EP0990128B1 - Capteur de pression avec compensation de la non-linearite de la derive de zero aux tres basses temperatures - Google Patents

Capteur de pression avec compensation de la non-linearite de la derive de zero aux tres basses temperatures Download PDF

Info

Publication number
EP0990128B1
EP0990128B1 EP99910415A EP99910415A EP0990128B1 EP 0990128 B1 EP0990128 B1 EP 0990128B1 EP 99910415 A EP99910415 A EP 99910415A EP 99910415 A EP99910415 A EP 99910415A EP 0990128 B1 EP0990128 B1 EP 0990128B1
Authority
EP
European Patent Office
Prior art keywords
bridge
compensation
temperature
linearity
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99910415A
Other languages
German (de)
English (en)
Other versions
EP0990128A1 (fr
Inventor
Jean-Bernard Avisse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Ceramics SA
Original Assignee
SNECMA Propulsion Solide SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA Propulsion Solide SA filed Critical SNECMA Propulsion Solide SA
Publication of EP0990128A1 publication Critical patent/EP0990128A1/fr
Application granted granted Critical
Publication of EP0990128B1 publication Critical patent/EP0990128B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2268Arrangements for correcting or for compensating unwanted effects
    • G01L1/2281Arrangements for correcting or for compensating unwanted effects for temperature variations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges
    • G01L9/045Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges with electric temperature compensating means

Definitions

  • the present invention relates to a pressure sensor of the type with strain gauges mounted respectively in the branches of a Wheatstone bridge.
  • the field particularly targeted is that of pressure sensors usable at very low temperatures, typically temperatures below that of boiling nitrogen, and can go down to a few Kelvin.
  • networks of compensation connected to the inputs and / or outputs of the bridge are usually designed to carry out a compensation of linear type, the thermal drift of the bridges of gauges being substantially linear in the usual temperature ranges.
  • JP-A-62 121 302 discloses a four-gauge circuit mounted in the branches of a bridge of Wheatstone. In a bridge top, two resistive elements arranged in parallel are provided to compensate for bridge drift as a function of temperature.
  • the problem that the present invention aims to solve is to compensate the non-linearity of the thermal drift and, consequently, to "linearize” it at very low temperatures, especially at temperatures below nitrogen boiling, that is to say below -196 ° C.
  • the resistance on which the compensation circuit is connected in parallel to a much lower value than that of the strain gauge, so that not penalize the extent of the operating range and the sensitivity of the bridge.
  • much lower value here means a value less than 1/20, even 1/100 or less of the resistance of an extensometer.
  • the compensation circuit is connected in parallel to a resistor formed by a Connection strand connecting the strain gauge to a top of the bridge.
  • non-linearity compensation circuit can thus be placed closer to the bridge, so be exposed exactly to the same conditions of temperature as the bridge.
  • the resistive element of the compensation must have a resistance such that it influences that of the resistance on which it is connected in parallel, and this more and more when the temperature decreases.
  • the relationship between the resistance of the resistive element and that of the resistor on which it is connected in parallel not more than 100, when the temperature falls below -196 ° C, and then decreases when the temperature decreases.
  • a resistive element is by example consisting of a platinum probe.
  • FIG. 2 illustrates the diagram of a pressure sensor comprising four strain gauges J1, J2, J3, J4 inserted respectively into the four branches of a Wheatstone bridge 10.
  • the gauges J1 to J4 are each connected to two adjacent vertices of bridge by connecting strands c .
  • the gauges J1 to J4 and the connection strands c are formed by metal deposits on a substrate, for example silicon, forming part of the sensitive element of the sensor.
  • a substrate for example silicon
  • two gauges mounted in two opposite branches of the bridge are arranged on the substrate so as to be biased in extension, when the substrate is subjected to a pressure to be measured, while the two other gauges are arranged so as to be solicited in compression.
  • the gauges J1 to J4 are for example formed by nickel-chromium deposits, which are as identical as possible, while the connecting strands c are formed, for example, by gold deposits, which are also as identical as possible.
  • the deposits are made in a thin layer, for example by projection under vacuum, closing the bridge being performed by the deposits made.
  • a compensation network 12 is interposed between the vertices + a, -a, + m, -m on the one hand, and the terminals + A, -A, + M, -M, on the other hand.
  • the compensation network 12 aims to achieve linear drift compensation pressure sensor as a function of temperature. It is a resistive network, of a type well known per se, for example as described in the document FR-A 2,613,833.
  • a bridge drift non-linearity compensation circuit 20 is connected in parallel on a connection wire c connecting one of the bridge gauges, for example the gauge J2, to one of the two vertices of the end bridge. of the branch containing the gauge, for example the vertex + m.
  • the compensation circuit 20 comprises a resistive element P whose resistance is variable depending on the temperature, especially in the very low temperature range, that is to say, typically the temperatures below the boiling point of nitrogen (-196 ° C).
  • a setting resistance R can be connected in series with the resistive element P, in the circuit of compensation, in order to allow an adjustment of the compensation achieved.
  • the mounting of the resistive element in parallel on a constituent part of the total resistance of a branch of the bridge makes it possible to influence in a non-linear manner the behavior of the bridge, thus to make a compensation of non-linearity of drift.
  • the influence of the resistive element P must increase, so its resistance decreases so that the ratio between this resistance and that of a connection strand c become at most 100 when the temperature falls below -196 ° C and decreases when the temperature decreases below -196 ° C.
  • a resistive element P having a positive temperature coefficient, for example a platinum probe, is then used.
  • a pressure sensor as shown in FIG. 2 was made with strain gauges formed by nickel-chromium thin film deposition, each gauge having a resistance of 1000 ⁇ at room temperature (22 ° C).
  • Connection strands c are thin film gold linear deposits each having a resistance of 0.6 ⁇ at 22 ° C.
  • FIG. 1 shows the evolution of the voltage collected at the vertices + m, -m bridge in the absence of constraints on the sensor, and in the absence of the network of compensation 12 and the compensation circuit 20, the balance of the bridge (voltage of zero output) being made at 22 ° C.
  • the zero drift of the bridge mainly due to gauges, becomes more and more pronounced as the temperature decreases. Up to about -140 ° C, the drift is substantially linear. To the most low temperatures, the non-linearity of the drift becomes more and more perceptible.
  • a compensation circuit consisting of a platinum probe P of resistance equal to 100 ⁇ at 0 ° C in series with a setting resistance R is placed in parallel on the gold connecting wire connecting the gauge J2 to the top + m of the bridge.
  • Table 1 shows the values of the resistances of a connection strand c and the probe P, the setting resistance R being zero as well as the equivalent resistance of the parallel circuit formed by P and c , at different temperatures.
  • the ratio of the resistances of the probe P to the connecting strand c increases from about 47 to about 7.9 between -196 ° C and -246 ° C.
  • the introduction of the compensation circuit 20 results in a zero offset of the bridge, which increases when the temperature decreases.
  • Table 2 gives the value of the offset ⁇ Z, measured in output voltage of the bridge, the gauges are not under stress (with 800 ⁇ gauges, a 6.4 ⁇ offset of a gauge produces a voltage of 20 mV output when the bridge is powered at 10 V).
  • the different offsets ⁇ Z shown in Table 2 correspond to different values of the compensation circuit and different temperatures.
  • the rows of the table show that the offset can be attenuated by increasing the value of R or accentuated by decreasing the value of P (by placing for example two 100 ⁇ probes in parallel).
  • the choice of the compensation circuit is therefore a function of the degree of non-linearity to be corrected.
  • Figure 3 shows the evolution of the voltage collected between the peaks + m, -m of the bridge, under the same conditions as for FIG. stress on the sensor, bridge zero at 22 ° C and no compensation linear, but with different compensation circuits 20 including resistance R in series with two probes P in parallel, each probe P being a platinum probe with a resistance of 100 ⁇ at 0 ° C.
  • the circuit of compensation is connected either on one and / or the other of two opposite branches of the bridge, either on one and / or the other of the other two opposite branches of the bridge.

Description

Domaine de l'invention
La présente invention concerne un capteur de pression du type comportant des jauges extensométriques montées respectivement dans les branches d'un pont de Wheatstone.
Le domaine plus particulièrement visé est celui des capteurs de pression utilisables à de très basses températures, typiquement des températures inférieures à celle d'ébullition de l'azote, et pouvant descendre jusqu'à quelques Kelvin. Arrière-plan de l'invention
Un problème bien connu des capteurs de pression à jauges extensométriques montées en pont de Wheatstone est celui de la dérive de zéro du pont en fonction de la température.
Pour résoudre ce problème, il est généralement fait appel à des réseaux de compensation branchés aux entrées et/ou sorties du pont. Ces réseaux, qui utilisent au moins un élément sensible à la température, sont habituellement conçus pour réaliser une compensation de type linéaire, la dérive thermique des ponts de jauges étant sensiblement linéaire dans les plages de températures usuelles.
JP-A-62 121 302 décrit un circuit à quatre jauges montées dans les branches d'un pont de Wheatstone. Dans un sommet du pont, deux éléments résistifs disposés en parallèle sont prévus pour compenser la dérive du pont en fonction de la température.
Une difficulté supplémentaire surgit lorsque les capteurs de pression sont utilisés aux très basses températures. En effet, la dérive thermique des ponts de jauges devient non linéaire, et cette non-linéarité s'accroít lorsque la température décroít. Cela est illustré par la figure 1 qui montre l'évolution en fonction de la température de la tension de sortie d'un pont de jauges formées par des dépôts de nickel-chrome en couche mince sur un substrat en silicium, le pont étant équilibré (tension de sortie nulle) pour une température de 22°C.
Les réseaux de compensation usuels deviennent inefficaces, et ce d'autant que les thermistances utilisées habituellement présentent souvent une résistance qui devient extrêmement élevée, quasi infinie, lorsque la température devient inférieure à -40°C ou -50°C.
Le problème que vise à résoudre la présente invention est de compenser la non-linéarité de la dérive thermique et, par conséquent, de "linéariser" celle-ci aux très basses températures, en particulier aux températures inférieures au point d'ébullition de l'azote, c'est-à-dire inférieures à -196°C environ.
Brève description de l'invention
Ce problème est résolu grâce à un capteur de pression tel que défini dans la revendication 1.
La résistance sur laquelle le circuit de compensation est branché en parallèle a une valeur très inférieure à celle de la jauge extensométrique, afin de ne pas pénaliser l'étendue de la plage de fonctionnement et la sensibilité du pont. Par valeur très inférieure, on entend ici une valeur inférieure à 1/20, voire 1/100 ou moins de la résistance d'une jauge extensométrique.
Selon une caractéristique du capteur de pression conforme à l'invention, le circuit de compensation est branché en parallèle sur une résistance formée par un brin de connexion reliant la jauge extensométrique à un sommet du pont.
Ainsi, aucune modification du pont n'est nécessaire pour insérer le circuit de compensation. On évite ainsi les instabilités qui pourraient être engendrées si une ouverture du pont était nécessaire à cet effet.
En outre, le circuit de compensation de non-linéarité peut ainsi être placé au plus près du pont, donc être exposé exactement aux mêmes conditions de température que le pont.
Pour compenser la non-linéarité dans le domaine des très basses températures, c'est-à-dire en deçà de -196°C, l'élément résistif du circuit de compensation doit avoir une résistance telle qu'elle influence celle de la résistance sur lequel il est branché en parallèle, et ce de façon croissante lorsque la température diminue. A cet effet, il est préférable que le rapport entre la résistance de l'élément résistif et celle de la résistance sur laquelle il est branché en parallèle soit au plus égal à 100, lorsque la température devient inférieure à -196°C, et diminue ensuite lorsque la température décroít. Un tel élément résistif est par exemple constitué par une sonde en platine.
Brève description des dessins
Dans les dessins annexés,
  • la figure 1 illustre la variation, en fonction de la température, de la dérive de zéro d'un capteur de pression formé par un pont de jauges extensométriques, en l'absence de compensation de dérive,
  • la figure 2 est un schéma électrique d'un mode de réalisation d'un capteur de pression conforme à l'invention, et
  • la figure 3 illustre la variation, en fonction de la température, de la dérive de zéro du capteur de pression de la figure 1, muni d'un circuit de compensation de non-linéarité de dérive thermique, conformément à l'invention.
Description détaillée d'un mode de réalisation préféré
La figure 2 illustre le schéma d'un capteur de pression comprenant quatre jauges extensométriques J1, J2, J3, J4 insérées respectivement dans les quatre branches d'un pont de Wheatstone 10. Les jauges J1 à J4 sont reliées chacune à deux sommets adjacents du pont par des brins de connexion c.
Les jauges J1 à J4 et les brins de connexion c sont formés par des dépôts métalliques sur un substrat, par exemple en silicium, faisant partie de l'élément sensible du capteur. De façon bien connue, deux jauges montées dans deux branches opposées du pont sont disposées sur le substrat de manière à être sollicitées en extension, lorsque le substrat est soumis à une pression à mesurer, tandis que les deux autres jauges sont disposées de manière à être sollicitées en compression.
Les jauges J1 à J4 sont par exemple formées par des dépôts en nickel-chrome, aussi identiques que possible, tandis que les brins de connexion c sont par exemple formés par des dépôts en or, également aussi identiques que possible.
Les dépôts sont réalisés en couche mince, par exemple par projection sous vide, la fermeture du pont étant réalisée par les dépôts réalisés.
Deux sommets opposés +a et -a du pont sont reliés à des bornes d'alimentation +A et -A tandis que les deux autres sommets +m et -m sont reliés à des bornes de mesure +M et -M. Un réseau de compensation 12 est interposé entre les sommets +a, -a, +m, -m d'une part, et les bornes +A, -A, +M, -M, d'autre part. Le réseau de compensation 12 vise à réaliser une compensation de dérive linéaire du capteur de pression en fonction de la température. Il s'agit d'un réseau résistif, de type bien connu en soi, par exemple tel que décrit dans le document FR-A 2 613 833.
Un circuit 20 de compensation de non-linéarité de dérive de zéro du pont est branché en parallèle sur un brin de connexion c reliant une des jauges du pont, par exemple la jauge J2, à l'un des deux sommets du pont situé aux extrémités de la branche contenant la jauge, par exemple le sommet +m.
Le circuit de compensation 20 comprend un élément résistif P dont la résistance est variable en fonction de la température, en particulier dans le domaine des très basses températures, c'est-à-dire, typiquement, les températures inférieures au point d'ébullition de l'azote (-196°C). Une résistance de réglage R peut être branchée en série avec l'élément résistif P, dans le circuit de compensation, afin de permettre un ajustage de la compensation réalisée.
Le montage de l'élément résistif en parallèle sur une partie constitutive de la résistance totale d'une branche du pont permet d'influencer de façon non linéaire le comportement du pont, donc de réaliser une compensation de non-linéarité de dérive. Lorsque cette non-linéarité s'accroít au fur et à mesure que la température décroít, l'influence de l'élément résistif P doit croítre, donc sa résistance décroítre de sorte que le rapport entre cette résistance et celle d'un brin de connexion c devienne au plus égal à 100 lorsque la température devient inférieure à -196°C et diminue lorsque la température décroít en deçà de -196°C. On utilise alors un élément résistif P ayant un coefficient de température positif, par exemple une sonde en platine.
Un capteur de pression tel qu'illustré par la figure 2 a été réalisé avec des jauges extensométriques formées par un dépôt en couche mince de nickel-chrome, chaque jauge ayant une résistance de 1 000 Ω à température ambiante (22°C). Les brins de connexion c sont des dépôts linéaires d'or en couche mince ayant chacune une résistance de 0,6 Ω à 22°C.
La figure 1 montre l'évolution de la tension recueillie aux sommets +m, -m du pont en l'absence de contraintes sur le capteur, et en l'absence du réseau de compensation 12 et du circuit de compensation 20, l'équilibre du pont (tension de sortie nulle) étant réalisé à 22°C.
On constate que la dérive de zéro du pont, due essentiellement aux jauges, devient de plus en plus prononcée au fur et à mesure que la température décroít. Jusqu'à environ -140°C, la dérive est sensiblement linéaire. Vers les plus basses températures, la non-linéarité de la dérive devient de plus en plus perceptible.
Un circuit de compensation constitué d'une sonde en platine P de résistance égale à 100 Ω à 0°C en série avec une résistance de réglage R est placé en parallèle sur le brin de connexion en or reliant la jauge J2 au sommet +m du pont.
Le tableau 1 ci-dessous montre les valeurs des résistances d'un brin de connexion c et de la sonde P, la résistance de réglage R étant nulle ainsi que de la résistance équivalente du circuit parallèle formé par P et c, à différentes températures. Le rapport entre les résistances de la sonde P et du brin de connexion c passe de 47 environ à 7,9 environ entre -196°C et -246°C.
Figure 00060001
L'introduction du circuit de compensation 20 se traduit par un décalage du zéro du pont, décalage qui augmente lorsque la température décroít. Le tableau 2 ci-dessous donne la valeur du décalage ΔZ, mesuré en tension de sortie du pont, les jauges n'étant pas sous contrainte (avec des jauges de 800 Ω, un décalage de 6.4 Ω d'une jauge produit une tension de sortie de 20 mV lorsque le pont est alimenté sous 10 V). Les différents décalages ΔZ indiqués dans le tableau 2 correspondent à différentes valeurs du circuit de compensation et différentes températures. Les lignes du tableau montrent que le décalage peut être atténué en augmentant la valeur de R ou accentué en diminuant la valeur de P (en plaçant par exemple deux sondes de 100 Ω en parallèle). Le choix du circuit de compensation est donc fonction du degré de non-linéarité à corriger.
Figure 00060002
La figure 3 montre l'évolution de la tension recueillie entre les sommets +m, -m du pont, dans les mêmes conditions que pour la figure 1, à savoir absence de contraintes sur le capteur, zéro du pont réalisé à 22°C et pas de compensation linéaire, mais avec différents circuits de compensation 20 comprenant une résistance R en série avec deux sondes P en parallèle, chaque sonde P étant une sonde en platine de résistance égale à 100 Ω à 0°C.
On constate que, par rapport à la courbe I donnant l'évolution de la dérive de zéro en l'absence de circuit de compensation 20, la correction de non-linéarité est d'autant plus accentuée que la résistance de R est plus petite. Dans cet exemple, pour R = 4 Ω et avec deux sondes P en parallèle, la dérive de zéro du pont est linéarisée jusqu'à de très faibles températures (environ -250°C). Par l'action du réseau de compensation linéaire 12, il est alors possible de compenser totalement la dérive thermique de zéro du pont depuis la température ambiante jusqu'aux très basses températures (quelques Kelvin).
Dans ce qui précède, il est envisagé de connecter un circuit de compensation de non-linéarité de dérive sur un des brins de connexion reliant une jauge extensométrique d'une des branches du pont à un sommet de celui-ci. Il est envisageable, pour aboutir au même effet, de brancher un circuit de compensation de non-linéarité de dérive sur l'un et/ou l'autre des brins de connexion de cette branche du pont et/ou sur l'un et/ou l'autre des brins de connexion de la branche opposée.
Dans le cas de la figure 1, la non-linéarité évolue dans le même sens que la composante de dérive linéaire et aggrave celle-ci, mais elle pourrait dans d'autres cas évoluer dans l'autre sens. Selon le sens de cette évolution, le circuit de compensation est connecté soit sur l'une et/ou l'autre de deux branches opposées du pont, soit sur l'une et/ou l'autre des deux autres branches opposées du pont.

Claims (5)

  1. Capteur de pression susceptible d'être utilise dans un domaine de très basses températures, allant jusqu'à des températures inférieures à -196°C, et comportant des jauges extensométriques (J1-J4) montées respectivement dans les branches d'un pont de Wheatstone (10) et des brins de connexion (c) reliant chaque jauge extensométrique à deux sommets adjacents du pont et ayant des valeurs de résistance très inférieures à celles des jauges extensométriques, les jauges extensométriques (J1-J4) et les brins de connexion (c) étant constituées par des dépôts métalliques sur un substrat,
       caractérisé en ce qu'il est en outre prévu un circuit de compensation de la non-linéarité de la dérive de zéro du pont dans ledit domaine de très basses températures, le circuit de compensation comprenant un élément résistif (P) qui est branché en parallèle sur un brin de connexion (c) entre une jauge extensométrique et un sommet du pont et dont la résistance varie en fonction de la température de manière à avoir une influence sensible et croissante sur la valeur de résistance du brin de connexion sur lequel il est branché en parallèle lorsque la température diminue, dans ledit domaine des très basses températures.
  2. Capteur selon la revendication 1, caractérisé en ce que les brins de connexion (c) sont constitués par de l'or.
  3. Capteur selon l'une quelconque des revendications 1 et 2, caractérisé en ce que le rapport entre la résistance dudit élément résistif (P) et celle de la résistance (c) sur laquelle il est branché en parallèle est au plus égal à 100 lorsque la température devient inférieure à -196°C et diminue ensuite lorsque la température décroít.
  4. Capteur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit élément résistif (P) est formé par au moins une sonde en platine.
  5. Capteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit circuit de compensation (20) comprend une résistance de réglage (R) en série avec ledit élément résistif (P).
EP99910415A 1998-03-20 1999-03-19 Capteur de pression avec compensation de la non-linearite de la derive de zero aux tres basses temperatures Expired - Lifetime EP0990128B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9803437A FR2776384B1 (fr) 1998-03-20 1998-03-20 Capteur de pression avec compensation de la non-linearite de la derive de zero aux tres basses temperatures
FR9803437 1998-03-20
PCT/FR1999/000637 WO1999049288A1 (fr) 1998-03-20 1999-03-19 Capteur de pression avec compensation de la non-linearite de la derive de zero aux tres basses temperatures

Publications (2)

Publication Number Publication Date
EP0990128A1 EP0990128A1 (fr) 2000-04-05
EP0990128B1 true EP0990128B1 (fr) 2005-08-24

Family

ID=9524275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99910415A Expired - Lifetime EP0990128B1 (fr) 1998-03-20 1999-03-19 Capteur de pression avec compensation de la non-linearite de la derive de zero aux tres basses temperatures

Country Status (8)

Country Link
US (1) US6314815B1 (fr)
EP (1) EP0990128B1 (fr)
JP (1) JP4131990B2 (fr)
CN (1) CN1144032C (fr)
DE (1) DE69926847T2 (fr)
ES (1) ES2246565T3 (fr)
FR (1) FR2776384B1 (fr)
WO (1) WO1999049288A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701790B2 (en) * 2002-06-13 2004-03-09 Mykrolis Corporation Temperature regulator for use with a pressure sensing device
CN101275876B (zh) * 2007-03-27 2011-05-11 豪威国际控股有限公司 压力传感器信号调理集成电路的桥臂平衡补偿电阻的设计方法
JP5066010B2 (ja) * 2008-06-09 2012-11-07 株式会社タニタ 多点式秤及びその製造方法
US7938016B2 (en) * 2009-03-20 2011-05-10 Freescale Semiconductor, Inc. Multiple layer strain gauge
CN101887081B (zh) * 2010-06-29 2012-09-05 三一重工股份有限公司 一种电桥零点调节电路
CN102252700B (zh) * 2011-04-29 2012-08-22 中北大学 微悬臂梁压阻电桥式传感器检测仪
JP6490039B2 (ja) * 2016-10-21 2019-03-27 ミネベアミツミ株式会社 ひずみゲージ
CN106595832B (zh) * 2016-12-07 2023-05-02 锐马(福建)电气制造有限公司 一种称重传感器零点漂移补偿工作台
CN106802170B (zh) * 2016-12-30 2019-07-19 北京七星华创流量计有限公司 流量传感器、质量流量输送测控装置及其温漂抑制方法
CN110823446B (zh) * 2019-10-18 2022-01-07 成都凯天电子股份有限公司 硅压阻式压力传感器二次温度补偿零点调试方法
CN113639903A (zh) * 2021-07-13 2021-11-12 西安理工大学 一种fdm打印过程应力检测方法
CN117030098B (zh) * 2023-09-28 2024-02-27 无锡菲欧科技有限公司 一种拥有温度补偿的双压力输出传感器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645136A (en) * 1970-04-15 1972-02-29 Charles W Calhoun Fluid pressure measuring device
JPS55163880A (en) * 1979-06-07 1980-12-20 Hitachi Ltd Semiconductor strain gauge bridge circuit
US4333349A (en) * 1980-10-06 1982-06-08 Kulite Semiconductor Products, Inc. Binary balancing apparatus for semiconductor transducer structures
FR2497346A1 (fr) * 1980-12-31 1982-07-02 Gi Teploene Transducteur extensometrique a semi-conducteurs
US4414853A (en) * 1981-08-10 1983-11-15 The Foxboro Company Pressure transmitter employing non-linear temperature compensation
JPS62121302A (ja) * 1985-11-21 1987-06-02 Kyowa Electronic Instr Corp Ltd ひずみゲ−ジ式変換器における温度補償回路およびその温度補償方法
JPH0797010B2 (ja) * 1986-03-26 1995-10-18 株式会社日立製作所 半導体歪ゲ−ジブリツジ回路
JPH11511849A (ja) * 1994-12-02 1999-10-12 ゲッティンゲ アーベー 圧力センサにおける温度補償方法

Also Published As

Publication number Publication date
EP0990128A1 (fr) 2000-04-05
DE69926847D1 (de) 2005-09-29
ES2246565T3 (es) 2006-02-16
US6314815B1 (en) 2001-11-13
JP4131990B2 (ja) 2008-08-13
JP2001527652A (ja) 2001-12-25
FR2776384A1 (fr) 1999-09-24
CN1262738A (zh) 2000-08-09
CN1144032C (zh) 2004-03-31
DE69926847T2 (de) 2006-06-29
WO1999049288A1 (fr) 1999-09-30
FR2776384B1 (fr) 2000-06-23

Similar Documents

Publication Publication Date Title
EP0866958B1 (fr) Pont de wheatstone avec compensation de gradient de temperature
EP0990128B1 (fr) Capteur de pression avec compensation de la non-linearite de la derive de zero aux tres basses temperatures
EP0604628B1 (fr) Jauge de contrainte sur support souple et capteur muni de ladite jauge.
FR2847982A1 (fr) Dispositif et procedes pour la mesure de la pression de pertes de chaleur
CA2320867A1 (fr) Capteur de pression differentielle
FR2820202A1 (fr) Capteur de pression et moteur de fusee l'incorporant
EP0510061B1 (fr) Dispositif de mesure des variations de la capacite d'un condensateur formant, notamment, un capteur
CH638618A5 (fr) Capteur anemometrique directionnel a perte de chaleur.
FR2611402A1 (fr) Resistance composite et son procede de fabrication
CH676049A5 (fr)
FR2855260A1 (fr) Element de mesure pour un capteur de passage notamment un debitmetre massique d'air equipant un moteur a combustion interne
EP0524855B1 (fr) Circuit électrique tel qu'un pont de wheatstone pourvu d'une partie d'ajustage de resistance
EP0141731A2 (fr) Capteur de force comprenant un barreau élastique pourvu de jauges de contrainte
BE879309A (fr) Dispositif mesureur de pression utilisant un extensometre a resistors
EP0112783B1 (fr) Sonde thermique pour la détection de la présence ou de l'absence d'un liquide
FR2855261A1 (fr) Capteur de passage a deux resistances
FR2654210A1 (fr) Dispositif de mesure pour la determination d'une grandeur physique.
WO2023089255A1 (fr) Fluxmetre thermique resistif a derive compensee et un procede de fabrication d'un tel fluxmetre
WO2023247837A1 (fr) Capteur a jauges de deformation
FR2542447A1 (fr) Capteur de force comprenant un support deformable et des jauges de contrainte
WO2016189231A1 (fr) Detecteur et procede de fabrication associe
FR2635584A1 (fr) Capteur a jauge de contrainte a faible sensibilite aux parasites electriques
FR2613833A1 (fr) Capteur a jauges de contrainte
WO2005001458A2 (fr) Cellule de mesure pour un calorimetre a compensation de puissance et dispositif comportant deux telles cellules
EP0260365A1 (fr) Capteur de position et de déplacement, notamment de la position et du déplacement d'un doigt humain, en particulier pour réaliser un atténuateur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB LI

17Q First examination report despatched

Effective date: 20040803

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA PROPULSION SOLIDE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69926847

Country of ref document: DE

Date of ref document: 20050929

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051024

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2246565

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060526

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69926847

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69926847

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE, DE

Effective date: 20130114

Ref country code: DE

Ref legal event code: R081

Ref document number: 69926847

Country of ref document: DE

Owner name: HERAKLES, FR

Free format text: FORMER OWNER: SNECMA PROPULSION SOLIDE, LE HAILLAN, FR

Effective date: 20130114

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20130221 AND 20130227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130305

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: HERAKLES, FR

Effective date: 20130513

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140320

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180316

Year of fee payment: 20

Ref country code: DE

Payment date: 20180309

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180322

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69926847

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190318