38.26 987 58 139 1360 650 66.77 / 33.23 1332 61 139 1587 1000 61.34 / 38.66 1230

Aus dem Verhältnis der Wassertoffmengen in m3 N / Charge theoretischer Verbrauch zu Ist-Verbrauch resultieren Nutzungsgrade von 077 bis größer 1(!). Aufgrund dieser Tatsache ist wahrscheinlich, daß durch die Aufwirbelung des Kupferbades im Eintauchbereich der Pollanzen durch die Flammengase der Erdgas/Sauerstoff-Feuerung eine weitere, nennenswerte Reduktion erfolgt.
In den Beispielfällen wurde zur Ofenbeheizung eine Luftverhältniszahl von λ ≥ 0,6 eingehalten. Im Vergleich zum Polen mit Erdgas wird bei der Verwendung von H2/N2-Gemisch > 60/40 Vol.% und den geschilderten Atmosphärenvemältnissen der energetische Nutzungsgrad um das 2-fache erhöht.
The ratio of the amount of hydrogen in m 3 N / batch of theoretical consumption to actual consumption results in utilization rates from 077 to greater than 1 (!). Due to this fact, it is likely that the swirling up of the copper bath in the immersion area of the pollances by the flame gases of the natural gas / oxygen furnace will result in a further, noteworthy reduction .
In the example cases, an air ratio of λ ≥ 0.6 was maintained for furnace heating. Compared to Poland with natural gas, the use of H 2 / N 2 mixture> 60/40 vol.% And the described atmospheric ratios increases the degree of energy efficiency by a factor of two.

Durch den Einsatz von Wasserstoff und Stickstoff in den angegebenen Mengenverhältnissen und deren Einleitung - vorteilhafter Weise in einem Eintauchwinkel von größer 30 bis 90° - mit einem definierten Volumenstrom und mit einem derfinierten Versorgungsdruck sowie durch die Einhaltung einer reduzierenden Ofenatmosphäre ergeben sich besonders vorteilhafte Bedingungen beim Polen. Besonders gute Ergebnisse wurden insbesondere mit einer Befeuerung des Raffinierofens mit Erdgas/Sauerstoff erzielt.
Durch die Aufwirbelung des Kupferbades bei den Pollanzen durch das Reduktionsmittel einerseits und durch die Flammengase andererseits entstehen offensichtlich ausgesprochen günstige Reduktionsbedingungen mit nennenswerter Reduktion auch über dem Schmelzebad, wo 1300 bis 1400 °C herrschen. Die Luftverhältniszahl der Heizbrenner beträgt hierbei zwischen 0,5 und 0, 8, vorzugsweise liegt sich im Bereich von 0,6 bis 0,7.
The use of hydrogen and nitrogen in the specified proportions and their introduction - advantageously at an immersion angle of greater than 30 to 90 ° - with a defined volume flow and with a defined supply pressure, as well as by maintaining a reducing furnace atmosphere, results in particularly advantageous conditions when poling , Particularly good results were achieved in particular by firing the refinery with natural gas / oxygen.
The swirling up of the copper bath at the pollanzas by the reducing agent on the one hand and by the flame gases on the other hand obviously creates extremely favorable reduction conditions with a noteworthy reduction also above the melt bath, where the temperature is between 1300 and 1400 ° C. The air ratio of the heating burners is between 0.5 and 0.8, preferably in the range from 0.6 to 0.7.

Claims (4)

  1. Process for poling (deoxidizing) copper in the molten state, in which a gaseous reducing agent is passed into the melt, characterized in that the reducing agent used is a mixture of hydrogen and nitrogen in a volumetric ratio of between 60 to 40 and 72 to 28, and in that a deoxidizing atmosphere is maintained in the furnace chamber by suitably setting the furnace heating, i.e. the heating burners, to a numerical air ratio of 0.5 to 0.8.
  2. Process according to Claim 1, characterized in that the gaseous reducing agent is passed into and onto the melt, and thereby at least some of the reducing atmosphere is produced above the melt.
  3. Method according to Claim 1 or 2, characterized in that, in the case of tubular lances, the reducing gas is introduced into the melt at admission pressures of 5 to 15 bar, preferably 8 to 12 bar.
  4. Process according to Claim 3, characterized in that, in the case of tubular lances, the quantitative throughput per lance (H2/N2 mixture) is set in the range from 200 to 350 m3/h (s.t.p.), with lance outlet cross sections of 1 to 1.5 * 10-4 m2 (= cm2) being maintained.
EP99119000A 1998-09-29 1999-09-27 Deoxidation of copper melt by gas poling with hydrogen-nitrogen mixture Expired - Lifetime EP0992597B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19844667A DE19844667A1 (en) 1998-09-29 1998-09-29 Process for polishing copper
DE19844667 1998-09-29

Publications (2)

Publication Number Publication Date
EP0992597A1 EP0992597A1 (en) 2000-04-12
EP0992597B1 true EP0992597B1 (en) 2002-07-24

Family

ID=7882666

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99119000A Expired - Lifetime EP0992597B1 (en) 1998-09-29 1999-09-27 Deoxidation of copper melt by gas poling with hydrogen-nitrogen mixture

Country Status (4)

Country Link
EP (1) EP0992597B1 (en)
AT (1) ATE221135T1 (en)
DE (2) DE19844667A1 (en)
ES (1) ES2180245T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030082B2 (en) 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10007441A1 (en) * 2000-02-18 2001-08-23 Linde Gas Ag Poling copper in the molten state comprises feeding a gas mixture of hydrogen, nitrogen and carbon monoxide as gaseous deoxidizing agent into the melt
DE10035593A1 (en) * 2000-07-21 2002-01-31 Norddeutsche Affinerie Reducing oxygen content of copper melt comprises melting copper initially in shaft furnace, and subsequently feeding it to treatment furnace via transporting channel
CN100462455C (en) * 2007-08-24 2009-02-18 云南铜业压铸科技有限公司 Method for smelting pure copper or high-copper alloy raw material
DE102022122729A1 (en) 2022-09-07 2024-03-07 Sms Group Gmbh Device for copper production with improved CO2 balance

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1919850B2 (en) * 1969-04-18 1971-08-19 PROCESS FOR DEOXIDATION OF MOLTEN METALS BY USING REFORMING GAS AND DEVICE FOR CARRYING OUT THE PROCESS
US3529956A (en) * 1969-06-03 1970-09-22 Anaconda Co Refining copper
US3844772A (en) * 1973-02-28 1974-10-29 Du Pont Deoxidation of copper
US3987224A (en) * 1975-06-02 1976-10-19 General Electric Company Oxygen control in continuous metal casting system
BE839754A (en) * 1976-03-18 1976-09-20 METHOD AND DEVICE FOR REFINING A METAL BATH
JP2689540B2 (en) * 1988-11-21 1997-12-10 三菱マテリアル株式会社 Method and apparatus for producing low oxygen content copper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030082B2 (en) 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials

Also Published As

Publication number Publication date
DE19844667A1 (en) 2000-03-30
ATE221135T1 (en) 2002-08-15
ES2180245T3 (en) 2003-02-01
EP0992597A1 (en) 2000-04-12
DE59902099D1 (en) 2002-08-29

Similar Documents

Publication Publication Date Title
DE60031206T2 (en) Method for starting a direct melting process
EP0992597B1 (en) Deoxidation of copper melt by gas poling with hydrogen-nitrogen mixture
DE3423247C2 (en) Method and device for producing steel from scrap
EP2986743B1 (en) Method for the production of ferro-alloys with low carbon content in a vacuum converter
DE2405737A1 (en) PROCESS FOR SELECTIVE DECARBONING OF STEEL ALLOYS
DE69619866T2 (en) DEVICE AND METHOD FOR TREATING STEEL MELT IN THE PRODUCTION OF ULTRA-LOW-COALED STEEL
DE102005005832B4 (en) Recuperative burner and method for heating an industrial furnace using the burner
DE1907543B2 (en) PROCESS AND DEVICE FOR CONTINUOUS REFINING OF METALS
EP0122910A1 (en) Method of operating a metallurgical plant
DE69428347T2 (en) METHOD FOR FRESHING NON-FERROUS METAL, LIKE COPPER OR NICKEL, THROUGH OXYGEN ENLARGEMENT
EP0383184A1 (en) Method of decreasing the fume emission and the free entry of air in the tap hole region of a blast furnace
DE2714825A1 (en) METHOD AND DEVICE FOR TREATMENT OF FRESH EXHAUST GAS
CH642399A5 (en) METHOD AND DEVICE FOR REGULATING THE PARTS OF THE AIR COMPONENTS OF OXYGEN, NITROGEN, CARBON DIOXIDE AND WATER CONTENT IN REACTION PROCESSES IN THE METALLURGICAL AREA.
EP1349815B1 (en) Device and method for melting glass
DE639900C (en) Process for reducing iron ores in a rotary kiln
DE338121C (en) Process for the production of steel in electric ovens
DE102010029648A1 (en) Method for melting e.g. aluminum scrap or glass, for heat treatment of steel in hearth furnace, involves operating burners of furnace using radiant flame, and supplying oxygen to combustion air flow to enrich air on pressure side of blower
DE2711369A1 (en) Refining a metal esp. copper - with reducing gas and oxygen mixt. eliminates need for poling
AT212350B (en) Method and device for cleaning steel baths with the aid of gases
AT216033B (en) Blowing lance for a hearth furnace, especially Siemens-Martin furnace
DE10059440A1 (en) Combustion process and pulse flow controlled fuel / oxygen lance
DE19720620A1 (en) Heat treatment plant with treatment chamber
DE1508013A1 (en) Procedure for operating blast furnaces
DE2404288A1 (en) PROCESS FOR RECOVERY OF REACTION GASES FROM BOTTOM-BUBBLED BY MEANS OF PURE OXYGEN AND HYDROCARBONS COOLED STEEL CONVERTERS AND DEVICE
WO2024165394A1 (en) Process for the direct reduction of iron ore

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000222

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE TECHNISCHE GASE GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GAS AG

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20001116

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020724

REF Corresponds to:

Ref document number: 221135

Country of ref document: AT

Date of ref document: 20020815

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59902099

Country of ref document: DE

Date of ref document: 20020829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021024

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021024

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2180245

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 0992597E

Country of ref document: IE

BERE Be: lapsed

Owner name: *LINDE A.G.

Effective date: 20020930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050904

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060908

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060913

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20060914

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060922

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060927

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061023

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060906

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070928

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070927

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070927