EP0992067A1 - Stromrichter sowie seine verwendung - Google Patents

Stromrichter sowie seine verwendung

Info

Publication number
EP0992067A1
EP0992067A1 EP98934829A EP98934829A EP0992067A1 EP 0992067 A1 EP0992067 A1 EP 0992067A1 EP 98934829 A EP98934829 A EP 98934829A EP 98934829 A EP98934829 A EP 98934829A EP 0992067 A1 EP0992067 A1 EP 0992067A1
Authority
EP
European Patent Office
Prior art keywords
switching element
converter
diode
active switching
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98934829A
Other languages
English (en)
French (fr)
Inventor
Eric Baudelot
Manfred Bruckmann
Heinz Mitlehner
Dietrich Stephani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SiCED Electronics Development GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0992067A1 publication Critical patent/EP0992067A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • H01L29/7392Gated diode structures with PN junction gate, e.g. field controlled thyristors (FCTh), static induction thyristors (SITh)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Definitions

  • the invention relates to a converter comprising at least one semiconductor component with a substrate on which an active switching element is built.
  • the invention also relates to the use of such a converter.
  • the invention relates in particular to a converter comprising a semiconductor component, the substrate of which consists of a polytype of silicon carbide.
  • MOSFET insulated gate electrode
  • IGBT insulated gate electrode
  • thyristor thyristor separated from the associated substrate by an oxide layer
  • a converter is an electronic circuit which converts alternating current with a predetermined frequency into alternating current with a different frequency, which is accomplished with appropriately switched semiconductor components.
  • a converter can in principle be constructed with practically all known active semiconductor components, with active semiconductor components such as MOSFETs recently enjoying particular interest.
  • Any semiconductor component that can be used in this regard can be said to generally NEN brings specific advantages and specific disadvantages, under consideration of which the relevant specialist has to choose the semiconductor component to be used in the individual case.
  • a converter in each case consists of a rectifier, which first converts an alternating current to be supplied from a public network into direct current, and an inverter, which converts the direct current again into one
  • Alternating current with the desired and optionally adjustable frequency can be a two-phase or three-phase alternating current, depending on the desired performance.
  • the term “power converter” comprising both rectifiers and inverters, semiconductor components are required which block, regardless of the polarity of an electrical voltage present via corresponding electrodes, that is to say can prevent a flow of electrical current due to the voltage.
  • the used MOSFETs are not suitable as such symmetrically blocking semiconductor components. This is because they can only block when the electrical ones above the corresponding electrodes
  • Symmetrically blocking components are available on the market in the form of symmetrically blocking classic thyristors and switch-off thyristors. However, these are generally characterized in that they have high storage charge effects which slow down their switching processes and Do not allow these components to be used if periodic switching operations with frequencies of significantly more than 1 kHz have to be carried out.
  • a converter comprising at least one semiconductor component with a substrate, on which a series circuit, comprising an active switching element, which can be switched to a switchable state by applying a corresponding electrical voltage, and a diode, is constructed.
  • the semiconductor component in the converter according to the invention is characterized by a monolithic structure which comprises an asymmetrically blocking active switching element and a diode.
  • the diode takes over the desired blocking if an electrical voltage applied via corresponding electrodes of the semiconductor component does not have the polarity at which the active switching element is in the switchable state.
  • the semiconductor component is thus a symmetrically blocking switch that can meet the requirements in a wide variety of converter topologies up to very high clock frequencies.
  • the semiconductor component is also characterized by relatively low forward losses and can be used in combination with a further semiconductor component connected in antiparallel for switching alternating current as with a triac, without having the disadvantages of the triac that correspond to the disadvantages of the normal thyristor described.
  • the diode in the semiconductor component is preferably a Schottky diode;
  • the Schottky diode is characterized by both an almost negligible memory effect and thus its suitability for switching operations with very high clock frequencies as well as a comparatively low forward voltage, which results in particularly low losses in the conductive state.
  • the active switching element of the semiconductor component has a symmetrical alignment along an axis, the diode being arranged axially next to the active switching element with respect to the axis.
  • the active switching element is preferably formed from a main surface in the substrate that is approximately perpendicular to the axis, and the diode extends to a counter surface of the substrate that is approximately parallel to the main surface and axially adjacent to the axis with respect to the axis.
  • the active switching element is thus characterized by a more or less "vertical" geometry oriented parallel or axially symmetrical to the axis. This is particularly the case in connection with MOSFETs of the so-called “vertical” type, which are particularly advantageous when used as Mark switch.
  • An alternative preferred embodiment of the invention is characterized in that the active switching element has a symmetrical alignment along an axis, and that the diode is arranged laterally next to the active switching element with respect to the axis and axially adjacent to the active switching element and the diode with respect to the axis Connection area is connected to the active switching element.
  • the active switching element has a symmetrical alignment along an axis
  • the diode is arranged laterally next to the active switching element with respect to the axis and axially adjacent to the active switching element and the diode with respect to the axis Connection area is connected to the active switching element.
  • An active switching element that is particularly preferred for the semiconductor component is a field effect transistor, in particular such a field effect transistor, which has a channel region oriented approximately perpendicular to an axis and a drift region lying behind the channel region along the axis, behind which the diode lies.
  • a field-effect transistor is particularly suitable for a switching application, even if the switchable state has to be blocked when a comparatively high electrical voltage is present; the entire drift area is available for the blocking function.
  • the field effect transistor can be a customary field effect transistor used for switching purposes with a gate electrode separated from the rest of the substrate by an oxide layer or a pn junction; it is also conceivable and advantageous for various applications to provide a special form of a field effect transistor, for example a field effect transistor designed as a current limiter.
  • junction field-effect transistors each having a gate electrode (JFETs) or bipolar transistors separated from the rest of the substrate by a pn junction.
  • the substrate of the semiconductor component preferably consists of a semiconductor with a breakdown field strength of more than 10 6 V / cm, in particular silicon carbide.
  • the active switching element constructed in this preferred semiconductor can be preceded by a further switching element constructed in silicon, in particular a field effect transistor.
  • This A particularly preferred embodiment allows the advantageous properties of the further active switching element constructed in conventional silicon technology to be combined with the properties of the active switching element constructed in the preferred semiconductor, which are in particular superior in terms of blocking capability.
  • the preferred semiconductor is silicon carbide, since the silicon carbide technology is still comparatively difficult due to the special properties of the silicon carbide, which, due to its extremely high breakdown field strength and its extremely high thermal conductivity and thermal stability, are nevertheless suitable for high-performance electronics - tronics is ideal.
  • the semiconductor component is preferably arranged as a switch in the converter.
  • the use of the converter according to the invention for the periodically repeated switching of an electrical voltage with a switching frequency that is above 1 kHz is specified.
  • An embodiment of the use results when the electrical voltage is an AC voltage.
  • the polarity of the electrical voltage across the semiconductor component of the converter changes constantly, the active switching element being alternately present in its switchable state and in its conductive state.
  • the active switching element can switch the electrical voltage according to a corresponding specification
  • the semiconductor component is permanently and reliably blocked by the diode.
  • FIG. 1 shows a first embodiment of a semiconductor component for the converter
  • FIG. 2 shows a second embodiment of the semiconductor component for the converter
  • FIG. 3 shows a semiconductor component which is particularly suitable for interconnection with a conventional silicon MOSFET in the converter
  • Figure 4 is a circuit diagram of such an interconnection
  • Figure 5 is a schematic of a converter in which the converter is used.
  • FIG. 1 shows an embodiment of the semiconductor component, built up on a substrate 1 and consisting of the semiconductor silicon carbide.
  • the semiconductor component consists of an active switching element 2, in this case designed as a MOSFET, and a diode 3 connected in series therewith.
  • the active switching element 2 and the diode 3 lie with respect to an axis 4, which is oriented essentially perpendicular to the substrate 1 , axially side by side.
  • the active switching element 2 is constructed starting from a main surface 5 and is essentially rotationally symmetrical to the axis 4; it is a "vertical type" MOSFET.
  • the active switching element 2 has an annular source electrode 6, formed as a region with n-doping in an annular, p-doped well, and one through an oxide layer or the like of isolated from the actual semiconductor component, disc-shaped gate electrode 7. Below the gate electrode 7 and starting from the source electrode 6, a channel region 8 is formed, the electrical conductivity of which can be varied within wide limits by applying a corresponding voltage between the source electrode 6 and the gate electrode 7 is; a current flow through the channel region 8 can be substantially completely prevented, corresponding to a "blocking state" of the active switching element 2, or a current flow can be permitted largely unhindered, corresponding to a "conductive state" of the active switching element 2.
  • the resulting switching characteristic of the active switching element 2 requires that the electrical voltage across the active switching element 2 has a certain polarity; then the active switching element 2 can be regarded as in a "switchable state". If the voltage present does not have this polarity, it can be assumed that the active switching element 2 always allows a current to flow at a certain level, depending on its specific properties and It cannot therefore serve as a barrier to undesired current flow, so it is in a "conductive state".
  • drift area 9 In the channel area 8 there is always a current flow essentially perpendicular to the axis 4; The direction of the current flow changes near the axis 4 and becomes essentially parallel to the axis 4.
  • This area of the active switching element 2 is usually referred to as “drift area” 9.
  • the drift area 9 ends at a special “gate electrode” ";
  • a diode 3 namely a Schottky diode 3 is connected to the drift region 9.
  • the drift region 9 extends into the substrate 1 and beyond.
  • a cathode layer 11, which serves as the cathode of the diode 3, has grown on the substrate 1 on a side facing away from the active switching element 2.
  • An anode metallization 12 is provided, which forms the Schottky diode 3 with the cathode layer 11. This is a unipolar component and as such is free of memory effects that can occur on a bipolar component such as a pn diode.
  • the metal of the anode metallization 12 is suitably selected.
  • the diode 3 has a lateral boundary 13 in the form of an annular, p-doped region. The diode 3 is thus clearly defined.
  • the component according to FIG. 1 is continuously vertically oriented with respect to the axis 4 and is therefore particularly compact, which is of great importance in view of the technological difficulties in handling silicon carbide.
  • a consistent vertical orientation is by no means mandatory in the present context.
  • FIG. 2 shows another embodiment of the semiconductor component, an active switching element 2 and a diode 3 again being combined on a single substrate 1.
  • the active switching element 2 is in turn designed as a MOSFET and, in terms of its structure and function, corresponds to that of the MOSFET according to FIG.
  • the diode 3 of the semiconductor component according to FIG. 2 also corresponds as such to the diode 3 of the semiconductor component according to FIG. 1, so that the corresponding explanations for the diode 3 according to FIG. 1 also apply to the diode 3 in FIG.
  • the configuration of the diode 3 as a Schottky diode is by no means mandatory; Depending on the application, it may be appropriate to provide a bipolar diode instead of a Schottky diode. Referring to FIG. 3, such a bipolar diode only required see a p-doped additional layer between the anode metallization 12 and the n-doped cathode layer 11. For the sake of clarity, a graphic representation of this simple modification has been left out.
  • the semiconductor component according to FIG. 2 is not designed to be continuously axially symmetrical with respect to the axis 4, but rather the active switching element 2, which is designed as a MOSFET of the vertical type and axially symmetrically with respect to the axis 4, and the diode 3 are located laterally with respect to the axis 4 side by side.
  • the active switching element 2 and the diode 3 are located on the same side of the substrate 1.
  • a special connection region 14 is provided for connecting the active switching element 2 to the diode 3, in this case formed in the substrate 1 itself. This connection region 14 electrical current can flow between the active switching element 2 and the diode 3. It is not excluded that the connection area 14 may be made by means of a corresponding metallization.
  • insulation 15 m in the form of a p-doped region is provided in the arrangement.
  • FIG. 3 shows a further embodiment of the semiconductor component with an active switching element 2 designed as a junction field effect transistor (JFET) and a Schottky diode 3.
  • the active switching element 2 has a multiplicity of source electrodes 6, identified by a common one Connection, and likewise a plurality of gate electrodes 7, also identified on a common connection.
  • the gate electrodes 7 are formed as p-doped zones in an n-doped environment and are therefore only isolated by pn junctions. Electric current flows through the source electrodes 6 through channels that are between the gate Electrodes 7 are too.
  • the relevant electrical properties of these channels can be changed by changing an electrical voltage which is applied between the gate electrodes 7 and the source electrodes 6; if the voltage is close to zero, each channel has a maximum size and if the active switching element is correspondingly highly conductive, if the voltage is such that the gate electrodes 7 have a sufficiently high negative potential with respect to the source electrodes 6, then the channels are completely cut off and the active switching element 2 locks.
  • the diode 3 is arranged on a side of the substrate 1 opposite the active switching element 2, again configured as a Schottky diode as explained above.
  • the semiconductor component according to FIG. 3 likewise consists of silicon carbide, a semiconductor which has high expectations for use in high-voltage,
  • FIG. 4 shows how the semiconductor component according to FIG. 3 can be combined in combination with a further switching element 16, which can be manufactured in a conventional manner from silicon.
  • the mode of operation of the circuit shown in FIG. 4 is immediately apparent to the average specialist who is experienced in this field and requires no further explanation; the circuit offers an advantageous combination of the switching properties of the switching element 16 produced in the context of a sophisticated technology in silicon technology with the comparable blocking capability and thermal stability of the switching element 2 realized in silicon carbide and the diode also realized in silicon carbide 3rd
  • FIG. 5 finally shows an application for an active switching element referred to in the present context 2, namely a converter 17.
  • a converter 17 contains two converters 18 and 19, namely a rectifier 18 which first converts alternating current, which is obtained from a public network, into direct current, and then an inverter 19, which converts the DC is converted into AC.
  • the number of phases and the frequency are largely freely selectable and can be set by appropriate design and control of the inverter 19 from a corresponding control circuit 20.
  • Such a converter 17 can be used to great advantage for supplying an electric motor, since it allows the AC power supplied to be adapted to specific requirements of the electric motor.
  • an active switching element 2 in the inverter 19 will be subjected to a more or less oscillating electrical voltage. It is therefore generally necessary for the active switching element 2 to have defined line properties with respect to an electrical voltage lying above it for every possible polarity of this voltage. For this reason, the active switching element 2 is supplemented by a diode, as explained above. For the sake of clarity, this diode is not shown in FIG. 5.
  • a plurality of active switching elements 2 are provided in a converter 19, and therefore the converter 19 is also intended to contain a plurality of semiconductor components here, as explained above.
  • the active switching elements 2 of these semiconductor components form a set of all active switching elements 2 of the converter 19, the circuit of which thus has an optimum symmetry.
  • the power converter according to the invention comprises a semiconductor component with a series connection of an asymmetrical blocking active switching element and a diode has a monolithic structure on a single substrate.
  • the diode assumes a desired blocking if an electrical voltage applied via corresponding electrodes of the semiconductor component does not have the polarity at which the active switching element is in a switchable state.
  • the semiconductor component according to the invention thus forms a symmetrically blocking switch which can meet the relevant requirements in a wide variety of converter topologies, and this up to very high clock frequencies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

Die Erfindung betrifft einen Stromrichter (19) umfassend zumindest ein Halbleiterbauelement mit einem Substrat (1), auf welchem eine Reihenschaltung (2, 3) umfassend ein aktives Schaltelement (2), welches durch Anlegen einer entsprechenden elektrischen Spannung in einen schaltbaren Zustand oder einen leitenden Zustand versetzbar ist, und eine Diode (3) aufgebaut ist, sowie die Verwendung eines solchen Stromrichters (19). Das Halbleiterelement besteht vorzugsweise aus einem Halbleiter mit grosser Durchbruchfeldstärke, insbesondere Siliziumcarbid.

Description

Beschreibung
Stromrichter sowie seine Verwendung
Die Erfindung betrifft einen Stromrichter, umfassend zumindest ein Halbleiterbauelement mit einem Substrat, auf welchem ein aktives Schaltelement aufgebaut ist. Die Erfindung betrifft auch eine Verwendung eines solchen Stromrichters.
Die Erfindung bezieht sich insbesondere auf einen Stromrichter, umfassend ein Halbleiterbauelement, dessen Substrat aus einem Polytypen des Siliziumcarbids besteht.
Ein Halbleiterbauelement, welches auf einem Substrat aus Si- liziumcarbid aufgebaut ist und ein aktives Schaltelement in Form eines Feldeffekttransistors mit isolierter, durch eine Oxidschicht vom zugehörigen Substrat getrennter Gate-Elektrode (MOSFET) , Bipolartransistors mit isolierter Gate-Elektrode (IGBT) oder Thyristors aufweist, geht hervor aus der WO 96/03774 AI.
Der Aufsatz „Thyristorarten ASCR, RLT und GTO - Technik und Grenzen ihrer Anwendung" von W. Bösterling und M. Fröhlich, ETZ 104 (1983), 1246, stellt die Anwendung verschiedener Wei- terbildungen des Thyristors in einem Umrichter vor. Ein Umrichter ist dabei eine elektronische Schaltung, welche Wechselstrom mit einer vorgegebenen Frequenz umformt in Wechselstrom einer anderen Frequenz. Dies wird bewerkstelligt mit entsprechend geschalteten Halbleiterbauelementen.
Ein Umrichter kann grundsätzlich mit praktisch allen bekannten aktiven Halbleiterbauelementen aufgebaut werden, wobei neuerdings aktive Halbleiterbauelemente wie MOSFETs besonderes Interesse genießen. Von jedem diesbezüglich verwendbaren Halbleiterbauelement kann gesagt werden, daß es im allgemei- nen spezifische Vorteile und spezifische Nachteile mit sich bringt, unter deren Beachtung der einschlagig tatige Fachmann im Einzelfall einzusetzende Halbleiterbauelement zu wählen hat.
Aus der Druckschrift „Drehzahlveranderbare Antriebe in der Praxis" der Siemens Aktiengesellschaft, Bestell-Nr. A19100- E319-A365, veröffentlicht im März 1989 in 5000 Exemplaren, gehen aus einer „Übersicht drehzahlveranderbarer Gleichstrom- und Drehstromantriebe", Seiten 4 und 5, verschiedene Konzepte für Umrichter verschiedener Leistungsfähigkeit hervor. Ein Umrichter besteht dabei jeweils aus einem Gleichrichter, welcher einen aus einem öffentlichen Netz beizustellenden Wechselstrom zunächst in Gleichstrom umformt, und einem Wechsel- richter, welcher den Gleichstrom erneut umformt zu einem
Wechselstrom mit gewünschter und gegebenenfalls einstellbarer Frequenz. Bei jedem genannten Wechselstrom kann es sich um zweiphasigen oder dreiphasigen Wechselstrom handeln, je nach gewünschter Leistungsfähigkeit. Aus dem Aufsatz „Leistungs- halbleiter für die Antriebstechnik" von E. Hebenstreit in der genannten Druckschrift, Seiten 14 bis 19, gehen Hinweise zu den in Umrichtern einsetzbaren Halbleiterbauelementen wie Feldeffekttransistor, Bipolartransistor und Thyristor hervor. Des weiteren betrifft der Aufsatz „Simovert-P-Umrichter klei- ner Leistung für Drehstromantriebe bis 5,5 kW" von K. Menke und E. Hentschel, Seiten 39 bis 41 der Druckschrift, einen Umrichter, welcher Feldeffekttransistoren als aktive Halbleiterbauelemente enthalt.
In manchen Stromrichtern, wobei der Begriff „Stromrichter" sowohl Gleichrichter als auch Wechselrichter umfaßt, werden Halbleiterbauelemente benotigt, die unabhängig von der Polarität einer über entsprechenden Elektroden anliegenden elektrischen Spannung sperren, also einen Fluß von elektrischem Strom aufgrund der Spannung verhindern können. Dies gilt bei- spielsweise für sogenannte I-Umrichter und sogenannte Matrixkonverter. Als solche symmetrisch sperrende Halbleiterbauelemente sind allerdings die gebrauchlichen MOSFETs nicht geeignet. Diese vermögen nämlich nur dann zu sperren, wenn die über den entsprechenden Elektroden anliegende elektrische
Spannung eine bestimmte Polarität hat. Dann nämlich nimmt das Halbleiterbauelement einen „schaltbaren Zustand" an, in dem es entsprechend einer an einer Steuerelektrode anliegenden Spannung entweder sperrt oder leitet. Liegt eine Spannung mit gegenüber der bestimmten Polarität umgekehrter Polarität an, so vermag das Halbleiterbauelement nicht zu sperren. Es gibt dann stets einen Stromfluß, dessen Hohe von den spezifischen Eigenschaften des Halbleiterbauelements abhangt. Symmetrisch sperrende Bauelemente sind am Markt erhaltlich in Form von symmetrisch sperrenden klassischen Thyristoren und Abschaltthyristoren. Diese sind allerdings generell gekennzeichnet dadurch, daß in ihnen hohe Speicherladungseffekte auftreten, die ihre Schaltvorgange verlangsamen und eine Anwendung dieser Bauelemente nicht gestatten, wenn periodische Schaltvor- gange mit Frequenzen von deutlich mehr als 1 kHz durchgeführt werden müssen.
Falls nur Spannungen und Strome bewältigt werden müssen, die hinreichend geringen ein- und ausgeschalteten Leistungen, insbesondere unterhalb 1 kW, entsprechen, so hat man sich be- helfen können, indem eine zusatzliche pn-Diode in Reihe zu dem asymmetrisch sperrenden Halbleiterbauelement geschaltet wurde. Diese, vorzugsweise hinsichtlich ihrer Belastbarkeit überdimensionierte, Diode übernahm die Sperrung, wenn die über dem aktiven Halbleiterbauelement anliegende Spannung nicht die für den schaltbaren Zustand erforderliche Polarität hatte. Diese Praxis kann allerdings zum Schalten höherer Leistungen bei Taktfrequenzen deutlich oberhalb von 1 kHz keine akzeptable Lösung sein, zumal die pro Halbleiterbauelement erforderliche zusätzliche Diode den auszuführenden Schaltungsaufbau deutlich verkompliziert.
In Ansehung dieser Erwägungen ist es die Aufgabe der Erfin- düng, einen Stromrichter umfassend zumindest ein symmetrisch sperrendes, kompaktes Halbleiterbauelement anzugeben. Auch soll eine Verwendung eines solchen Stromrichters bezeichnet werden.
Zur Lösung dieser Aufgabe angegeben wird ein Stromrichter umfassend zumindest ein Halbleiterbauelement mit einem Substrat, auf welchem eine Reihenschaltung, umfassend ein aktives Schaltelement, welches durch Anlegen einer entsprechenden elektrischen Spannung in einen schaltbaren Zustand über einen leitenden Zustand versetzbar ist, und eine Diode aufgebaut ist.
Das Halbleiterbauelement in dem erfindungsgemäßen Stromrichter ist gekennzeichnet durch einen monolithischen Aufbau, welcher ein asymmetrisch sperrendes aktives Schaltelement sowie eine Diode umfaßt. In einer solchen Reihenschaltung übernimmt die Diode die gewünschte Sperrung, falls eine über entsprechenden Elektroden des Halbleiterbauelements anliegende elektrische Spannung nicht diejenige Polarität hat, bei der das aktive Schaltelement im schaltbaren Zustand vorliegt. Das Halbleiterbauelement ist somit ein symmetrisch sperrender Schalter, der die Anforderungen in unterschiedlichsten Um- richtertopologien bis zu sehr hohen Taktfrequenzen zu erfüllen vermag. Das Halbleiterbauelement ist auch gekennzeichnet durch relativ niedrige Durchlaßverluste und kann in Kombination mit einem antiparallel geschalteten weiteren Halbleiterbauelement zur Schaltung von Wechselstrom wie mit einem Triac verwendet werden, ohne die prinzipbedingten Nachteile des Triac, welche den geschilderten Nachteilen des normalen Thy- ristors entsprechen, aufzuweisen. Die Diode in dem Halbleiterbauelement ist vorzugsweise eine Schottky-Diode; die Schottky-Diode zeichnet sich aus sowohl durch einen fast vernachlassigbar geringen Speichereffekt und somit die Eignung für Schaltvorgange mit sehr hohen Taktfrequenzen als auch eine vergleichsweise geringe Durchlaßspannung, woraus besonders geringe Verluste im leitenden Zustand resultieren .
Bevorzugt ist es auch, daß das aktive Schaltelement des Halb- leiterbauelementes eine symmetrische Ausrichtung entlang einer Achse aufweist, wobei die Diode bezuglich der Achse axial neben dem aktiven Schaltelement angeordnet ist. Dabei ist weiterhin vorzugsweise das aktive Schaltelement ausgehend von einer zur Achse etwa senkrechten Hauptoberflache im Substrat gebildet, und die Diode reicht bis zu einer zur Hauptoberflache etwa parallelen, bezüglich der Achse axial neben dieser liegenden Gegenoberflache des Substrates. Das aktive Schaltelement zeichnet sich somit aus durch eine mehr oder weniger „vertikale", parallel oder axialsymmetrisch zur Achse orientierte Geometrie. Dies ist insbesondere der Fall in Zusammenhang mit MOSFETs des sogenannten „vertikalen" Typs, die sich durch besonders vorteilhafte Eigenschaften bei der Verwendung als Schalter auszeichnen.
Eine alternativ bevorzugte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, daß das aktive Schaltelement eine symmetrische Ausrichtung entlang einer Achse aufweist, und daß die Diode bezuglich der Achse lateral neben dem aktiven Schaltelement angeordnet und über einen bezüglich der Achse axial neben dem aktiven Schaltelement und der Diode liegenden Verbindungsbereich mit dem aktiven Schaltelement verbunden ist. Bei dieser Ausgestaltung ist von einer durchgangig „vertikalen" Geometrie des Halbleiterbauelements abgewichen, es besteht allerdings eine erhöhte konstruktive Freiheit durch den zusätzlich vorhandenen Verbindungsbereich. Dieser erleichtert unter Umstanden die Zusammenschaltung der Diode und des aktiven Schaltelementes.
Ein für das Halbleiterbauelement besonders bevorzugtes aktives Schaltelement ist ein Feldeffekttransistor, insbesondere ein solcher Feldeffekttransistor, der einen etwa senkrecht zu einer Achse ausgerichteten Kanalbereich und einen entlang der Achse hinter dem Kanalbereich liegenden Driftbereich hat, hinter welchem die Diode liegt. Ein solcher Feldeffekttransistor eignet sich besonders für eine Schaltanwendung und dies auch dann, wenn im schaltbaren Zustand bei Anliegen einer vergleichsweise hohen elektrischen Spannung gesperrt werden muß; der gesamte Driftbereich steht nämlich für die Sperrfunktion zur Verfugung. Der Feldeffekttransistor kann ein üblicher, für Schaltzwecke benutzter Feldeffekttransistor mit einer durch eine Oxidschicht oder einen pn-Ubergang vom übrigen Substrat getrennter Gate-Elektrode sein; es ist auch denkbar und für verschiedene Anwendungen vorteilhaft, eine Sonderform eines Feldeffekttransistors, beispielsweise einen als Strombegrenzer ausgestalteten Feldeffekttransistor, vorzusehen .
Es versteht sich, daß weitere aktive Schaltelemente für das erfmdungsgemaße Halbleiterbauelement denkbar sind, insbesondere Sperrschicht-Feldeffekttransistoren mit jeweils durch einen pn-Ubergang vom übrigen Substrat getrennter Gate-Elektrode (JFETs) oder bipolare Transistoren.
Das Substrat des Halbleiterbauelements besteht vorzugsweise aus einem Halbleiter mit einer Durchbruchfeldstärke von mehr als 106 V/cm, insbesondere Siliziumcarbid. Dabei kann dem in diesem bevorzugten Halbleiter aufgebauten aktiven Schaltelement ein m Silizium aufgebautes weiteres Schaltelement, ms- besondere ein Feldeffekttransistor, vorgeschaltet sein. Diese besonders bevorzugte Ausgestaltung gestattet es, die vorteilhaften Eigenschaften des in herkömmlicher Technologie in Silizium aufgebauten weiteren aktiven Schaltelements mit den insbesondere hinsichtlich der Sperrfahigkeit überlegenen Ei- genschaften des in dem bevorzugten Halbleiter aufgebauten aktiven Schaltelements zu kombinieren. Dies ist von besonderem Interesse dann, wenn der bevorzugte Halbleiter Siliziumcarbid ist, da die Siliziumcarbid-Technologie noch vergleichsweise schwierig ist aufgrund der besonderen Eigenschaften des Sili- ziumcarbids, welches sich aufgrund seiner extrem hohen Durchbruchfeldstärke und seiner extrem hohen Wärmeleitfähigkeit und thermischen Stabilität gleichwohl für HochleistungseleK- tronik hervorragend eignet.
Das Halbleiterbauelement ist vorzugsweise als Schalter m dem Stromrichter angeordnet.
Besonders bevorzugt ist es, in dem Stromrichter eine Mehrzahl untereinander gleichartiger Halbleiterbauelemente vorzusehen; weiter bevorzugt bilden deren zugehörige aktive Schaltelemente eine Gesamtheit aller aktiven Schaltelemente des Stromrichters .
Zur Losung der Aufgabe im Hinblick auf eine Verwendung an- gegeben wird die Verwendung des erfmdungsgemaßen Stromrichters zur periodisch wiederholten Schaltung einer elektrischen Spannung mit einer Schaltfrequenz, die oberhalb von 1 kHz liegt .
Eine Ausgestaltung der Verwendung ergibt sich, wenn die elektrische Spannung eine Wechselspannung ist. In diesem Falle wechselt die Polarität der elektrischen Spannung über dem Halbleiterbauelement des Stromrichters standig, wobei das aktive Schaltelement abwechselnd in seinem schaltbaren Zustanα und in seinem leitenden Zustand vorliegt. In ersterem Fall kann das aktive Schaltelement die elektrische Spannung gemäß einer entsprechenden Vorgabe schalten, im zweiten Fall ist das Halbleiterbauelement dauernd und zuverlässig durch die Diode gesperrt.
Ausfuhrungsbeispiele der Erfindung werden nunmehr anhand der Zeichnung erläutert.
Im einzelnen zeigen: Figur 1 eine erste Ausfuhrungsform eines Halbleiterbauele- ments für den Stromrichter; Figur 2 eine zweite Ausfuhrungsform des Halbleiterbauele- ments für den Stromrichter; Figur 3 ein Halbleiterbauelement, welches sich besonders eignet zur Zusammenschaltung mit einem üblichen Si- lizium-MOSFET m dem Stromrichter; Figur 4 ein Schaltbild einer solchen Zusammenschaltung; Figur 5 ein Schema eines Umrichters, in dem der Stromrichter Einsatz findet.
Figur 1 zeigt eine Ausfuhrung des Halbleiterbauelements , aufgebaut auf einem Substrat 1 und bestehend aus dem Halbleiter Siliziumcarbid. Das Halbleiterbauelement besteht aus einem aktiven Schaltelement 2, in diesem Fall ausgebildet als MOS- FET, und einer dazu in Reihe geschalteten Diode 3. Das aktive Schaltelement 2 und die Diode 3 liegen bezüglich einer Achse 4, die im wesentlichen senkrecht zum Substrat 1 orientiert ist, axial nebeneinander. Das aktive Schaltelement 2 ist aufgebaut ausgehend von einer Hauptoberflache 5 und im wesentli- chen rotationssymmetrisch zur Achse 4 ausgebildet; es handelt sich um einen MOSFET des „vertikalen Typs". Das aktive Schaltelement 2 besitzt eine ringförmige Source-Elektrode 6, gebildet als Bereich mit n-Dotierung in einer ringförmigen, p- dotierten Wanne, und eine durch eine Oxidschicht oder der- gleichen von dem eigentlichen Halbleiterbauelement isolierte, scheibenförmige Gate-Elektrode 7. Unterhalb der Gate- Elektrode 7 und ausgehend von der Source-Elektrode 6 ist ein Kanalbereich 8 gebildet, dessen elektrische Leitfähigkeit durch Anlegen einer entsprechenden Spannung zwischen die Source-Elektrode 6 und die Gate-Elektrode 7 in weiten Grenzen veränderbar ist; ein Stromfluß durch den Kanalbereich 8 kann im wesentlichen vollständig unterbunden werden, entsprechend einem „sperrenden Zustand" des aktiven Schaltelements 2, oder ein Stromfluß kann weitgehend unbehindert zugelassen werden, entsprechend einem „leitenden Zustand" des aktiven Schaltelements 2. Die sich daraus ergebende Schalteigenschaft des aktiven Schaltelements 2 verlangt allerdings, daß die über dem aktiven Schaltelement 2 anliegende elektrische Spannung eine bestimmte Polarität hat; dann kann man das aktive Schal- telement 2 betrachten als in einem „schaltbaren Zustand". Hat die anliegende Spannung nicht diese Polarität, so ist davon auszugehen, daß das aktive Schaltelement 2 stets einen Stromfluß in bestimmter Höhe gestattet, abhangig von seinen spezifischen Eigenschaften und seiner Beschaltung. Es kann daher nicht als Sperre für einen unerwünschten Stromfluß dienen; es befindet sich also in einem „leitenden Zustand".
In dem Kanalbereich 8 erfolgt ein Stromfluß stets im wesentlichen senkrecht zur Achse 4; nahe der Achse 4 verändert sich die Richtung des Stromflusses und wird im wesentlichen parallel zur Achse 4. Dieser Bereich des aktiven Schaltelementes 2 wird üblicherweise als „Driftbereich" 9 bezeichnet. Bei einem herkömmlichen aktiven Schaltelement endet der Driftbereich 9 an einer besonderen „Gate-Elektrode"; beim vorliegend dar- gestellten Halbleiterbauelements ist an den Driftbereich 9 eine Diode 3, nämlich eine Schottky-Diode 3, angeschlossen. Der Driftbereich 9 reicht bis in das Substrat 1 hinein und darüber hinaus. Auf einer dem aktiven Schaltelement 2 abgewandten Seite ist auf dem Substrat 1 eine Kathodenschicht 11 aufgewachsen, welche als Kathode der Diode 3 dient. Als Anode vorgesehen ist eine Anodenmetallisierung 12, die mit der Ka- thodenschicht 11 die Schottky-Diode 3 bildet. Diese ist ein unipolares Bauelement und als solches frei von Speichereffekten, die an einem bipolaren Bauelement wie z.B. einer pn-Diode auftreten können. Um die gewünschte Funktion zu erreichen, ist das Metall der Anodenmetallisierung 12 geeignet ausgewählt. Die Diode 3 hat eine laterale Begrenzung 13 in Form eines ringförmigen, p-dotierten Bereiches. Damit ist die Diode 3 eindeutig definiert.
Das Bauelement gemäß Figur 1 ist durchgangig vertikal orientiert bezuglich der Achse 4 und somit besonders kompakt, was angesichts der technologischen Schwierigkeiten beim Umgang mit Siliziumcarbid von hoher Bedeutung ist. Eine durchgangig vertikale Orientierung ist im vorliegenden Zusammenhang allerdings keineswegs zwingend.
Figur 2 zeigt eine andere Ausfuhrungsform des Halbleiterbauelements, wobei wiederum ein aktives Schaltelement 2 und eine Diode 3 auf einem einzigen Substrat 1 zusammengefaßt sind.
Das aktive Schaltelement 2 ist wiederum als MOSFET ausgestaltet und stimmt hinsichtlich seines Aufbaus und seiner Funktion uberein mit dem MOSFET gemäß Figur 1. Für eine genaue Erläuterung des aktiven Schaltelements 2 wird daher auf die entsprechenden Ausf hrungen zu Figur 1 verwiesen. Auch die Diode 3 des Halbleiterbauelements gemäß Figur 2 entspricht als solche der Diode 3 des Halbleiterbauelements gemäß Figur 1, so daß auch bezüglich der Diode 3 in Figur 2 die entsprechenden Ausfuhrungen zur Diode 3 gemäß Figur 1 gelten.
Es sei darauf hingewiesen, daß die Ausgestaltung der Diode 3 als Schottky-Diode keineswegs zwingend ist; j e nach Anwendungsfall kann es angebracht sein, anstelle einer Schottky- Diode eine bipolare Diode vorzusehen. Bezugnehmend auf Figur 3 erforderte eine solche bipolare Diode lediglich das Vor- sehen einer p-dotierten zusatzlichen Schicht zwischen der Anodenmetallisierung 12 und der n-dotierten Kathodenschicht 11. Von einer zeichnerischen Darstellung dieser einfachen Abwandlung ist der Übersicht halber abgesehen worden.
Anders als in Figur 1 ist das Halbleiterbauelement gemäß Figur 2 allerdings nicht durchgangig axialsymmetrisch bezuglich der Achse 4 ausgestaltet, sondern das als MOSFET des vertikalen Typs und bezuglich der Achse 4 axialsymmetrisch ausge- richtete aktive Schaltelement 2 und die Diode 3 liegen bezuglich der Achse 4 lateral nebeneinander. Außerdem liegen das aktive Schaltelement 2 und die Diode 3 an derselben Seite des Substrates 1. Zur Verbindung des aktiven Schaltelementes 2 mit der Diode 3 vorgesehen ist ein besonderer Verbindungs- bereich 14, in diesem Fall gebildet in dem Substrat 1 selbst. Durch diesen Verbindungsbereich 14 kann elektrischer Strom zwischen dem aktiven Schaltelement 2 und der Diode 3 fließen. Es ist nicht ausgeschlossen, den Verbindungsbereich 14 gegebenenfalls mittels einer entsprechenden Metallisierung aus- zufuhren. Um das aktive Schaltelement 2 funktioneil von der Diode 3 zu trennen und Wechselwirkungen zwischen diesen beiden Elementen auszuschließen, ist eine Isolierung 15 m Form eines p-dotierten Bereiches in der Anordnung vorgesehen.
Figur 3 zeigt eine weitere Ausfuhrungsform des Halbleiter- bauelementes mit einem als Sperrschicht-Feldeffekttransistor (JFET) ausgestalteten aktiven Schaltelement 2 und einer Schottky-Diode 3. Das aktive Schaltelement 2 hat eine Vielzahl von Source-Elektroden 6, kenntlich gemacht an einem ge- meinsamen Anschluß, und gleichermaßen eine Vielzahl von Gate- Elektroden 7, kenntlich gemacht ebenfalls an einem gemeinsamen Anschluß. Die Gate-Elektroden 7 sind gebildet als p-do- tierte Zonen in einer n-dotierten Umgebung und somit lediglich durch pn-Ubergange isoliert. Elektrischer Strom fließt den Source-Elektroden 6 durch Kanäle, die zwischen den Gate- Elektroden 7 liegen, zu. Die maßgeblichen elektrischen Eigenschaften dieser Kanäle sind veränderbar durch Veränderung einer elektrischen Spannung, die zwischen den Gate-Elektroden 7 und den Source-Elektroden 6 angelegt wird; ist die Spannung nahe Null, so hat jeder Kanal eine maximale Große und ist das aktive Schaltelement entsprechend hoch leitfahig, ist die Spannung derart, daß die Gate-Elektroden 7 ein hinreichend hohes negatives Potential gegenüber den Source-Elektroden 6 haben, so sind die Kanäle ganzlich abgeschnürt und das aktive Schaltelement 2 sperrt. An einer dem aktiven Schaltelement 2 gegenüberliegenden Seite des Substrates 1 angeordnet ist die Diode 3, wiederum ausgestaltet als Schottky-Diode wie vorstehend erläutert. Das Halbleiterbauelement gemäß Figur 3 besteht ebenfalls aus Siliziumcarbid, einem Halbleiter, an wel- chen große Erwartungen zum Einsatz m Hochspannungs-,
Hochleistungs- und Hochtemperaturanwendungen gestellt werden können, der allerdings bei seiner Herstellung und Bearbeitung spezifische Probleme bereiten kann.
Figur 4 zeigt, wie das Halbleiterbauelement gemäß Figur 3 in Kombination mit einem weiteren Schaltelement 16, welches in herkömmlicher Weise aus Silizium gefertigt sein kann, kombiniert werden kann. Die Funktionsweise der m Figur 4 dargestellten Schaltung erschließt sich dem einschlagig erfahrenen Durchschnittsfachmann unmittelbar und bedarf keiner weiteren Erläuterung; die Schaltung bietet eine vorteilhafte Kombination der Schalteigenschaften des im Rahmen einer ausgereiften Technologie erzeugten Schaltelementes 16 in Silizium-Techno- logie mit der vergleichbaren Silizium-Bauelementen klar uber- legenen Sperrfahigkeit und thermischen Belastbarkeit des in Siliziumcarbid realisierten Schaltelementes 2 und der ebenfalls in Siliziumcarbid realisierten Diode 3.
Figur 5 schließlich zeigt eine Anwendung für ein im vorlie- genden Zusammenhang m Bezug genommenes aktives Schaltelement 2, nämlich einen Umrichter 17. Ein solcher Umrichter 17 enthält zwei Stromrichter 18 und 19, und zwar einen Gleichrichter 18, welcher Wechselstrom, der aus einem öffentlichen Netz bezogen wird, zunächst in Gleichstrom umformt, und anschlie- ßend einen Wechselrichter 19, welcher den Gleichstrom wiederum zu Wechselstrom umformt. Für diesen Wechselstrom sind die Anzahl der Phasen sowie die Frequenz weitgehend frei wahlbar und durch entsprechende Auslegung und Ansteuerung des Wechselrichters 19 aus einer entsprechenden Steuerschaltung 20 einstellbar. Ein solcher Umrichter 17 kann mit großem Vorteil eingesetzt werden zur Speisung eines Elektromotors, da er die Anpassung des gespeisten Wechselstroms an spezifische Anforderungen des Elektromotors erlaubt. Unabhängig von der für den Wechselrichter 19 gewählten Schaltung ist stets damit zu rechnen, daß ein aktives Schaltelement 2 in den Wechselrichter 19 mit einer mehr oder weniger oszillierenden elektrischen Spannung beaufschlagt wird. Es ist daher im allgemeinen erforderlich, daß das aktive Schaltelement 2 definierte Leitungseigenschaften gegenüber einer über ihm liegenden elek- trischen Spannung aufweist für jede mögliche Polarität dieser Spannung. Aus diesem Grunde ist das aktive Schaltelement 2 ergänzt um eine Diode, wie vorstehend erläutert. In Figur 5 ist diese Diode der Übersicht halber nicht dargestellt.
Gemäß herkömmlicher Praxis werden in einem Stromrichter 19 mehrere aktive Schaltelemente 2 vorgesehen, daher soll auch hier der Stromrichter 19 mehrere Halbleiterbauelemente wie vorstehend erläutert enthalten. Die aktiven Schaltelemente 2 dieser Halbleiterbauelemente bilden dabei eine Gesamtheit al- 1er aktiven Schaltelemente 2 des Stromrichters 19, dessen Schaltung damit ein Optimum an Symmetrie hat.
Der erfindungsgemaße Stromrichter umfaßt ein Halbleiterbauelement mit einer Reihenschaltung aus einem asymmetrisch sperrenden aktiven Schaltelement sowie einer Diode hat einen monolithischen Aufbau auf einem einzigen Substrat. In der Reihenschaltung übernimmt die Diode eine gewünschte Sperrung, falls eine über entsprechenden Elektroden des Halbleiterbau- elements anliegende elektrische Spannung nicht diejenige Polarität hat, bei der das aktive Schaltelement in einem schaltbaren Zustand vorliegt. Somit bildet das erfindungsgemäße Halbleiterbauelement einen symmetrisch sperrenden Schalter, der die einschlägigen Anforderungen in unterschiedlich- sten Stromrichtertopologien zu erfüllen vermag, und dies bis zu sehr hohen Taktfrequenzen.

Claims

Patentansprüche
1. Stromrichter (19) umfassend zumindest ein Halbleiterbauelement, mit einem Substrat (1), auf welchem eine Reihen- Schaltung (2, 3) umfassend ein aktives Schaltelement (2), welches durch Anlegen einer entsprechenden elektrischen Spannung in einen schaltbaren Zustand oder einen leitenden Zustand versetzbar ist, und eine Diode (3) aufgebaut ist.
2. Stromrichter (19) nach Anspruch 1, bei dem die Diode (3) eine Schottky-Diode (3) ist.
3. Stromrichter (19) nach einem der Ansprüche 1 und 2, bei dem aas aktive Schaltelement (2) eine Ausrichtung entlang ei- ner Achse (4) aufweist und bei dem die Diode (3) bezuglich der Achse (4) axial neben dem aktiven Schaltelement (2) angeordnet ist.
4. Stromrichter (19) nach Anspruch 3, bei dem das aktive Schaltelement (2) ausgehend von einer zur Achse (4) etwa senkrechten Hauptoberflache (5) in dem Substrat (1) gebildet ist, und bei dem die Diode (3) bis zu einer zur Hauptoberflache (5) etwa parallelen, bezuglich der Achse (4) axial neben dieser liegenden Gegenoberflache (10) des Substrates (1) reicht.
5. Stromrichter (19) nach einem der Ansprüche 1 und 2, bei dem das aktive Schaltelement (2) eine Ausrichtung entlang einer Achse (4) aufweist, bei dem die Diode (3) bezüglich der Achse (4) lateral neben dem aktiven Schaltelement (2) angeordnet und über einen bezüglich der Achse (4) axial neben dem aktiven Schaltelement (2) und der Diode (3) liegenden Verbindungsbereich (14) mit dem aktiven Schaltelement (2) verbunαen
6. Stromrichter (19) nach einem der vorigen Ansprüche, bei dem das aktive Schaltelement (2) ein Feldeffekttransistor (2) ist.
7. Stromrichter (19) nach Anspruch 6, bei dem der Feldeffekttransistor (2) einen etwa senkrecht zu einer Achse (4) ausgerichteten Kanalbereich (8) und einen entlang der Achse (4) hinter dem Kanalbereich (8) liegenden Driftbereich (9) hat, hinter welchem die Diode (3) liegt.
8. Stromrichter (19) nach einem der Ansprüche 6 und 7, bei dem der Feldeffekttransistor (2) als Strombegrenzer (2) ausgestaltet ist.
9. Stromrichter (19) nach Anspruch 6, bei dem der Feldeffekttransistor (2) ein Sperrschicht-Feldeffekttransistor (2) ist.
10. Stromrichter (19) nach einem der vorigen Ansprüche, bei dem das Substrat (1) aus einem Halbleiter mit einer Durch- bruchfeidstärke von mehr als 10^ Volt pro Zentimeter, insbesondere Siliziumcarbid, besteht.
11. Stromrichter (19) nach Anspruch 10, dessen aktivem Schaltelement (2) ein in Silizium aufgebautes weiteres Schaltele- ment (16), insbesondere ein Feldeffekttransistor (16), vorgeschaltet ist.
12. Stromrichter (19) nach einem der vorigen Ansprüche, bei dem das zumindest eine Halbleiterbauelement zu einer Mehrzahl untereinander gleichartiger Halbleiterbauelemente gehört.
13. Stromrichter (19) nach einem der vorigen Ansprüche, welcher in einem Umrichter (17) angeordnet ist.
14. Verwendung eines Stromrichters (19) nach einem der vorherigen Ansprüche zur mit einer Schaltfrequenz periodisch wiederholten Schaltung einer elektrischen Spannung, wobei die Schaltfrequenz oberhalb von 1 kHz liegt.
15. Verwendung nach Anspruch 14, bei der die elektrische Spannung eine Wechselspannung ist.
EP98934829A 1997-06-09 1998-05-29 Stromrichter sowie seine verwendung Withdrawn EP0992067A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19724269 1997-06-09
DE19724269 1997-06-09
PCT/DE1998/001475 WO1998057374A1 (de) 1997-06-09 1998-05-29 Stromrichter sowie seine verwendung

Publications (1)

Publication Number Publication Date
EP0992067A1 true EP0992067A1 (de) 2000-04-12

Family

ID=7831929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98934829A Withdrawn EP0992067A1 (de) 1997-06-09 1998-05-29 Stromrichter sowie seine verwendung

Country Status (2)

Country Link
EP (1) EP0992067A1 (de)
WO (1) WO1998057374A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE536635T1 (de) 2004-07-08 2011-12-15 Semisouth Lab Inc Monolithischer vertikal- sperrschichtfeldeffekttransistor und aus siliziumcarbid hergestellte schottky- barrierendiode und herstellungsverfahren dafür
EP3182463A1 (de) * 2015-12-17 2017-06-21 ABB Technology AG Rückwärtssperrendes leistungshalbleiterbauelement
JP6632392B2 (ja) * 2016-01-22 2020-01-22 三菱電機株式会社 炭化珪素半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171042A (en) * 1961-09-08 1965-02-23 Bendix Corp Device with combination of unipolar means and tunnel diode means
JPS60113470A (ja) * 1983-11-24 1985-06-19 Hitachi Ltd 縦形電界効果トランジスタ
JPH0760854B2 (ja) * 1985-08-30 1995-06-28 株式会社日立製作所 一方向導通形スイツチング回路
JP3022598B2 (ja) * 1994-03-04 2000-03-21 シーメンス アクチエンゲゼルシヤフト 高いラッチアップ耐性を備えた炭化ケイ素ベースのmis構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9857374A1 *

Also Published As

Publication number Publication date
WO1998057374A1 (de) 1998-12-17

Similar Documents

Publication Publication Date Title
DE69607965T2 (de) Wandlerschaltung, schaltung mit wenigstens einem schalter und schaltungsmodul
DE68913334T2 (de) Synchroner Gleichrichter.
EP0886883B1 (de) Elektronische einrichtung zum schalten elektrischer ströme, für hohe sperrspannungen und mit geringen durchlassverlusten
EP0868750B1 (de) Halbleiteranordnungen zur strombegrenzung
DE112017000224B4 (de) Halbleitervorrichtung, Verfahren zu deren Herstellung und diese verwendende Leistungsumwandlungsvorrichtung
EP3503365B1 (de) Verfahren und einrichtung zur ansteuerung von mosfet-schaltmodulen
DE112019000544B4 (de) Halbleitervorrichtung und leistungswandlungsvorrichtung
DE112017005529B4 (de) Siliciumcarbid-halbleitereinheit und leistungswandlereinheit
DE10308313B4 (de) Halbleiterdiode, elektronisches Bauteil, Spannungszwischenkreisumrichter und Steuerverfahren
WO2000060670A2 (de) Integrierte halbleitervorrichtung mit einem lateralen leistungselement
DE112018006450T5 (de) Siliciumcarbid-halbleiteranordnung und leistungswandler
EP0992069B1 (de) Halbleiter-strombegrenzer
DE112019001054T5 (de) Halbleitervorrichtung und leistungswandlungsvorrichtung
EP1097482B1 (de) J-fet-halbleiteranordnung
EP0978159B1 (de) Vorrichtung zum begrenzen elektrischer wechselströme, insbesondere im kurzschlussfall
DE112018006467B4 (de) Siliciumcarbid-halbleiteranordnung und leistungswandler
EP1116276B1 (de) Halbleiterbauelement mit feldformungsgebieten
DE102005019860B4 (de) Steuerbare Halbleiterdiode, elektronisches Bauteil und Spannungszwischenkreisumrichter
DE112013006639T5 (de) Halbleitervorrichtung, Treibervorrichtung für eine Halbleiterschaltung und Leistungswandlungsvorrichtung
WO1998057374A1 (de) Stromrichter sowie seine verwendung
EP1488465B1 (de) Halbleiteraufbau mit schaltelement und randelement
DE10007416C1 (de) Steuerbare Halbleiteranordnung und ihre Verwendung
DE112019007687T5 (de) Siliciumcarbid-halbleitereinheit und leistungswandler
DE112019007048T5 (de) Siliciumcarbid-halbleitereinheit und leistungswandler
WO2006010734A1 (de) Halbleiterbauelement und verfahren zum betreiben des halbleiterbauelements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SICED ELECTRONICS DEVELOPMENT GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20011201