EP0986534A2 - Organische verbindungen - Google Patents

Organische verbindungen

Info

Publication number
EP0986534A2
EP0986534A2 EP98932100A EP98932100A EP0986534A2 EP 0986534 A2 EP0986534 A2 EP 0986534A2 EP 98932100 A EP98932100 A EP 98932100A EP 98932100 A EP98932100 A EP 98932100A EP 0986534 A2 EP0986534 A2 EP 0986534A2
Authority
EP
European Patent Office
Prior art keywords
formula
alkyl
substituted
hydrogen
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98932100A
Other languages
English (en)
French (fr)
Inventor
Peter Maienfisch
Tibor GÖGH
Manfred Böger
Thomas Pitterna
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis Pharma GmbH
Novartis AG
Original Assignee
Novartis Erfindungen Verwaltungs GmbH
Novartis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novartis Erfindungen Verwaltungs GmbH, Novartis AG filed Critical Novartis Erfindungen Verwaltungs GmbH
Publication of EP0986534A2 publication Critical patent/EP0986534A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/53Nitrogen atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/16Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/18Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof
    • A01N37/28Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof containing the group; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/36Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/32Oximes
    • C07C251/62Oximes having oxygen atoms of oxyimino groups esterified
    • C07C251/64Oximes having oxygen atoms of oxyimino groups esterified by carboxylic acids
    • C07C251/66Oximes having oxygen atoms of oxyimino groups esterified by carboxylic acids with the esterifying carboxyl groups bound to hydrogen atoms, to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/72Hydrazones
    • C07C251/86Hydrazones having doubly-bound carbon atoms of hydrazone groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/63Carboxylic acid nitriles containing cyano groups and nitrogen atoms further bound to other hetero atoms, other than oxygen atoms of nitro or nitroso groups, bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/195Radicals derived from nitrogen analogues of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Definitions

  • the present invention relates to new fluoroalkenecarboxylic acid derivatives, processes for their preparation, insecticidal compositions which comprise the new fluoroalkenecarboxylic acid derivatives as active ingredient, and the use of the new fluoroalkenecarboxylic acid derivatives for controlling harmful insects and acarids.
  • the present invention relates to compounds of the formula
  • R 3 is hydrogen, fluorine or methyl; m 0, 1, 2, 3, 4 or 5; n O or l;
  • X is oxygen or NR
  • R 4 represents hydrogen or CrC 6 alkyl or benzyl, which are optionally substituted, and optionally their possible E / Z isomers, E / Z isomer mixtures and / or tautomers, in each case in free form or in salt form, with the proviso that that a) R 3 is not hydrogen or fluorine and m and n are not both 0 when X is oxygen and R 1 and R 2 are independently hydrogen or unsubstituted or substituted alkyl, alkenyl, cycloalkyl, aryl or heteroaryl; b) R 3 is not hydrogen or fluorine and m and n are not both 0 when R 4 is hydrogen and R ⁇ and R 2 are independently hydrogen or unsubstituted or substituted alkyl, aryl or heteroaryl; c) m is not 0, 1 or 2 and R 4 is not hydrogen, alkyl or haloalkyl if one of the radicals R 1 or R 2 is 4-alkylsulfony
  • Preferred groups of compounds of the formula (I) - taking into account the above-mentioned measures - are those in which
  • Ri and R 2 are independently hydrogen or alkyl, cycloalkyl, alkenyl or
  • Alkynyl which are optionally substituted, mean R 3 represents hydrogen, fluorine or methyl, m 0, 1, 2, 3, 4 or 5; n is 0 or 1, X is oxygen or NR 4 , and R 4 is hydrogen or unsubstituted or substituted CC 6 alkyl or benzyl; wherein Ri is hydrogen or unsubstituted or substituted alkyl, alkenyl, alkynyl or
  • R 2 is hydrogen or unsubstituted or substituted aryl or heteroaryl
  • R 3 is hydrogen, fluorine or methyl
  • m is 0, 1, 2, 3, 4 or 5
  • n is 0 or 1
  • X is oxygen or NR 4
  • R 4 is hydrogen or unsubstituted or substituted dC 6 alkyl or benzyl
  • R 1 and R 2 independently of one another denote H or aryl, which are optionally substituted, or R 3 represents hydrogen, fluorine or methyl, m 0, 1, 2, 3, 4 or 5
  • n is 0 or 1
  • X represents oxygen or NR 4 .
  • R 4 represents hydrogen or unsubstituted or substituted C 1 -C 6 -alkyl or benzyl, the general terms used in the above definitions of the substituents R 1, R 2 , R and R 4 are defined below as follows:
  • Halogen means fluorine, chlorine, bromine or iodine, especially fluorine, chlorine or bromine, especially fluorine or chlorine and especially chlorine.
  • Alkyl means straight-chain or branched alkyl radicals having 1 to 20 carbon atoms, which can be unsubstituted or substituted one or more times.
  • R 1 and R 2 as alkyl groups are preferably straight-chain or branched alkyl radicals having 1 to 8 carbon atoms and particularly preferably alkyl radicals having 1 to 4 carbon atoms.
  • Suitable substituents of R T and R 2 as alkyl groups are hydroxyl, halogen, alkoxy, haloalkoxy, alkoxyalkoxy, alkythio, haloalkylthio, alkylsulfinyl, alkylsulfonyl, alkylsulfonyloxy, alkylcarbonyl, dialkylamino, pyrrolidino, piperidino, morphoiino, alkoxycarbonyl, alkylcarbonyloxy , Aryl, aryloxy, arylthio, arylsulfonyl, arylsulfonyloxy, arylcarbonyl or heteroaryl, where aryl or heteroaryl groups in turn are substituted one or more times by halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, nitro, cyano, phenoxy, halophenoxy, phenyl
  • alkyl radicals present as alkyl groups in the substituents of R 1 and R 2 preferably have 1 to 4 carbon atoms. These alkyl radicals are particularly preferably methyl or ethyl radicals.
  • R ⁇ and R 2 as alkyl groups are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 1-methylbutyl, 2,2-dimethylpropyl , Isopentyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 1, 3-dimethylbutyl, 2-ethylbutyl, n-heptyl, n-octyl, isooctyl, nonyl, decyl, undecyl, dodecyl, hexadecyl and octadecyl.
  • R *. and R 2 as alkyl groups are hydroxy, halogen, alkoxy, haloalkoxy, alkoxyalkoxy, alkythio, haloalkylthio, alkylsulfinyl, alkylsulfonyl, alkylsulfonyloxy, alkylcarbonyl, dialkylamino, pyrrolidino, piperidino, morphoiino, alkoxycarbonyl, alkylcarbonyloxy, cycloalkyl, phenyl, phenyl, phenoxy, phenyl, phenoxy , Phenylsulfonyloxy, benzoyl and pyridyl can be substituted by halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, nitro or cyano.
  • a single or multiple substitution of a radical R- or R 2 means in particular a 1 to 4-fold, preferably a 1 to 2-fold and particularly preferably a 1-fold substitution, with R and R 2 in particular as lower alkyl radicals , such as methyl or ethyl, can be perhalogenated, in particular perfluorinated, when substituted by halogen.
  • the respective substituents can be the same or different.
  • Aryl means phenyl or naphthyl, preferably phenyl.
  • Heteroaryl denotes aromatic radicals with 5 or 6 ring members and 1 or 2 heteroatoms, which are selected from the group consisting of nitrogen, oxygen and sulfur.
  • heteroaryl radicals are pyrrolyl, furyl, thienyl, imidazolyl, pyrrazolyl, oxazolyl, thiazolyl, pyridyl, pyridazinyl, pyrimidinyl and pyrazinyl, the radicals R 1 and R 2 as heteroaryl radicals each being bonded via a carbon atom and optionally a benzene ring being fused to these radicals can.
  • Preferred heteroaryl radicals are pyridyl, pyrimidinyl, quinolyl, furyl and thienyl.
  • Aryl residues and heteroaryl residues can be unsubstituted or one or more times by halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfonyloxy, haloalkylsulfonyloxy, haloalkoxysulfonyloxy, nitro, cyano, benzoyl, phenyl, phenoxy, phenylthyl, benzylkinoamino, dialylyloxylamino, dialylyloxylamino, trialyl , Pyrrolidino, piperidino, morphoiino, anilino, cycloalkylalkoxy or halocycloalkylalkoxy, heteroaryl or heteroaryloxy, where benzoyl, phenyl, phenoxy, phenylthio, benzyloxy, anilino,
  • Alkenyl means straight-chain or branched alkenyl radicals having 3 to 20, preferably 3 to 8 carbon atoms and particularly preferably alkenyl radicals having 3 to 5 carbon atoms, which can be unsubstituted or substituted one or more times by halogen.
  • Alkenyl preferably denotes those alkenyl radicals which are bonded via a saturated carbon atom, ie alkenyl radicals with a central or terminal double bond.
  • alkenyl radicals are allyl, methallyl, 2-buten-1-yl, 3-butene-1-yl, 2-penten-1-yl, 3-penten-1-yl, 4-penten-1-yl, 2-methyl -2-buten-1-yl, 2-hexen-1-yl, 3-hexen-1-yl, 4-hexen-1-yl, 5-hexen-1yl, 2-hepten-1-yl, 2-octene -1-yl and 2-decen-1 -yl. Allyl and methallyl are particularly preferred alkenyl radicals.
  • Alkynyl means straight-chain or branched alkynyl radicals having 3 to 20, preferably 3 to 8 carbon atoms and particularly preferably alkynyl radicals having 3 to 5 carbon atoms, which may be unsubstituted or substituted one or more times by halogen.
  • Alkynyl preferably denotes those alkynyl radicals which are bonded via a saturated carbon atom, i.e. H. Alkynyl residues with a middle or terminal triple bond.
  • alkynyl radicals are propargyl, 2-butyn-1-yl, 3-butyn-1-yl, 2-, 3- or 4-pentyn-1-yl, 2-, 3-, 4- or 5-hexyn-1 -yl, 2-, 3-, 4-, 5- or 6 heptin-1-yl and 2-, 3-, 4-, 5-, 6- or 7-octin-1yl.
  • a particularly preferred alkynyl radical is the propargyl radical.
  • Cycloalkyl means cycloalkyl radicals having 3 to 7 carbon atoms, which may be unsubstituted or substituted one or more times by halogen, alkyl or haloalkyl, alkyl and haloalkyl radicals preferably containing 1 to 4 carbon atoms and particularly preferably 1 to 2 carbon atoms.
  • cycloalkyl radicals are cyclopropyl, 2-methylcyclopropyl, cyclobutyl, cyclopentyl, 2-methylcyclopentyl, 3,4-dimethylcyclopentyl, cyclohexyl, 2-methylcylohexyl, 4-methylcyclohexyl, 3,4-dimethylcyclohexyl, 2,4-dimethylcyclohexyl and cycloheptyl.
  • the present invention relates in particular to compounds of the general formula (I) in which, taking into account the above-mentioned measures,
  • C Cao-alkyl which is straight-chain or branched and one to four times by hydroxy, halogen, alkoxy, haloalkoxy, alkoxyalkoxy, alkythio, haloalkylthio, alkylsulfinyl, alkylsulfonyl, alkylsulfonyloxy, alkylcarbonyl, dialkylamino, pyrrolidino, piperidino, morphoino, alkoxycarbonylcycloalkylcarbonyl , Phenyl, Naphthyl, Phenoxy, Naphthoxy, Phenylthio, Naphthylthio, Phenylsulfonyl, Naphthylsulfonyl, Phenylsulfonyloxy, Naphthylsulfonyloxy, Benzoyl, Naphthoyl, Heteroaryl or Heteroary
  • Phenylthio or halophenylthio may be substituted
  • Phenyl or naphthyl which is one to four times by halogen, alkyl, haloalkyl, alkoxy,
  • Ring members and 1 to 2 heteroatoms N, O or S can be substituted, with phenyl,
  • Heteroaryloxy radicals as substituents in turn, one or two times by halogen, alkyl,
  • Halogenphenylthio, Cycloalkylalkoxy or Halogencycloalkylalkoxy can be substituted
  • Benzyloxy, anilino, naphthyl, heteroaryl or heteroaryloxy with 5 to 6 ring members and 1 to 2 heteroatoms N, O or S can be substituted, phenyl, phenoxy,
  • Cycloalkylalkoxy or Halogencycloalkylalkoxy may be substituted
  • R 3 is hydrogen, fluorine or methyl; m 0, 1, 2, 3, 4 or 5; n 0 or 1; and
  • X represents oxygen or NR 4 , where R represents hydrogen, CC-alkyl, which can be substituted one or more times by halogen, C 1 -C 4 -alkoxy or di-C C -alkylamino, or stands for benzyl, one or more times by halogen, CC 4 -Alkyl, halogen-C C -alkyl, dd-alkoxy, nitro or cyano may be substituted.
  • R 1 and R 2 independently of one another are hydrogen, C 1 -C 8 -alkyl, which is straight-chain or branched and mono- or disubstituted by hydroxyl, halogen, CrC 4 - Alkoxy, halogen-dC -alkoxy, CC -alkoxyalkoxy, C 1 -C 4 -alkylthio, halogen-C C 4 -alkylthio, CrC -alkylsulfinyl, C ⁇ -C 4 -alkylsulfonyl, CrC lkylsulfonyloxy, d- C 4 -alkylcarbonyl, Di -Crd-alkyiamino, pyrrolidino, piperidino, morphoiino, dC -alkoxycarbonyl, -C-C 4 -alkylcarbonyioxy,
  • C 3 -C 8 alkynyl which can be straight-chain or branched and can be mono- or disubstituted by halogen;
  • C 3 -C cycloalkyl which can be mono- or disubstituted by halogen, CC-alkyl or halogen-C C 4 - alkyl;
  • Phenyl or naphthyl which is mono- or disubstituted by halogen, CrC 4 -alkyl, halogen-C C-alkyl, CC 4 -alkoxy, halogen-C C 4 -alkoxy, C 3 -C 6 -cycloalkyl-C C 4 - alkoxy, halogen-C C 4 - cycloalkyl -CC -alkoxy, CC 4 -alkylthio, halogen-
  • Ring members and 1 to 2 heteroatoms N, O or S can be substituted, with phenyl,
  • Halogen-C 3 -C 6 -cycloalkyl -CC-C 4 alkoxy may be substituted
  • R 3 is hydrogen, fluorine or methyl, m 0, 1, 2, 3 or 4, n 0 or 1 and
  • X represents oxygen or NR
  • R 4 is hydrogen, dC 4 alkyl, which can be mono- or disubstituted by halogen, CrC 4 alkoxy or di-dC 4 alkylamino, or for
  • Benzyl is the one to two times by halogen, dd-alkyl, halogen-dC 4 -alkyl, dC 4 -
  • Alkoxy, nitro or cyano can be substituted.
  • R 3 is hydrogen; b) m denotes 0, 1, 2, 3 or 4, particularly preferably 1 or 4; c) n denotes 0; d) R 4 represents hydrogen; e) Ri and R 2 have the meaning given above, R 3 represents hydrogen, m is 0, 1, 2, 3 or 4, n represents 0 or 1, and X represents oxygen or NH; f) Ri and R 2 have the meaning given above, R 3 stands for hydrogen, m is 1 or 4, n means 0 and X represents oxygen or NH: g) Ri has the meaning given above, R 3 stands for hydrogen and R 2 is a group
  • Alk is methyl or ethyl and the phenyl ring is optionally substituted.
  • Particularly preferred individual compounds are compounds of the formula (I) in which R 3 is hydrogen and a) Ri is hydrogen, R 2 is hydrogen, X is oxygen, m 1 and n 0; b) Ri methyl, R 2 methyl, X oxygen, m 1 and n 0; c) Ri methyl, R 2 phenyl, X oxygen, m 1 and n 0; d) Ri methyl, R 2 4-trifluoromethylphenyl, X oxygen, m 1 and n 0; e) Ri methyl, R 2 4-nitrophenyl, X oxygen, m 1 and n 0; f) R !
  • the present invention further provides a process for the preparation of a compound of the formula (I), characterized in that a) for the preparation of a compound of the formula (I), in which n is 0 and R 1, R 2 , R 3 , X and m have the meaning given above under formula (I), a compound of the formula
  • R 3 and m have the meaning given under formula (I) and Y 2 is Cl, Br or OSO 2 alkyl, with a compound of the formula
  • the starting materials of the formula (III) can be prepared in a manner known per se by reacting a ketone of the above formula (V) with hydrazine, a hydrazine monosubstituted by R 4 as defined above or with hydroxylamine, the ketones of the formula (V) in turn are accessible by the known processes customary for the production of ketones.
  • the starting materials of formula (II) can be obtained by using an acid halide of the formula
  • the starting materials of formula (VII) can be obtained by using a chloroacetic acid halide, e.g. B. chloroacetyl chloride, with a compound of formula (III) as defined above.
  • Process a) is preferably not carried out in an inert, hydroxyl-free solvent in the presence of an organic base, such as, for example, pyridine, 4-dimethylaminopyridine, 4-pyrrolidinopyridine, lutidine, coilidine, trialkylamine, N, N-dialkylaniline, or a bicyclic one nucleophilic base such as 1,4-diazabicyclo [2.2.2] octane (DABCO),
  • DABCO 1,4-diazabicyclo [2.2.2] octane
  • DBN 1,5-diazabicyclo [4.3.0] non-5-ene
  • DBU 1,8-diazabicyclo [5.4.0] undec-7-ene
  • the reaction is generally carried out at temperatures from -30 ° C. to + 70 ° C., preferably from -10 ° C. to + 50 ° C.
  • the procedure is expediently carried out in the presence of an inert solvent or solvent mixture.
  • Aliphatic and aromatic hydrocarbons such as benzene, toluene, xylenes, petroleum ether, hexane are suitable for this purpose; halogenated hydrocarbons such as chlorobenzene, methylene chloride, ethylene chloride, chloroform, carbon tetrachloride, tetrachlorethylene; Ethers and ethereal compounds such as dialkyl ether (diethyl ether, diisopropyl ether, tert-butyl methyl ether, etc.) anisole, dioxane, tetrahydrofuran; Nitriles such as acetonitrile, propionitrile; Esters such as ethyl acetate (ethyl acetate), propyl acetate or butyl acetate; Ketones such as acetone, diethyl ketone, methyl ethyl ketone; and mixtures of such solvents with one another.
  • reaction can also be carried out in excess of one of the bases mentioned above, or a second equivalent or a larger excess of the compound of I can also be used instead of the base.
  • the reaction is carried out under the pressure of the environment, although it could also be carried out under increased or reduced pressure.
  • the reaction of process b) is advantageously carried out in an inert solvent at a temperature of 20 ° C. to 150 ° C., preferably at 40 ° C. to 120 ° C., optionally in the presence of a catalytic amount of an acid, such as acetic acid or p-toluenesulfone. acid.
  • Preferred inert solvents are lower alkanols, especially methanol and ethanol.
  • reaction of process c) is advantageously carried out in an inert solvent in the presence of a base and, if appropriate, in the presence of a catalyst, such as NaI or CsF, with polar aprotic solvents such as N, N-dimethylformamide, dimethyl sulfoxide, dioxane being preferred as the inert solvent and tetrahydrofuran.
  • a catalyst such as NaI or CsF
  • polar aprotic solvents such as N, N-dimethylformamide, dimethyl sulfoxide, dioxane being preferred as the inert solvent and tetrahydrofuran.
  • pyridine, 4-dimethylaminopyridine, 4-pyrrolidinopyridine, lutidine, coilidine, trialkylamine, N, N-dialkylaniline, or a bicyclic base are not bases nucleophilic base such as 1,4-diazabicyclo [2.2.2] octane (DABCO), 1,5-diazabicyclo [4.3.O] non-5-ene (DBN) or 1,8-diazabicyclo [5.4.0] undec-7 -en (1, 5-5) (DBU), suitable.
  • DABCO 1,4-diazabicyclo [2.2.2] octane
  • DBN 1,5-diazabicyclo [4.3.O] non-5-ene
  • DBU 1,8-diazabicyclo [5.4.0] undec-7 -en (1, 5-5)
  • reaction described above and below are carried out in a manner known per se, e.g. in the absence or, where appropriate, in the presence of a suitable solvent or diluent or a mixture thereof, with cooling, at room temperature or with heating, e.g. in a temperature range from about -80 ° C to the boiling temperature of the reaction mixture, preferably from about -20 ° C to about + 150 ° C, and, if necessary, in a closed vessel, under pressure, in an inert gas atmosphere and / or under anhydrous Conditions works. Particularly advantageous reaction conditions can be found in the examples.
  • the compounds of the formula (I) according to the invention are valuable active ingredients in the field of pest control, while being well tolerated by warm-blooded animals, fish and plants.
  • the active compounds according to the invention act against insects and arachnids, as they occur on useful and ornamental plants in agriculture and horticulture, in particular in rice, cotton, vegetable and fruit plantations, and in the forest.
  • the compounds of the formula (I) are particularly suitable for controlling insects in rice, fruit and vegetable crops, in particular insects which damage plants, such as Aphis craccivora, Nilaparvata lugens and Nephotettix cincticeps.
  • the compounds of the formula (I) are active against all or individual stages of development of normally sensitive, but also of resistant types of pests. Their effect can be such. B. in a killing of the pests, which occurs immediately or only after some time, for example when molting, or in a reduced egg laying and / or hatching rate.
  • the animal pests mentioned include, for example, those which are mentioned in European patent application EP-A-736'252.
  • EP-A-736'252 is therefore included by reference in the present subject matter.
  • the compounds of the formula (I) are particularly suitable as active compounds for controlling pests from the Homoptera order and from the Akarina order.
  • the compounds of the formula (I) are particularly suitable for controlling the pests in cotton, vegetable, fruit and rice crops, such as spider mites, aphids, and caterpillars and rice cicadas.
  • Spider mites like Panonychus ulmi
  • aphids like Aphis craccivora
  • caterpillars like those of Heliothis virescens and rice leafhoppers like Nilaparvata lugens or Nephotettix cincticeps can be checked.
  • the good pesticidal activity of the compounds of the formula (I) according to the invention corresponds to a mortality rate of at least 50-60% of the pests mentioned.
  • the action of the compounds of the formula (I) according to the invention and the compositions comprising them can be broadened considerably by adding other insecticides and / or acaricides and adapted to the given circumstances.
  • Representatives of the following classes of active substances are suitable as additives: organic phosphorus compounds, nitrophenols and derivatives, formamidines, ureas, carbamates, pyrethroids, chlorinated hydrocarbons and Bacillus thuringiensis preparations.
  • the compounds of the formula (I) are used in unchanged form or, preferably, together with the auxiliaries customary in formulation technology and can therefore, for example, also to emulsifiable concentrates, directly sprayable or dilutable solutions, diluted emulsions, wettable powders, soluble powders, dusts, granules Encapsulations in polymeric substances are processed in a known manner.
  • the application methods such as spraying, atomizing, dusting, scattering or pouring, as well as the agents, are chosen in accordance with the desired goals and the given conditions.
  • the formulation that is to say an active ingredient (I), or combinations of these active ingredients with other insecticides or acaricides, and, if appropriate, agents, preparations or compositions comprising a solid or liquid additive are prepared in a known manner, for example by intimate mixing and / or Grinding the active ingredients with extenders, such as with solvents, solid carriers, and optionally surface-active compounds (surfactants).
  • extenders such as with solvents, solid carriers, and optionally surface-active compounds (surfactants).
  • auxiliaries such as solvents, solid carriers, surface-active compounds, nonionic surfactants, cationic surfactants, anionic surfactants and other auxiliaries in the agents used according to the invention are, for example, the same as those described in EP-A-736'252.
  • the pesticidal preparations generally contain 0.1 to 99%, in particular 0.1 to 95%, of active ingredient I or of the combination of this active ingredient with other insecticides and / or acaricides and 1 to 99.9%, in particular 5 to 99.9%, of a solid or liquid auxiliary, it being possible for the preparations to be, as a rule, 0 to 25%, in particular 0.1 to 20%, surfactants (% means weight percent). While concentrated products are preferred as a commercial product, the end user generally uses diluted preparations which have significantly lower active substance concentrations. Typical application concentrations are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm. The application rates per hectare are generally 1 to 1000 g of active ingredient per hectare, preferably 25 to 500 g / ha.
  • Emulsifiable concentrates are:
  • Active ingredient 1 to 90%, preferably 5 to 20%
  • Surfactant 1 to 30%, preferably 10 to 20% liquid carrier: 5 to 94%, preferably 70 to 85%
  • Active ingredient 0.1 to 10%, preferably 0.1 to 1% solid carrier: 99.9 to 90%, preferably 99.9 to 99%
  • Active ingredient 5 to 75%, preferably 10 to 50%
  • Surfactant 1 to 40%, preferably 2 to 30%
  • Active ingredient 0.5 to 90%, preferably 1 to 80%
  • Surfactant 0.5 to 20%, preferably 1 to 15% solid carrier: 5 to 95%, preferably 15 to 90%
  • Active ingredient 0.5 to 30%, preferably 3 to 15% solid carrier 99.5 to 70%, preferably 97 to 85%
  • the preparations can also contain other auxiliaries, such as stabilizers, e.g. B. optionally epoxidized vegetable oils (e.g. epoxidized coconut oil, rapeseed oil or soybean oil), defoamers, z. B. silicone oil, preservatives, viscosity regulators, binders and / or adhesives, as well as fertilizers or other active ingredients to achieve special effects.
  • stabilizers e.g. B. optionally epoxidized vegetable oils (e.g. epoxidized coconut oil, rapeseed oil or soybean oil), defoamers, z. B. silicone oil, preservatives, viscosity regulators, binders and / or adhesives, as well as fertilizers or other active ingredients to achieve special effects.
  • epoxidized vegetable oils e.g. epoxidized coconut oil, rapeseed oil or soybean oil
  • defoamers e.g. epoxidized coconut oil, rape
  • DAHSCI 6,6-difluoro-5-hexenoyl chloride
  • 0.5 g (10 mmol) of the hydrazine hydrate is added to a solution of 0.9 g (10 mmol) of methyl glycolate in 10 ml of methanol.
  • the solution is heated under reflux on the water bath for 10 minutes and then concentrated in a rotary evaporator.
  • the residue is reslurried in 10 ml of methanol, mixed with 0.58 g (10 mmol) of acetone and stirred for a further 10 hours at room temperature. After evaporating off the methanol, the residue is slurried in 20 ml of dichloromethane-tetrahydrofuran.
  • Example B1 Ovicidal action on Heliothis virescens
  • Eggs from Heliothis virescens deposited on filter paper are briefly immersed in an acetonic-aqueous test solution containing 400 ppm of the active ingredient to be tested. After the test solution has dried on, the eggs are incubated in petri dishes. After 6 days, the percentage hatching of the eggs is evaluated in comparison to untreated control batches (% hatching reduction).
  • Example B2 Action against Nilaparvata luoens
  • Rice plants are treated with an aqueous emulsion spray mixture which contains 400 ppm of the active ingredient. After the spray coating has dried on, the rice plants are colonized with 2nd and 3rd stage larvae of Nilaparvata lugens. Evaluation takes place 21 days later. The percentage reduction in population (% action) is determined by comparing the number of surviving cicadas on the treated plants with those on the untreated plants. The compounds of Tables 1-20 show a good activity against Nilaparvata lugens in this test.
  • connections 4.80, 4.53, 4.78, 4.12, 4.21, 4.79, 4.02, 4.36, 4.26, 5.76, 5.77, 5.53, 5.21, 5.78, 5.02, 5.12, 5.79, 5.36, 5.26, 5.80, 6.53, 6.21, 6.78 , 6.79, 6.12, 6.02, 6.36, 6.26 and 6.80 show an effect over 80%.
  • Corn seedlings are sprayed with an aqueous emulsion spray mixture which contains 400 ppm of the active ingredient. After the spray coating has dried on, the maize seedlings are populated with 10 larvae of Diabrotica balteata of the second stage and placed in a plastic container. Evaluation takes place 6 days later. The percentage reduction in the population (% activity) is determined by comparing the number of dead larvae on the treated plants with those on the untreated plants.
  • the compounds of Tables 1-20 show good activity against Diabrotica balteata in this test.
  • the connections 4.80, 4.53, 4.78, 4.12, 4.21, 4.79, 4.02, 4.36, 4.26, 5.76, 5.77, 5.53, 5.21, 5.78, 5.02, 5.12, 5.79, 5.36, 5.26, 6.53, 6.21, 6.78, 6.79 , 6.12, 6.02, 6.26 and 6.80 show an effect over 80%.
  • Example B4 Action against Tetranychus urticae
  • Young bean plants are populated with a mixed population of Tetranychus urticae and sprayed with an aqueous emulsion spray mixture containing 400 ppm of the active ingredient 1 day later. The plants are then incubated at 25 ° C. for 6 days and then evaluated. The percentage reduction in the population (% activity) is determined by comparing the number of dead eggs, larvae and adults on the treated plants with those on the untreated plants.
  • the compounds of Tables 1-20 show a good activity against Tetranychus urticae in this test.
  • the connections 4.80, 4.53, 4.78, 4.12, 4.21, 4.79, 4.02, 4.36, 4.26, 5.76, 5.77, 5.53, 5.21, 5.78, 5.02, 5.12, 5.79, 5.36, 5.26, 5.80, 6.53, 6.21, 6.78 , 6.12, 6.02, 6.36, 6.26 and 6.80 show an effect over 80%.
  • Example B5 Activity against Spodoptera littoralis caterpillars
  • Young soybean plants are sprayed with an aqueous emulsion spray mixture which contains 400 ppm of the active ingredient. After the spray coating has dried on, the soy plants are populated with 10 caterpillars of the third stage of Spodoptera littoralis and placed in a plastic container. The evaluation is carried out three days later. From the comparison the number of dead caterpillars and the feeding damage on the treated to those on the untreated plants is the percentage reduction in the population or. determines the percentage reduction in feeding damage (% effect).
  • the compounds of Tables 1-20 show a good activity against Spodoptera littoralis in this test.
  • the compounds 4.80, 4.53, 4.12, 4.21, 4.36, 5.77, 5.53, 5.21, 5.78, 5.79, 5.36, 5.26, 5.80, 6.53, 6.21, 6.12, 6.02, 6.36, 6.26 and 6.80 show an effect above 80%.
  • Example B6 Action against Plutella xylostella caterpillars
  • Young cabbages are sprayed with an aqueous emulsion spray mixture which contains 400 ppm of the active ingredient. After the spray coating has dried on, the cabbages are populated with 10 caterpillars of the third stage of Plutella xylostella and placed in a plastic container. Evaluation is carried out 3 days later. By comparing the number of dead caterpillars and the damage caused by feeding on the treated plants to those on the untreated plants, the percentage reduction in the population or determines the percentage reduction in feeding damage (% effect).
  • the compounds of Tables 1-20 show good activity against Plutella xylostella in this test.
  • the compounds 4.80, 4.53, 4.78, 4.12, 4.21, 4.79, 4.02, 4.36, 4.26, 5.77, 5.53, 5.78, 5.36, 5.26, 5.80, 6.53, 6.21, 6.78, 6.12, 6.02 and 6.80 in particular show an effect 80%.
  • Example B7 Action against Aphis craccivora
  • Pea seedlings are infected with Aphis craccivora and then sprayed with a spray mixture containing 400 ppm of the active ingredient and incubated at 20 ° C. Evaluation is carried out 3 and 6 days later. The percentage reduction in the population (% action) is determined by comparing the number of dead leaves on the treated plants with those on the untreated plants.
  • the compounds of Tables 1-20 show good activity against Aphis craccivora in this test. Especially the compounds 4.80, 4.53, 4.78, 4.12, 4.21, 4.79, 4.36, 4.26, 5.77, 5.53, 5.21, 5.78, 5.26, 5.80, 6.53, 6.21, 6.78, 6.12, 6.02 and 6.80 show an effect over 80% .
  • Example B8 Action against Mvzus persicae
  • Pea seedlings are infected with Myzus persicae and then sprayed with a spray mixture containing 400 ppm of the active ingredient and incubated at 20 ⁇ C. Evaluation is carried out 3 and 6 days later. The percentage reduction in population (% activity) is determined by comparing the number of dead aphids on the treated plants with those on the untreated plants.
  • Example B9 Systemic action against Mvzus persicae
  • Pea seedlings are infected with Myzus persicae, then placed with the roots in a spray mixture containing 400 ppm of the active ingredient and incubated at 20 % C. Evaluation is carried out 3 and 6 days later. The percentage reduction in population (% activity) is determined by comparing the number of dead aphids on the treated plants with those on the untreated plants.
  • the compounds of Tables 1-20 show a good activity against Myzus persicae in this test.
  • the compounds 4.80, 4.53, 4.78, 4.12, 4.21, 4.79, 4.02, 4.36, 5.21, 5.78, 5.02, 5.12, 6.21, 6.78, 6.79, and 6.80 show an activity above 80%.
  • Example B11 Action against Tetranychus urticae omuld
  • Young bean plants are populated with Tetranychus urticae females, which are removed after 24 hours.
  • the plants populated with eggs are with a sprayed aqueous emulsion broth containing 400 ppm of the active ingredient.
  • the plants are then incubated for 6 days at 25 ° C. and then evaluated.
  • the percentage reduction in the population is determined by comparing the number of dead eggs, larvae and adults on the treated plants with those on the untreated plants.
  • the compounds of Tables 1-20 show a good activity against Tetranychus urticae in this test.
  • the connections 4.53, 4.78, 4.12, 4.21, 4.79, 4.02, 4.36, 4.26, 5.76, 5.77, 5.53, 5.21, 5.78, 5.12, 5.79, 5.36, 5.26, 5.80, 6.53, 6.21, 6.78, 6.12, 6.02 , 6.36, 6.26 and 6.80 show an effect above 80%.
  • Example B12 Action against Panonvchus ulmi (OP and carb. Resistant)
  • Apple seedlings are colonized with adult Panonychus ulmi females. After seven days, the infected plants are sprayed to runoff point with an aqueous emulsion spray liquor containing 400 ppm of the compound to be tested and cultured in a greenhouse. The evaluation is carried out after 14 days. The percentage reduction in population (% activity) is determined by comparing the number of dead spider mites on the treated plants with those on the untreated plants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pyridine Compounds (AREA)

Abstract

Es werden Fluoralkencarbonsäurederivate der allgemeinen Formel (I), in welcher R1 und R2 unabhängig voneinander Wasserstoff; oder Alkyl, eine Gruppe (II), Aryl, Cycloalkyl, Alkenyl oder Alkinyl, welche gegebenenfalls substituiert sind; R3 Wasserstoff, Fluor oder Methyl; m 0, 1, 2, 3, 4 oder 5; n 0 oder 1; X Sauerstoff oder NR4, und R4 Wasserstoff oder C1-C6-Alkyl oder Benzyl, welche gegebenenfalls substituiert sind, darstellt, Verfahren zu ihrer Herstellung, insektizide Mittel, welche die neuen Fluoralkencarbonsäurederivate als Wirkstoff enthalten, und ihre Verwendung zur Bekämpfung von schädlichen Insekten und Akariden beschrieben.

Description

Organische Verbindungen
Die vorliegende Erfindung betrifft neue Fluoralkencarbonsäurederivate, Verfahren zu ihrer Herstellung, insektizide Mittel, welche die neuen Fluoralkencarbonsäurederivate als Wirkstoff enthalten, und die Verwendung der neuen Fluoralkencarbonsäurederivate zur Bekämpfung von schädlichen Insekten und Akariden.
Gegenstand der vorliegenden Erfindung sind Verbindungen der Formel
worin
R1 und R2 unabhängig voneinander Wasserstoff; oder Alkyl, eine Gruppe N= , Aryl,
Cycloalkyl, Alkenyl oder Alkinyl, welche gegebenenfalls substituiert sind; R3 Wasserstoff, Fluor oder Methyl; m 0, 1, 2, 3, 4 oder 5; n O oder l;
X Sauerstoff oder NR , und
R4 Wasserstoff oder CrC6-Alkyl oder Benzyl, welche gegebenenfalls substituiert sind, darstellt, und gegebenenfalls ihre möglichen E/Z-Isomeren, E/Z-Isomerengemische und/oder Tautomeren, jeweils in freier Form oder in Salzform, mit der Massgabe, dass a) R3 nicht Wasserstoff oder Fluor und m und n nicht beide 0 bedeuten, wenn X für Sauerstoff steht und R1 und R2 unabhängig voneinander für Wasserstoff oder unsubstituiertes oder substituiertes Alkyl, Alkenyl, Cycloalkyl, Aryl oder Heteroaryl bedeuten; b) R3 nicht Wasserstoff oder Fluor und m und n nicht beide 0 bedeuten, wenn R4 für Wasserstoff und R^ und R2 unabhängig voneinander für Wasserstoff oder unsubstituiertes oder substituiertes Alkyl, Aryl oder Heteroaryl stehen; c) m nicht 0, 1 oder 2 und R4 nicht Wasserstoff, Alkyl oder Haloalkyl bedeutet, wenn einer der Reste Ri oder R2 4-Alkylsulfonyloxyphenyl, 4-Haloalkytsulfonyloxypphenyl oder 4-Haloalkoxysulfo- nyloxyphenyl bedeutet, das gegebenenfalls weitere Substituenten tragen kann, und der andere für gegebenenfalls substituiertes Phenyl steht; und d) m nicht 0, 1 oder 2 und R, nicht Wasserstoff, Alkyl oder Haloalkyl und n nicht 0 bedeutet, wenn einer der Reste Ri und R2 für 4-Perhaloalkoxyphenyl bedeutet, das gegebenenfalls weitere Substituenten tragen kann, und der andere für gegebenenfalls substituiertes Phenyl steht; ein Verfahren zur Herstellung und die Verwendung dieser Verbindungen, E/Z-Isomeren und Tautomeren; Schädlingsbekämpfungsmittel, deren Wirkstoff aus diesen Verbindungen, E/Z-Isomeren und Tautomeren ausgewählt ist; und ein Verfahren zur Herstellung und die Verwendung dieser Mittel; Zwischenprodukte, und gegebenenfalls ihre möglichen E/Z-Isomeren, E/Z-Isomerengemische und/oder Tautomeren, in freier Form oder in Salzform, zur Herstellung dieser Verbindungen, gegebenenfalls Tautomere, in freier Form oder in Salzform, dieser Zwischenprodukte; und ein Verfahren zur Herstellung und die Verwendung dieser Zwischenprodukte und ihrer Tautomeren.
Bevorzugte Gruppen von Verbindungen der Formel (I) sind - unter Berücksichtigung der oben aufgeführten Massgaben - diejenigen, worin
Ri und R2 unabhängig voneinander Wasserstoff oder Alkyl, Cycloalkyl, Alkenyl oder
Alkinyl, welche gegebenenfalls substituiert sind, bedeuten, R3 für Wasserstoff, Fluor oder Methyl steht, m 0, 1 , 2, 3, 4 oder 5; n 0 oder 1 ist, X Sauerstoff oder NR4 bedeutet, und R4 Wasserstoff oder unsubstituiertes oder substituiertes C C6-Alkyl oder Benzyl darstellt; worin Ri Wasserstoff oder unsubstituiertes oder substituiertes Alkyl, Alkenyl, Alkinyl oder
Cycloalkyl bedeuten, R2 Wasserstoff oder unsubstituiertes oder substituieres Aryl oder Heteroaryl darstellt, R3 für Wasserstoff, Fluor oder Methyl steht, m 0, 1 , 2, 3, 4 oder 5; n 0 oder 1 ist, X Sauerstoff oder NR4 bedeutet, und R4 Wasserstoff oder unsubstituiertes oder substituiertes d-C6-Alkyl oder Benzyl darstellt; und worin Ri und R2 unabhängig voneinander H oder Aryl, welche gegebenenfalls substituiert sind, oder bedeuten, R3 für Wasserstoff, Fluor oder Methyl steht, m 0, 1 , 2, 3, 4 oder 5; n 0 oder 1 ist,
X Sauerstoff oder NR4 bedeutet, und
R4 Wasserstoff oder unsubstituiertes oder substituiertes Cι-C6-Alkyl oder Benzyl darstellt, Die in obigen Definitionen der Substituenten Ri, R2, R und R4 verwendeten Allgemeinbegriffe werden nachstehend wie folgt definiert:
Halogen bedeutet Fluor, Chlor, Brom oder Jod, insbesondere Fluor, Chlor oder Brom, vor allem Fluor oder Chlor und insbesondere Chlor.
Alkyl bedeutet geradkettige oder verzweigte Alkyireste mit 1 bis 20 Kohlenstoffatomen, die unsubstituiert oder ein- oder mehrfach substituiert sein können. Vorzugsweise bedeuten Ri und R2 als Alkylgruppen geradkettige oder verzweigte Alkyireste mit 1 bis 8 Kohlenstoffatomen und besonders bevorzugt Alkyireste mit 1 bis 4 Kohlenstoffatomen. Geeignete Substituenten von RT und R2 als Alkylgruppen sind Hydroxy, Halogen, Alkoxy, Halogenalk- oxy, Alkoxyalkoxy, Alkythio, Halogenalkylthio, Alkylsulfinyl, Alkylsulfonyl, Alkylsulfonyloxy, Alkylcarbonyl, Dialkylamino, Pyrrolidino, Piperidino, Morphoiino, Alkoxycarbonyl, Alkylcar- bonyloxy, Cycloalkyl, Aryl, Aryloxy, Arylthio, Arylsulfonyl, Arylsulfonyloxy, Arylcarbonyl oder Heteroaryl, wobei Aryl- oder Heteroarylgruppen ihrerseits ein- oder mehrfach durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Nitro, Cyano, Phenoxy, Halophenoxy, Phenylthio oder Halophenylthio substituiert sein können. Die in den Substituenten von Ri und R2 als Alkylgruppen vorkommenden Alkyireste haben vorzugsweise 1 bis 4 Kohlenstoffatome. Besonders bevorzugt handelt es sich bei diesen Alkylresten um Methyl- oder Ethylreste. Beispiele für R<, und R2 als Alkylgruppen sind Methyl, Ethyl, n- Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, n-Pentyl, 1-MethylbutyI, 2,2- Dimethylpropyl, Isopentyl, n-Hexyl, 2-Methylpentyl, 3-Methylpentyl, 1 ,3-Dimethylbutyl, 2- Ethylbutyl, n-Heptyl, n-Oktyl, Isooctyl, Nonyl, Decyl, Undecyl, Dodecyl, Hexadecyl und Oktadecyl. Bevorzugte Substituenten von R*. und R2 als Alkylgruppen sind Hydroxy, Halogen, Alkoxy, Halogenalkoxy, Alkoxyalkoxy, Alkythio, Halogenalkylthio, Alkylsulfinyl, Alkylsulfonyl, Alkylsulfonyloxy, Alkylcarbonyl, Dialkylamino, Pyrrolidino, Piperidino, Morphoiino, Alkoxycarbonyl, Alkylcarbonyloxy, Cycloalkyl, wobei Phenyl, Phenoxy, Phenylthio, Phenylsulfonyl, Phenylsulfonyloxy, Benzoyl und Pyridyl durch Halogen, Alkyl, Haloalkyl, Alkoxy, Haloalkoxy, Alkylthio, Nitro oder Cyano substituiert sein kann. Eine ein- oder mehrfache Substitution eines Restes R-, oder R2 bedeutet insbesondere eine 1 - bis 4-fache, vorzugsweise eine 1- bis 2-fache und besonders bevorzugt eine 1 -fache Substitution, wobei R und R2 insbesondere als niedere Alkyireste, wie Methyl oder Ethyl, im Falle einer Substitution durch Halogen perhalogeniert, insbesondere perfluoriert sein können. Bei einer mehrfachen Substitution können die jeweiligen Substituenten gleich oder verschieden sein.
Aryl bedeutet Phenyl oder Naphthyl, vorzugsweise Phenyl.
Heteroaryl bezeichnet aromatische Reste mit 5 oder 6 Ringgliedem und 1 oder 2 Heteroa- tomen, die aus der aus Stickstoff, Sauerstoff und Schwefel bestehenden Gruppe ausgewählt sind. Beispiele für Heteroarylreste sind Pyrrolyl, Furyl, Thienyl, Imidazolyl, Pyrrazolyl, Oxazolyl, Thiazolyl, Pyridyl, Pyridazinyl, Pyrimidinyl und Pyrazinyl, wobei die Reste Ri und R2 als Heteroarylreste jeweils über ein Kohlenstoffatom gebunden sind und gegebenenfalls ein Benzolring an diese Reste annelliert sein kann. Bevorzugte Heteroarylreste sind Pyridyl, Pyrimidinyl, Chinolyl, Furyl und Thienyl.
Arylreste und Heteroarylreste können unsubstituiert oder ein- oder mehrfach durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Halogenalkylthio, Alkylsulfonyloxy, Haloalkylsulfonyloxy, Haloalkoxysulfonyloxy, Nitro, Cyano, Benzoyl, Phenyl, Phenoxy, Phenylthio, Trialkylsiiyl, Benzyloxy, Alkylamino, Dialkylamino, Pyrrolidino, Piperidino, Morphoiino, Anilino, Cycloalkylalkoxy oder Halogencycloalkylalkoxy, Heteroaryl oder Hetero- aryloxy substituiert sein, wobei Benzoyl-, Phenyl-, Phenoxy-, Phenylthio-, Benzyloxy-, Anilino-, Heteroaryl- und Heteroaryloxyreste als Substituenten ihrerseits ein- oder mehrfach durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Nitro, Cyano, Phenoxy, Halogenphenoxy, Phenylthio, Halogenphenylthio, Cycloalkylalkoxy oder Halogencycloalkylalkoxy substituiert sein können. Die als oder in den Substituenten von Ri und R2 als Aryl- oder Heteroarylgruppen vorkommenden Alkylgruppen haben vorzugsweise 1 bis 4 Kohlenstoffatome. Besonders bevorzugt handelt es sich bei diesen Alkylgruppen um Methyl- oder Ethylgruppen.
Alkenyl bedeutet geradkettige oder verzweigte Alkenylreste mit 3 bis 20, vorzugsweise 3 bis 8 Kohlenstoffatomen und besonders bevorzugt Alkenylreste mit 3 bis 5 Kohlenstoffatomen, die unsubstituiert oder ein- oder mehrfach durch Halogen substituiert sein können. Bevorzugt bezeichnet Alkenyl solche Alkenylreste, die über ein gesättigtes Kohlenstoffatom gebunden sind, d. h. Alkenylreste mit mittel- oder endständiger Doppelbindung. Beispiele für Alkenylreste sind Allyl, Methallyl, 2-Buten-1-yl, 3-Buten -1-yl, 2-Penten-1-yl, 3-Penten-1- yl, 4-Penten-1-yl, 2-Methyl-2-buten-1 -yl, 2-Hexen-1-yl, 3-Hexen-1 -yl, 4-Hexen-1-yl, 5-Hexen- 1yl, 2-Hepten-1-yl, 2-Okten-1-yl und 2-Decen-1 -yl. Besonders bevorzugte Alkenylreste sind Allyl und Methallyl.
Alkinyl bedeutet geradkettige oder verzweigte Alkinylreste mit 3 bis 20, vorzugsweise 3 bis 8 Kohlenstoffatomen und besonders bevorzugt Alkinylreste mit 3 bis 5 Kohlenstoffatomen, die unsubstituiert uder ein- oder mehrfach durch Halogen substituiert sein können. Bevorzugt bezeichnet Alkinyl solche Alkinylreste, die über ein gesättigtes Kohlenstoffatom gebunden sind, d. h. Alkinylreste mit mittel- oder endständiger Dreifachbindung. Beispiele für Alkinylreste sind Propargyl, 2-Butin-1-yI, 3-Butin-1 -yl, 2-, 3- oder 4-Pentin-1 -yl, 2-, 3-, 4- oder 5-Hexin-1 -yl, 2-, 3-, 4-, 5- oder 6 Heptin-1-yl und 2-, 3-, 4-, 5-, 6- oder 7-Oktin-1yl. Ein besonders bevorzugter Alkinylrest ist der Propargylrest.
Cycloalkyl bedeutet Cycloalkylreste mit 3 bis 7 Kohlenstoffatomen, die unsubstituiert oder ein- oder mehrfach durch Halogen, Alkyl oder Halogenalkyl substituiert sein können, wobei Alkyl- und Halogenalkylreste vorzugsweise 1 bis 4 Kohlenstoffatome und besonders bevorzugt 1 bis 2 Kohlenstoffatome enthalten. Beispiele für Cycloalkylreste sind Cyclopropyl, 2-Methylcyclopropyl, Cyclobutyl, Cyclopentyl, 2-Methylcyclopentyl, 3,4-Dimethylcyclopentyl, Cyclohexyl, 2-Methylcylohexyl, 4- Methylcyclohexyl, 3,4-Dimethylcyclohexyl, 2,4-Dimethyl- cyclohexyl und Cycloheptyl.
Die oben erläuterte Bedeutung der bei der Definition der verwendeten Allgemeinbegriffe gilt, sofern nicht ausdrücklich davon abgewichen wird, für die gesamte vorliegende Beschreibung.
Die vorliegenden Erfindung betrifft insbesondere Verbindungen der allgemeinen Formel (I), in welcher, unter Berücksichtigung der vorstehend aufgeführten Massgaben,
Ri und R2 unabhängig voneinander
Wasserstoff; C Cao-Alkyl, das geradkettig oder verzweigt und ein- bis vierfach durch Hydroxy, Halogen, Alkoxy, Halogenalkoxy, Alkoxyalkoxy, Alkythio, Halogenalkylthio, Alkylsulfinyl, Alkylsulfonyl, Alkylsulfonyloxy, Alkylcarbonyl, Dialkylamino, Pyrrolidino, Piperidino, Morphoiino, Alkoxycarbonyl, Alkylcarbonyloxy, Cycloalkyl, Phenyl, Naphthyl, Phenoxy, Naphthoxy, Phenylthio, Naphthylthio, Phenylsulfonyl, Naphthylsulfonyl, Phenylsulfonyloxy, Naphthylsulfonyloxy, Benzoyl, Naphthoyl, Heteroaryl oder Heteroaryloxy mit 5 bis 6 Ringgliedern und 1 bis 2 Heteroatomen N, O oder S substituiert sein kann, wobei die genannten Aryl- oder Heteroarylgruppen ihrerseits ein- oder zweifach durch Halogen, Alkyl,
Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Nitro, Cyano, Phenoxy, Halophenoxy,
Phenylthio oder Halophenylthio substituiert sein können;
C3-C2o-Alkenyl, das geradkettig oder verzweigt und ein- bis vierfach durch Halogen substituiert sein kann;
C3-C2o-Alkinyl, das geradkettig oder verzweigt und ein- bis vierfach durch Halogen substituiert sein kann;
C3-C7-Cycloalkyl, das ein- bis vierfach durch Halogen, Alkyl oder Halogenalkyl substituiert sein kann;
Phenyl oder Naphthyl, das ein- bis vierfach durch Halogen, Alkyl, Halogenalkyl, Alkoxy,
Halogenalkoxy, Cycloalkylalkoxy, Halogencycloalkylalkoxy, Alkylthio, Halogenalkylthio,
Alkylsulfonyloxy, Haloalkylsulfonyloxy, Haloalkoxysulfonyloxy, Alkyiamino, Dialkylamino,
Pyrrolidino, Piperidino, Morphoiino, Nitro, Cyano, Trialkylsilyl, Phenyl, Phenoxy, Phenylthio,
Benzoyl, Benzyloxy, Anilino, Naphthyl, Heteroaryl oder Heteroaryloxy mit 5 bis 6
Ringgliedern und 1 bis 2 Heteroatomen N, O oder S substituiert sein kann, wobei Phenyl-,
Phenoxy, Phenylthio-, Benzoyl-, Benzyloxy-, Anilino-, Naphthyl-, Heteroaryl- und
Heteroaryloxyreste als Substituenten ihrerseits ein- oder zweifach durch Halogen, Alkyl,
Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Nitro, Cyano, Phenoxy, Phenylthio,
Halogenphenylthio, Cycloalkylalkoxy oder Halogencycloalkylalkoxy substituiert sein können,
Heteroaryl mit 5 bis 6 Ringgliedern und 1 bis 2 Heteroatomen N,O oder S, das ein- bis vierfach durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Cycloalkylalkoxy,
Halogencycloalkylalkoxy, Alkylthio, Halogenalkylthio, Alkyiamino, Dialkylamino, Pyrrolidino,
Piperidino, Morphoiino, Nitro, Cyano, Trialkylsilyl, Phenyl, Phenoxy, Phenylthio, Benzoyl,
Benzyloxy, Anilino, Naphthyl, Heteroaryl oder Heteroaryloxy mit 5 bis 6 Ringgliedern und 1 bis 2 Heteroatomen N, O oder S substituiert sein kann, wobei Phenyl-, Phenoxy,
Phenylthio-, Benzoyl-, Benzyloxy-, Anilino-, Naphthyl-, Heteroaryl- und Heteroaryloxyreste als Substituenten ihrerseits ein- oder zweifach durch Halogen, Alkyl, Halogenalkyl, Alkoxy,
Halogenalkoxy, Alkylthio, Nitro, Cyano, Phenoxy, Phenylthio, Halogenphenylthio,
Cycloalkylalkoxy oder Halogencycloalkylalkoxy substituiert sein können;
R3 Wasserstoff, Fluor oder Methyl; m 0, 1 , 2, 3, 4 oder 5; n 0 oder 1 ; und
X Sauerstoff oder NR4 bedeutet, wobei R für Wasserstoff, C C -Alkyl, das ein- oder mehrfach durch Halogen, Cι-C4-Alk- oxy oder Di-C C -Akylamino substituiert sein kann, oder für Benzyl steht, das ein- oder mehrfach durch Halogen, C C4-Alkyl, Halogen-C C -alkyl, d-d-Alkoxy, Nitro oder Cyano substituiert sein kann.
Bevorzugt sind Verbindungen der Formel (I), unter Berücksichtigung der vorstehend aufgeführten Massgaben, in welchen Ri und R2 unabhängig voneinander Wasserstoff, Cι-C8-Alkyl, das geradkettig oder verzweigt und ein- oder zweifach durch Hydroxy, Halogen, CrC4-Alkoxy, Halogen-d-C -alkoxy, C C -Alkoxyalkoxy, C1-C4-Alkythio, Halogen-C C4-alkylthio, CrC -Alkylsulfinyl, Cι-C4-Alkylsulfonyl, CrC lkylsulfonyloxy, d- C4-Alkylcarbonyl, Di-Crd-alkyiamino, Pyrrolidino, Piperidino, Morphoiino, d-C -Alkoxycar- bonyl, Cι-C4-Alkylcarbonyioxy, C3-C6-Cycloalkyl, Phenyl, Naphthyl, Phenoxy, Naphthoxy, Phenylthio, Naphthylthio, Phenylsulfonyl, Naphthylsulfonyl, Phenylsulfonyloxy, Naphthylsulfonyioxy, Benzoyl, Naphthoyl, Heteroaryl oder Heteroaryloxy mit 5 bis 6 Ringgliedern und 1 bis 2 Heteroatomen N, O oder S substituiert sein kann, wobei die genannten Aryl- oder Heteroarylgruppen ihrerseits ein- oder zweifach durch Halogen, Cι-C4- Alkyl, Halogen-CrC4-alkyl, CrC -Alkoxy, Halogen-CrC4-alkoxy, C C -Alkylthio, Nitro, Cyano, Phenoxy, Halophenoxy, Phenylthio oder Halophenylthio substituiert sein können; C3-C8-Alkenyl, das geradkettig oder verzweigt und ein- oder zweifach durch Halogen substituiert sein kann;
C3-C8-Alkinyl, das geradkettig oder verzweigt und ein- oder zweifach durch Halogen substituiert sein kann;
C3-C -Cycloalkyl, das ein- oder zweifach durch Halogen, C C -Alkyl oder Halogen-C C4- alkyl substituiert sein kann;
Phenyl oder Naphthyl, das ein- oder zweifach durch Halogen, CrC4-Alkyl, Halogen-C C -- alkyl, C C4-Alkoxy, Halogen-C C4-alkoxy, C3-C6-Cycloalkyl-C C4-alkoxy, Halogen-C C4- cycloalkyl-Cι-C -alkoxy, C C4-Alkylthio, Halogen-
C C4-alkylthio, CrC4-Alkylsulfonyloxy, Halo-CrC4-alkylsulfonyloxy, Halo-d-d-alkoxy- sulfonyloxy, Cι-C -Alkylamino, Di-CrC4-alkylamino, Pyrrolidino, Piperidino, Morphoiino, Nitro, Cyano, Tri-CrC -alkylsilyl, Phenyl, Phenoxy, Phenylthio, Benzoyl, Benzyloxy, Anilino, Naphthyl, Heteroaryl oder Heteroaryloxy mit 5 bis 6 Ringgliedern und 1 bis 2 Heteroatomen N, O oder S substituiert sein kann, wobei Phenyl-, Phenoxy, Phenylthio-, Benzoyl-, Benzyloxy-, Anilino-, Naphthyl-, Heteroaryl- und Heteroaryloxyreste als Substituenten ihrerseits ein- oder zweifach durch Halogen, CrC4-Alkyl, Halogen-C C4-alkyI, CrC4-Alkoxy, Halogen-C C4-alkoxy, CrC4-Alkylthio, Nitro, Cyano, Phenoxy, Phenylthio, Halogen- phenylthio, C3-C6-Cycloalkyl-Cι-C4-alkoxy oder Halogen-C3-C6-cycloalkyl-Cι-C4-alkoxy substituiert sein können,
Heteroaryl mit 5 bis 6 Ringgliedern und 1 bis 2 Heteroatomen N,O oder S, das ein- oder zweifach durch Halogen, C1-C4-Alkyl, Halogen-d-C^alkyl, Cι-C -Alkoxy, Halogen-CrC - alkoxy, QrCe-Cycloalkyl-d-d-alkoxy, Halogen-C3-C6-cycloalkyl-d-C -alkoxy, C -C4-
Alkylthio, Halogen-Cι-C4-alkylthio, CrC -Alkylamino, Di-CrC4-alkylamino, Pyrrolidino,
Piperidino, Morphoiino, Nitro, Cyano, Tri-Cι-C4-alkylsilyl, Phenyl, Phenoxy, Phenylthio,
Benzoyl, Benzyloxy, Anilino, Naphthyl, Heteroaryl oder Heteroaryloxy mit 5 bis 6
Ringgliedern und 1 bis 2 Heteroatomen N, O oder S substituiert sein kann, wobei Phenyl-,
Phenoxy, Phenylthio-, Benzoyl-, Benzyloxy-, Anilino-, Naphthyl-, Heteroaryl- und
Heteroaryloxyreste als Substituenten ihrerseits ein- oder zweifach durch Halogen, CrC4-
Alkyl, Halogen-d-C4-alkyl, C C4-Alkoxy, Halogen-CrC4-alkoxy, Cι-C4-Alkylthio, Nitro,
Cyano, Phenoxy, Phenylthio, Halogenphenylthio, C3-C6-Cycloalkyl-Cι-C4-alkoxy oder
Halogen-C3-C6-cycloalkyl-Cι-C4-alkoxy substituiert sein können,
R3 Wasserstoff, Fluor oder Methyl, m 0, 1 , 2, 3 oder 4, n 0 oder 1 und
X Sauerstoff oder NR bedeutet, wobei
R4 für Wasserstoff, d-C4-Alkyl, das ein- bis zweifach durch Halogen, CrC4-Alkoxy oder Di-d-C4-alkylamino substituiert sein kann, oder für
Benzyl steht, das ein- bis zweifach durch Halogen, d-d-Alkyl, Halogen-d-C4-alkyl, d-C4-
Alkoxy, Nitro oder Cyano substituiert sein kann.
Die vorstehend definierten bevorzugten Bedeutungen der in der allgemeinen vorkommenden Reste R1 f R , R3 und R gelten in analoger Weise für die oben definierten
Untergruppen von Verbindungen der Formel (I).
Unter den Verbindungen der Formel (I) sind weiterhin solche bevorzugt, in welchen a) R3 Wasserstoff bedeutet; b) m 0, 1 , 2, 3 oder 4, besonders bevorzugt 1 oder 4 bedeutet; c) n 0 bedeutet; d) R4 Wasserstoff bedeutet; e) Ri und R2 die oben angegebene Bedeutung haben, R3 für Wasserstoff steht, m 0, 1 , 2, 3 oder 4 ist, n 0 oder 1 bedeutet, und X Sauerstoff oder NH darstellt; f) Ri und R2 die oben angegebene Bedeutung haben, R3 für Wasserstoff steht, m 1 oder 4 ist, n 0 bedeutet, und X Sauerstoff oder NH darstellt: g) Ri die oben angegebene Bedeutung hat, R3 für Wasserstoff steht und R2 eine Gruppe
bedeutet, worin Alk Methyl oder Ethyl und der Phenylring gegebenenfalls substituiert ist.
Besonders bevorzugte Einzelverbindungen sind Verbindungen der Formel (I), in welcher R3 Wasserstoff und a) Ri Wasserstoff, R2 Wasserstoff, X Sauerstoff, m 1 und n 0; b) Ri Methyl, R2 Methyl, X Sauerstoff, m 1 und n 0; c) Ri Methyl, R2 Phenyl, X Sauerstoff, m 1 und n 0; d) Ri Methyl, R2 4-Trifluormethylphenyl, X Sauerstoff, m 1 und n 0; e) Ri Methyl, R2 4-Nitrophenyl, X Sauerstoff, m 1 und n 0; f) R! Methyl, R2 4-tert.-Butylphenyl, X Sauerstoff, m 1 und n 0; g) RT Phenyl, R2 Phenyl, X Sauerstoff, m 1 und n 0; h) Ri Wasserstoff, R2 Phenyl, X Sauerstoff, m 1 und n 0; i) RT Phenyl, R2 Benzyl, X Sauerstoff, m 1 und n 0; j) Ri Ethyl, R2 4-Chlorphenyl, X Sauerstoff, m 1 und n 0; k) RT Wasserstoff, R2 Methyl, X NH, m 1 und n 0;
I) R, Methyl, R2 Methyl, X NH, m 1 und n 0; m) Ri Methyl, R2 Phenyl, X NH, m 1 und n 0; n) Ri Methyl, R2 3-Trifluormethylphenyl, X NH, m 1 und n 0; o) RT Methyl, R2 4-tert.-Butylphenyl, X NH, m 1 und n 0; p) Ri Phenyl, R2 Phenyl, X NH, m 1 und n 0; q) Ri Wasserstoff, R2 Phenyl, X Sauerstoff, m 1 und n 0; r) RT Phenyl, R2 Benzyl, X NH, m 1 und n 0; s) Ri Ethyl, R2 4-Chlorphenyl, X NH, m 1 und n 0; t) Ri Wasserstoff, R2 Wasserstoff, X NH, m 1 und n 1 ; u) Ri Methyl, R2 Methyl, X NH, m 1 und n 1 ; v) R, Methyl, R2 Phenyl, X NH, m 1 und n 1 ; w) RT Methyl, R 3-Trifluormethylphenyl, X NH, m 1 und n 1 ; x) Ri Methyl, R2 4-tert.-Butylphenyl, X NH, m 1 und n 1 ; y) Ri Phenyl, R2 Phenyl, X NH, m 1 und n 1 ; z) Ri Wasserstoff, R2 Phenyl, X Sauerstoff, m 1 und n 1 ; aa) RT Phenyl, R2 Benzyl, X NH, m 1 und n 1 ; oder bb) Ri Ethyl, R2 4-Chlorphenyl, X NH, m 1 und n 1 bedeuten.
Ein weiterer Gegenstand der vorliegender Erfindung ist ein Verfahren zur Herstellung einer Verbindung der Formel (I), dadurch gekennzeichnet, dass man a) zur Herstellung einer Verbindung der Formel (I), worin n 0 bedeutet und Ri, R2, R3, X und m die oben unter Formel (I) angegebene Bedeutung haben, eine Verbindung der Formel
in welcher R3 und m die unter Formel (I) angegebene Bedeutung haben und Y2 Cl, Br oder OSO2-Alkyl bedeuten, mit einer Verbindung der Formel
/
HX — N - ( III )
\ umsetzt, in welcher R1 ( R2 und X die unter Formel (I) angegebene Bedeutung haben; b) Verbindungen der Formel (I), worin n 0, X NR4 bedeutet, und R1 f R2, R3 und m die oben unter Formel (I) angegebene Bedeutung haben, hergestellt, indem man eine Verbindung der Formel
in welcher R3, R4 und m die unter Formel (I) angegebene Bedeutung haben, mit einer Verbindung der Formel
( V )
\
umsetzt, in welcher Ri und R2 die unter Formel (I) angegebene Bedeutung haben. c) Verbindungen der Formel (I), worin n 1 bedeutet und R1 ( R2, R3, R , X und m die oben unter Formel (I) angegebene Bedeutung haben, herstellt, indem man eine Verbindung der
Formel
in welcher R3 und m die oben unter Formel (I) angegebene Bedeutung haben, mit einer Verbindung der Formel
umsetzt, in welcher Y1 Cl, Br oder OSO2-Alkyl bedeutet und X, Ri und R2 die oben unter Formel (I) angegebene Bedeutung haben.
Die Ausgangsmaterialien der Formeln (II) und (VI) bekannt oder können analog zu bekannten Verfahren hergestellt werden.
Die Ausgangsmaterialien der Formel (III) können auf an sich bekannte Weise durch Umsetzung eines Ketons der obigen Formel (V) mit Hydrazin, einem durch R4 gemäss obiger Definition monosubstituierten Hydrazin oder mit Hydroxylamin hergestellt werden, wobei die Ketone der Formel (V) ihrerseits durch die für die Herstellung von Ketonen üblichen bekannten Verfahren zugänglich sind.
Die Ausgangsmaterialien der Formel (II) können erhalten werden, indem man ein Säureha- logenid der Formel
in der Hai Chlor oder Brom bedeutet, mit einem durch R4 gemäss oben angegebener Bedeutung monosubstituierten Hydrazin umsetzt.
Die Ausgangsmaterialien der Formel (VII) können erhalten werden, indem man ein Chlores- sigsäurehalogenid, z. B. Chloracetylchlorid, mit einer Verbindung der Formel (III) gemäss obiger Definition umsetzt. Die Umsetzung des Verfahrens a) erfolgt vorzugsweise in einem inerten, hydroxylgruppenfreien Lösungsmittel in Anwesenheit einer organischen Base, wie zum Beispiel Pyridin, 4-Dimethylaminopyridin, 4-Pyrrolidinopyridin, Lutidin, Coilidin, Trialkylamin, N,N-Dialkylanilin, oder einer bicyclischen, nicht nucleophilen Base wie 1 ,4-Diazabicyclo[2.2.2]octan (DABCO),
1 ,5-Diazabicyclo[4.3.0] non-5-en (DBN) oder l,8-Diazabicyclo[5.4.0]undec-7-en (1 ,5-5) (DBU). Die Reaktion wird im allgemeinen bei Temperaturen von -30°C bis +70°C, vorzugsweise von -10°C bis +50°C durchgeführt. Man arbeitet dabei zweckmässigerweise in Gegenwart eines reaktionsinerten Lösungsmittels oder Lösungsmittelgemisches. Es eignen sich hierfür beispielsweise aliphatische und aromatische Kohlenwasserstoffe wie Benzol, Toluol, Xylole, Petrolether, Hexan; halogenierte Kohlenwasserstoffe wie Chlorbenzol, Methylenchlorid, Ethylenchlorid, Chloroform, Kohlenstofftetrachlorid, Tetrachlorethylen; Ether und etherartige Verbindungen wie Dialkylether (Diethylether, Diisopropylether, tert- Butylmethylether usw.) Anisol, Dioxan, Tetrahydrofuran; Nitrile wie Acetonitril, Propionitril; Ester wie Ethylacetat (Essigsäureethylester), Propylacetat oder Butylacetat; Ketone wie Aceton, Diethylketon, Methylethylketon; und Gemische solcher Lösungsmittel untereinander. Man kann die Reaktion aber auch im Überschuss einer der oben genannten Basen durchführen, oder anstelle der Base kann auch ein zweites Äquivalent oder auch ein grös- serer Überschuss der Verbindung der I eingesetzt werden. Die Umsetzung wird unter dem Druck der Umgebung durchgeführt, wenngleich sie auch bei erhöhtem oder vermindertem Druck durchgeführt werden könnte.
Die Umsetzung des Verfahrens b) wird vorteilhaft in einem inerten Lösungsmittel bei einer Temperatur von 20°C bis 150°C, vorzugsweise bei 40°C bis 120°C, gegebenenfalls in Gegenwart einer katalytischen Menge einer Säure, wie Essigsäure oder p-Toluolsulfon- säure, durchgeführt. Bevorzugte inerte Lösungsmittel sind niedere Alkanole, insbesondere Methanol und Ethanol.
Die Umsetzung des Verfahrens c) wird vorteilhaft in einem inerten Lösungsmittel in Gegenwart einer Base und gegebenenfalls in Gegenwart eines Katalysators, wie z.B. NaJ oder CsF, durchgeführt, wobei als inerte Lösungsmittel vorzugsweise polare aprotische Lösungsmittel, wie N,N-Dimethylformamid, Dimethylsulfoxid, Dioxan und Tetrahydrofuran in Betracht kommen. Als Basen sind insbesondere Pyridin, 4-Dimethylaminopyridin, 4-Pyrroli- dinopyridin, Lutidin, Coilidin, Trialkylamin, N,N-Dialkylanilin, oder eine bicyclische, nicht nucleophile Base wie 1 ,4-Diazabicyclo[2.2.2]octan (DABCO), 1 ,5-Diazabicyclo[4.3.O] non- 5-en (DBN) oder l,8-Diazabicyclo[5.4.0]undec-7-en (1 ,5-5) (DBU), geeignet.
Die vor- und nachstehend beschriebenen Umsetzungen werden in an sich bekannter Weise durchgeführt, z.B. in Ab- oder gegebenenfalls in Anwesenheit eines geeigneten Lösungs oder Verdünnungsmittels oder eines Gemisches derselben, wobei man je nach Bedarf unter Kühlen, bei Raumtemperatur oder unter Erwärmen, z.B. in einem Temperaturbereich von etwa -80°C bis zur Siedetemperatur des Reaktionsgemisches, vorzugsweise von etwa -20°C bis etwa +150°C, und, falls erforderlich, in einem geschlossenen Gefäss, unter Druck, in einer Inertgasatmosphäre und/oder unter wasserfreien Bedingungen arbeitet. Besonders vorteilhafte Reaktionsbedingungen können den Beispielen entnommen werden.
Die erfindungsgemässen Verbindungen der Formel (I) sind bei günstiger Warmblüter-, Fisch- und Pflanzenverträglichkeit wertvolle Wirkstoffe auf dem Gebiet der Schädlingsbekämpfung. Insbesondere wirken die erfindungsgemässen Wirkstoffe gegen Insekten und Spinnentiere, wie sie an Nutz- und Zierpflanzen in der Landwirtschaft und im Gartenbau, insbesondere in Reis-, Baumwoll-, Gemüse- und Obstpflanzungen, und im Forst vorkommen. Die Verbindungen der Formel (I) eignen sich besonders zur Bekämpfung von Insekten in Reis-, Obst- und Gemüsekulturen, insbesondere von pflanzenschädigenden Insekten, wie Aphis craccivora, Nilaparvata lugens und Nephotettix cincticeps. Weitere Anwendungsgebiete der erfindungsgemässen Wirkstoffe sind der Vorrats- und Materialschutz sowie im Hygienesektor insbesondere der Schutz von Haus- und Nutztieren. Die Verbindungen der Formel (I) sind gegen alle oder einzelne Entwicklungsstadien von normal sensiblen, aber auch von resistenten Arten von Schädlingen wirksam. Dabei kann sich ihre Wirkung z. B. in einer Abtötung der Schädlinge, welche unmittelbar oder erst nach einiger Zeit, beispielsweise bei einer Häutung, eintritt, oder in einer verminderten Eiablage und/oder Schlupfrate zeigen.
Zu den erwähnten tierischen Schädlingen gehören beispielsweise jene, welche in der Europäischen Patentanmeldung EP-A-736'252 erwähnt sind. EP-A-736'252 ist daher per Referenz im vorliegenden Erfindungsgegenstand miteingeschlossen.
Die Verbindungen der Formel (I) eignen sich insbesondere als Wirkstoffe zur Bekämpfung von Schädlingen aus der Ordnung Homoptera und aus der Ordnung Akarina.
Insbesondere eignen sich die Verbindungen der Formel (I) zur Kontrolle der Schädlinge in Baumwolle-, Gemüse-, Obst- und Reiskulturen, wie Spinnmilben, Blattläusen, Falterraupen und Reiszikaden. Hauptsächlich können dabei Spinnmilben wie Panonychus ulmi, Blattläuse wie Aphis craccivora, Falterraupen wie die von Heliothis virescens und Reiszikaden wie Nilaparvata lugens oder Nephotettix cincticeps kontrolliert werden.
Die gute pestizide Wirkung der erfindungsgemässen Verbindungen der Formel (I) entspricht einer Abtötungsrate (Mortalität) von mindestens 50-60 % der erwähnten Schädlinge.
Die Wirkung der erfindungsgemässen Verbindungen der Formel (I) und der sie enthaltenden Mittel lässt sich durch Zusatz von anderen Insektiziden und/oder Akariziden wesentlich verbreitern und an gegebene Umstände anpassen. Als Zusätze kommen zum Beispiel Vertreter der folgenden Wirkstoffklassen in Betracht: Organische Phosphorverbindungen, Nitrophenole und Derivate, Formamidine, Harnstoffe, Carbamate, Pyrethroide, chlorierte Kohlenwasserstoffe und Bacillus thuringiensis-Präparate.
Die Verbindungen der Formel (I) werden in unveränderter Form oder vorzugsweise zusammen mit den in der Formuiierungstechnik üblichen Hilfsmitteln eingesetzt und können daher beispielsweise zu emulgierbaren Konzentraten, direkt versprüh- oder verdünnbaren Lösungen, verdünnten Emulsionen, Spritzpulvern, löslichen Pulvern, Stäubemitteln, Granulaten, auch Verkapselungen in polymeren Stoffen in bekannter Weise verarbeitet werden. Die Anwendungsverfahren, wie Versprühen, Vernebeln, Verstäuben, Verstreuen oder Giessen, werden ebenso wie die Mittel den angestrebten Zielen und den gegebenen Verhältnissen entsprechend gewählt.
Die Formulierung, das heisst die einen Wirkstoff (I), beziehungsweise Kombinationen dieser Wirkstoffe mit anderen Insektiziden oder Akariziden, und gegebenenfalls einen festen oder flüssigen Zusatzstoff enthaltenden Mittel, Zubereitungen oder Zusammensetzungen, werden in bekannter Weise hergestellt, zum Beispiel durch inniges Vermischen und/oder Vermählen der Wirkstoffe mit Streckmitteln, wie beispielsweise mit Lösungsmitteln, festen Trägerstoffen, und gegebenenfalls oberflächenaktiven Verbindungen (Tensiden).
Als Hilfsstoffe, wie Lösungsmittel, feste Trägerstoffe, oberflächenaktive Verbindungen, nichtionische Tenside, kationische Tenside, anionische Tenside und weitere Hilfsstoffe in den erfindungsgemäss eingesetzten Mitteln, kommen beispielweise die gleichen in Frage, wie sie in EP-A-736'252 beschrieben sind.
Die pestiziden Zubereitungen enthalten in der Regel 0,1 bis 99%, insbesondere 0,1 bis 95%, an Wirkstoff I oder an der Kombination dieses Wirkstoffs mit anderen Insektiziden und/oder Akariziden und 1 bis 99,9%, insbesondere 5 bis 99,9%, eines festen oder flüssigen Hilfsstoffes, wobei in der Regel 0 bis 25%, insbesondere 0,1 bis 20%, der Zubereitungen Tenside sein können (% bedeutet jeweils Gewichtsprozent). Während als Handelsware eher konzentrierte Mittel bevorzugt werden, verwendet der Endverbraucher in der Regel verdünnte Zubereitungen, die wesentlich geringere Wirkstoff konzentrationen aufweisen. Typische Anwendungskonzentrationen liegen zwischen 0,1 und 1000 ppm, vorzugsweise zwischen 0,1 und 500 ppm. Die Aufwandmengen pro Hektar betragen im allgemeinen 1 bis 1000 g Wirkstoff pro Hektar, vorzugsweise 25 bis 500 g/ha.
Insbesondere setzen sich bevorzugte Formulierungen folgendermassen zusammen (% = Gewichtsprozent):
Emulqierbare Konzentrate:
Wirkstoff: 1 bis 90 %, bevorzugt 5 bis 20 %
Tensid: 1 bis 30 %, vorzugsweise 10 bis 20 % flüssiger Trägerstoff: 5 bis 94 %, vorzugsweise 70 bis 85 %
Stäube:
Wirkstoff: 0,1 bis 10 %, vorzugsweise 0,1 bis 1 % fester Trägerstoff: 99,9 bis 90 %, vorzugsweise 99,9 bis 99 %
Suspensions-Konzentrate:
Wirkstoff: 5 bis 75 %, vorzugsweise 10 bis 50 %
Wasser: 94 bis 24 %, vorzugsweise 88 bis 30 %
Tensid: 1 bis 40 %, vorzugsweise 2 bis 30 %
Benetzbare Pulver:
Wirkstoff: 0,5 bis 90 %, vorzugsweise 1 bis 80 %
Tensid: 0,5 bis 20 %, vorzugsweise 1 bis 15 % fester Trägerstoff: 5 bis 95 %, vorzugsweise 15 bis 90 %
Granulate:
Wirkstoff: 0,5 bis 30 %, vorzugsweise 3 bis 15 % fester Trägerstoff 99,5 bis 70 %, vorzugsweise 97 bis 85 %
Die Zubereitungen können auch weitere Hilfsstoffe, wie Stabilisatoren, z. B. gegebenenfalls epoxidierte Pflanzenöle (z. B. epoxidiertes Kokosnussöl, Rapsöl oder Sojaöl), Entschäumer, z. B. Silikonöl, Konservierungsmittel, Viskositätsregulatoren, Bindemittel und/oder Haftmittel, sowie Dünger oder andere Wirkstoffe zur Erzielung spezieller Effekte enthalten.
Die folgenden Beispiele dienen der Erläuterung der Erfindung. Sie schränken die Erfindung nicht ein. Temperaturen sind in Grad Celsius angegeben.
Beispiel H1 :
0,73 g (10 mmol) Acetonoxim und 1 ,01 g (10 mmol) Triethylamin werden in 30 ml wasserfreiem Benzol gelöst. Die Lösung wird bei 5-10°C mit 1 ,68 g (10 mmol) 6,6-Difluor-5-hexen- säurechlorid (DAHSCI) während 30 Minuten unter internsivem Rühren versetzt, während 10 Std. bei Raumtemperatur weiter gerührt, anschliessend durch Glasfilternutsche filtriert und das Filtrat im Rotationsdampfer eingeengt. Das erhaltene Rohprodukt wird säulen- chromatographisch an Silicagel (Essigsäureethylester : Isohexan = 20 : 80) getrennt. Man erhält die Titelverbindung mit einem nD 20 = 1 ,6893.
Beispiel H2:
61 '5
H CκK
F2C = CH -^CH^- C - NH - N = C
C6H5
1 ,5 g (7,6 mmol) Benzophenonhydrazon und 0,77g (7,6 mmol) Triethylamin werden in 30 ml wasserfreiem Benzol gelöst und die Lösung bei 5-10°C mit 1 ,29 g (7,6 mmol) 6,6-Difluor-5- hexensäurechlorid (DAHSCI) während 30 Minuten versetzt. Das Gemisch wird 10 Std. bei Raumtemperatur weiter gerührt, durch Glasfilternutsche filtriert und das Filtrat im Rotationsverdampfer eingeengt. Das erhaltene Rohprodukt wird Säulenchromatographisch an Silicagel (Essigsäureethylester : Isohexan = 20 : 80) getrennt. Man erhält die Titelverbindung mit einem Smp. von 70-71 °C.
Beispiel H3:
0,5 g (10 mmol) des Hydrazinhydrates wird zu 1 ,64 g (10 mmol) 6,6-Difluor-5-hexen-säure- methylester in 10 ml Methanol gegeben. Man erwärmt die Lösung während 10 Minuten auf dem Wasserbad unter Rückfluss und engt dann im Rotationsverdampfer ein. Der Rück- stand wird in 20 ml Methylenchlorid auf geschlämmt, mit 0,445 g (10 mmol) Acetaldehyd bei 0°C versetzt und 10 Std. bei Raumtemperatur weiter gerührt. Nach Abdampfen von Methylenchlorid wird das Rohprodukt Säulenchromatographisch an Silicagel (Essigsäuremethylester : Isohexan = 20 : 80) getrennt. Man erhält die Titelverbindung mit einem Smp. von 78-79°C.
Beispiel H4:
3,6 g (18,4 mmol) Benzophenonhydrazon und 1 ,85 g (18,3 mmol) Triethylamin werden in 50 ml Benzol gelöst und auf 5°C gekühlt. Unter gutem Rühren werden 2,06 g (18,2 mmol) Chloracetylchlorid langsam zugetropft, so dass die Temperatur stets bei 5 bis 10°C gehalten werden kann. Nachdem das Chloracetylchlorid zugegeben ist, rührt man noch 14 Std. bei Raumtemperatur. Man filtriert ab und dampft das filtrat ein. Man wäscht den Rückstand mit kleiner Menge Isohexan : Essigsäure = 80 : 20, filtriert und trocknet. Man erhält die Titelverbindung mit einem Smp. 92-93°C.
Man rührt ein Gemisch von 1 ,7 g (6,2 mmol) Chloressigsäurebenzophenonhydrazid, 0,93 g (6,2 mmol) 6,6-Difluor-5-hexensäure, 0,63 g (6,2 mmol) Triethylamin und 0,2 g NaI in 10 ml Dimethylformamid bei Raumtemperatur 14 Std. Man giesst das Reaktionsgemisch auf Eis extrahiert mit Chloroform und trocknet ihn über Na2SO4. Nach dem Abdestillieren des Lösungsmittels wird das Rohprodukt an Silicagel (Isohexan : Essigsäureethylester = 80 : 20) getrocknet. Man erhält die Titelverbindung mit einem nD 20 = 1 ,5678.
Beispiel H5:
0,5 g (10 mmol) des Hydrazinhydrates wird zu einer Lösung von 0,9 g (10 mmol) Glycol- säuremethylester in 10 ml Methanol gegeben. Die Lösung wird während 10 Minuten auf dem Wasserbad unter Rückfluss erwärmt und dann im Rotationsverdampfer eingeengt. Der Rückstand wird in 10 ml Methanol wieder auf geschlämmt, mit 0,58 g (10 mmol) Aceton versetzt und 10 Std. bei Raumtemperatur weiter gerührt. Nach Abdampfen von Methanol wird der Rückstand in 20 ml Dichlormethan-Tetrahydrofuran aufgeschlämmt. Zu diesem Gemisch werden 1 ,5 g (10 mmol) 6,6-Difluor-5-hexensäure, 406 g (10 mmol) DCC und 0,1 g 4-Dimethylaminopyridin gegeben, 14 Std. gerührt, anschliessend durch Glasfilternutsche filtriert und das Filtrat im Rotationsverdampfer eingeengt. Das erhaltene Rohprodukt wird säulenchromatographisch an Silicagel (Essigsäureethylester : Isohexan = 20 : 80) gereinigt. Man erhält die Titelverbindung mit einem nD 20 = 1 ,6768.
Auf analoge Weise, wie in Beispielen H1 bis H5 beschrieben, können die in Tabellen 1 bis 20 aufgeführten Verbindungen der Formel (I) hergestellt werden.
Tabelle 1 : Verbindungen der Formel
H O
I II
Fv
'C CH. 0 c I I
F
Verb. Nr. Ri R2 Phys. Daten
1.01 H H
1 .02 H CH3
1.03 H C2H5
1 .04 H C3H7-n
1.05 H C3H7-i
1.06 H C4H9-n
1.10 H CH2C(CH3)3
1.1 1 CH3 H
1.12 CH3 CH3
1.13 CH3 C2H5
1.14 CH3 C3H7-n
1 .15 CH3 C3H7-i
1.16 CH3 C4H9-n
1.20 CH3 CH2C(CH3)3 Verb. Nr. Ri R2 Phys. Daten
1.22 CH3 C6H4-2-CI
1.23 CH3 C6H4-3-CI
1.24 CH3 C6H4-4-CI
1.27 CH3 C6H4-4-CF3
1.28 CH3 C6H4-2-CN
1.29 CH3 C6H4-3-CN
1.30 CH3 C6H4-4-CN
1.31 CH3 C6H4-2-NO2
1.32 CH3 C6H4-3-NO2
1.33 CH3 C6H4-4-NO2
1.34 CH3 C6H4-4-CeH5
1.35 CH3 C6H4-4-OC6H5
1.36 CH3 C6H4-4-C(CH3)3
1.37 CH3 C6H4-4-OCF3
1.38 CH3 C6H4-4-COOC2H5
1.39 CH3 C6F5
1.40 CH3 -C6H2-3,4,5-(OCH3)3
Verb. Nr. Ri R2 Phys. Daten
1.50 CβHs Cyclopropyl
1.51 CβHs Cyclopentyl
1.52 CβHβ Cyclohexyl
1.59 C-βHs C6H4-4-OC6H5
1.60 CβHδ C6H4-4-C(CH3)3
1.64 C6H4- 4-CI C3H7-n
1 .67 CeH4- 4-CI C4H9-n
1.68 CeH4- -4-CI CH2C6H5
1.69 CeH4- -4-CI CH2C6H4-4-CH3
1.70 CβH4- 4-CI C6H4-4-CI
1.71 CβH4- -4-CI C6H4-4-OH
1.72 CeH4- -4-CI CeH4-2-CH3
1 .73 CβH4' -4-CI C6H4-2-CI
1.74 CeH4- -4-CI C6H4-4-Br
1.75 CβH4' -4-CI 4-Pyridyl
1.76 CβH4 -4-CI C6H4-4-OCH2-C6H4-3-CF3 Verb. Nr. Ri R2 Phys. Daten
1.80 C2H5 -C6H4-4-CI
Tabelle 2: Verbindungen der Formel
Verb. Nr. Ri R2 Phys. Daten
2.01 H H
2.02 H CH3
2.03 H C2Hδ
2.04 H C3H7-n
2.05 H C3H7-i
2.06 H C4H9-n
2.09 H CιoH2ι-n
2.10 H CH2C(CH3)3
2.11 CH3 H
2.12 CH3 CH3
2.13 CH3 C2H5
2.14 CH3 C3H7-n
2.15 CH3 C3H7-i
2.16 CH3 C4H9-n
2.18 CH3 CeHι3-n Verb. Nr. R, Phys. Daten
2.20 CH3 CH2C(CH3)3
2.22 CH3 C6H4-2-CI
2.23 . CH3 C6H4-3-CI
2.24 CH3 C6H4-4-CI
2.27 CH3 C6H4-4-CF3
2.28 CH3 C6H4-2-CN
2.29 CH3 C6H4-3-CN
2.30 CH3 C6H4-4-CN
2.31 CH3 C6H4-2-NO2
2.32 CH3 C6H4-3-NO2
2.33 CH3 C6H4-4-NO2
2.35 CH3 C6H4-4-OC6H5
2.36 CH3 C6H4-4-C(CH3)3
2.37 CH3 C6H4-4-OCF3
2.38 CH3 C6H4-4-COOC2H5
2.39 CH3 C6F5
2.40 CH3 C6H2-3,4,5-(OCH3)3
Verb. Nr. Ri R2 Phys. Daten
2.50 CβHs Cyclopropyl
2.51 CβHδ Cyclopentyl
2.52 CβHs Cyclohexyl
2.56 dHs C6H4-4-CN
2.60 CβHs C6H4-4-C(CH3)3
2.62 CδH4- 4-CI CF3
2.68 CeH4- -4-CI CH2C6H5
2.69 CeH4- -4-CI CH2CeH4-4-CH3
2.70 CeH4- -4-CI C6H4-4-CI
2.71 CβH4- -4-CI C6H4-4-OH
2.72 CβH4- -4-CI CβH4-2-CH3
2.73 CβH4- -4-CI C6H4-2-CI
2.74 CeH - -4-CI C6H4-4-Br
2.75 CβH4' -4-CI 4-Pyridyl
2.76 CβH4' -4-CI -C6H4-4-OCH2-C6H4-3-CF3 Verb. Nr. Ri R2 Phys. Daten
2.80 C2Hδ -C6H4-4-CI
Tabelle 3: Verbindungen der Formel
H 0 H R. 1 II I I C^ . CH2 ^,N ^ ^C^
F-c C- CH, O C N ^ R, 1 II
F 0
Verb. Nr. Ri R2 Phys. Daten
3.01 H H
3.02 H CH3
3.03 H C2Hs
3.04 H C3H7-n
3.05 H C3H7-i
3.06 H C4H9-n
3.08 H CeHι3-n
3.09 H CιoH2ι-n
3.10 H CH2C(CH3)3
3.11 CH3 H
3.12 CH3 CH3
3.13 CH3 C2Hs
3.14 CH3 C3H7-n
3.15 CH3 C3H7-i
3.16 CH3 C4H9-n
3.19 CH3 CιoH2ι-n
3.20 CH3 CH2C(CH3)3 Verb. Nr. R, Phys. Daten
3.22 CH3 C6H4-2-CI
3.23 CH3 C6H4-3-CI
3.24 CH3 C6H4-4-CI
3.26 CH3 CeH4-3-CF3
3.27 CH3 C6H4-4-CF3
3.28 CH3 C6H4-2-CN
3.29 CH3 C6H4-3-CN
3.30 CH3 C6H4-4-CN
3.31 CH3 C6H4-2-NO2
3.32 CH3 C6H4-3-NO2
3.33 CH3 C6H4-4-NO2
3.35 CH3 C6H4-4-OC6H5
3.36 CH3 C6H4-4-C(CH3)3
3.37 CH3 C6H4-4-OCF3
3.38 CH3 C6H4-4-COOC2H5
3.39 CH3 C6F5
3.40 CH3 C6H2-3,4,5-(OCH3)3
Verb. Nr. Ri R2 Phys. Daten
3.50 CβHs Cyclopropyl
3.51 CβH5 Cyclopentyl
3.52 CβHδ Cyclohexyl
3.60 CβHs C6H4-4-C(CH3)3
3.63 CeH4- 4-CI C2Hs
3.69 CeH4- 4-CI CH2CeH4-4-CH3
3.70 CβH - -4-CI C6H4-4-CI
3.71 CβH - -4-CI C6H4-4-OH
3.72 CδH - -4-CI CβH4-2-CH3
3.73 CβH4' -4-CI C6H4-2-CI
3.74 CβH4' -4-CI C6H4-4-Br
3.75 CβH ' -4-CI 4-Pyridyl
3.76 CβH4' -4-CI C6H4-4-OCH2-C6H4-3-CF3 Verb. Nr. Ri R2 Phys. Daten
Tabelle 4: Verbindungen der Formel
Verb.Nr. Ri R2 Phys. Daten
4.1 H H
4.2 H CH3 no 20 = 1 ,6869
4.4 H C3H7-n
4.5 H C3H7-i
4.6 H C4H9-n
4.8 H eHι3-n
4.11 CH3 H
4.12 CH3 CH3 no 20 = 1 ,6893
4.14 CH3 C3H7-n
4.15 CH3 C3H7-i
4.16 CH3 C4H9-n
Verb.Nr. Ri R2 Phys. Daten
4.20 CH3 CH2C(CH3)3
4.21 CH3 CβHs nD 20 = 1 ,50731
4.22 CH3 C6H4-2-CI Oel
4.23 CH3 C6H4-3-CI nD 20 = 1 ,6883
4.24 CH3 C6H4-4-CI Oel
4.25 CH3 CβH4-2-CF3 nD 20 = 1 ,4667
4.26 CH3 C6H4-3-CF3 nD 20 = 1 ,6765
4.27 CH3 C6H4-4-CF3
4.28 CH3 C6H4-2-CN
4.29 CH3 C6H4-3-CN amorph
4.30 CH3 C6H4-4-CN Smp.: 121-128°C
4.31 CH3 C6H4-2-NO2 nD 20 = 1 ,6888
4.32 CH3 C6H4-3-NO2 nD 20 = 1 ,6897
4.33 CH3 C6H4-4-NO2 nD 20 = 1 ,6853
4.34 CH3 CβH4-4-C6H5 Smp.: 51-52°C
4.35 CH3 C6H4-4-OC6H5 Oel
4.36 CH3 C6H4-4-C(CH3)3 nD 20 = 1 ,6754
4.37 CH3 C6H4-4-OCF3 nD 20 = 1 ,6843
4.38 CH3 C6H4-4-COOC2H5 amorph
4.39 CH3 C6F5 Oel
4.40 CH3 C6H2-3,4,5-(OCH3)3 nD 20 = 1 ,5207
4.41 CH3 amorph
Verb.Nr. Phys. Daten
4Hg-t 20
4.48 CβHβ C rio = 1 ,4850
Cyclopropyl 20
4.50 CβHδ nD = 1 ,5132
4.51 CβHs Cyclopentyl
4.52 CβHs Cyclohexyl
4.53 CδHδ CβHδ nD 20 = 1 ,5503
4.55 CβHs C6H4-4-CF3 nD 22 = 1 ,5130
4.57 CβHδ C6H4-4-NO2 amorph
4.60 CβHs C6H4-4-C(CH3)3
4.62 CeH - 4-CI CF3 nD 2'0u = 1 ,4709
4.68 CeH4- 4-CI CHoOβHs
4.69 CβH4- 4-CI CH2C6H4-4-CH3
4.70 CβH4- 4-CI C6H4-4-CI Smp.: 66-67°C
4.71 CβH4- -4-CI C6H4-4-OH
4.72 CβH - -4-CI CeH4-2-CH3
4.73 CβH4' -4-CI C6H4-2-CI
4.74 CeH4- -4-CI C6H4-4-Br
20
4.75 CβH4 -4-CI 4-Pyridyl ΠD*1 = 1 ,5575 Verb.Nr. R, R2 Phys. Daten
4.76 C6H4-4-CI C6H4-4-OCH2-C6H4-3-CF3
20
4.79 CβHs CH2C6H5 Γ.D = 1 ,6744
20
4.80 C2Hs -C6H4-4-CI no = 1 ,6768 3-3,5-(CF3)2 20
4.81 CH3 C-6H no = 1 ,4509
4.82 Cyclopropyl -C6H3-4-CI nrj 20 = 1 ,6820
Verb.Nr. Phys. Daten
4.95 -CβHs C6H3-2,4-F2 26 nD = 1 ,5267
4.97 -C6H4-4-F C6H4-4-F Smp.: 55-57°C
4.98 -CβHs CβH4-3-CF3 22 nD" = 1 ,5143
4.99 -CeH4-3-CF3 CβH4-3-CF3 22 nD" = 1 ,4831
4.100 -C6H5 C6H4-2-CI 22 nD" = 1 ,5523
4.103 -CβHs -C6H3*4-CI-3-NO2 Smp.: : 72-75°C
4.104 -C-βHs -C6H4-3-NO2 r n.D 22 = 1 ,5615
4.105 -CβHs -C6H3-2,4-CI2 r n, 2 = : 1 ,5490
4.106 -C-6H5 -C6H4-4-S-C6H4-4-CI n,D 23 = : 1 ,5757 Verb.Nr. R, Phys. Daten
4.107 -C6 6Hrl5 nD 2"3 = 1 ,5058
4.108 24
-C6H4-4-OCH3 -C6H4-4-O-CH3 no = 1 ,5578
Tabelle 5: Verbindungen der Formel
Verb. Nr. RT R2 Phys. Daten
5.1 H H
5.2 H CH3 Smp. 78-79°C
5.3 H C2Hs
5.4 H C3H7-n
5.5 H C3H7-i
5.6 H C4H9-n
5.9 H CιoH2ι-n
5.11 CH3 H
5.12 CH3 CH3 nD 20 = 1 ,7589
5.13 CH3 C2Hs
5.14 CH3 C3H7-n
5.15 CH3 C3H7-i
5.16 CH3 C4H9-n
5.19 CH3 CιoH2ι-n
5.20 CH3 CH2C(CH3)3
5.21 CH3 C6H5 Smp.: 64-66°C
5.22 CH3 C6H4-2-CI Smp.: 79-82°C
5.23 CH3 C6H4-3-CI Smp.: 75-78°C
5.24 CH3 C6H4-4-CI Smp. : 104-106°C
5.25 CH3 C6H4-2-CF3 nD 20 = 1 ,4941
5.26 CH3 C6H4-3-CF3 Smp. 82-83°C
Verb. Nr. Ri R2 Phys. Daten
5.52 -CβHs Cyclohexyl
5.53 -C-βHs CβHs Smp. 70-71 °C
5.54 -CβHs C6H4-4-CI Smp. 129-131 °C
5.55 -CβHs C6H4-4-CF3 Smp. 119-120°C
5.57 -CβHs C6H4-4-NO2 Smp. 88-90°C
5.58 -CδHs CβH4-4-C6H5 Smp. 130-132°C
5.59 -CβHs C6H4-4-OC6H5
5.60 -CβHδ C6H4-4-C(CH3)3
5.61 -CeH5 C6H4-4-OCF3
5.62 -C6H4-4-CI CF3
5.63 -C6H4-4-CI C2Hδ
5.64 -C6H4-4-CI C3H7-n
5.65 -C6H4-4-CI C3H7-i
5.67 -C6H4-4-CI C4H9-n
5.68 -C6H4-4-CI CH2CβH5
5.69 -C6H4-4-CI CH2CgH4-4-CH3
5.70 -C6H4-4-CI -C6H4-4-CI Smp. 114-116°C
5.71 -C6H4-4-CI -C6H4-4-OH
5.72 -C6H4-4-CI -CeH -2-CH3
5.73 -C6H4-4-CI -C6H4-2-CI
5.74 -C6H4-4-CI -C6H4-4-Br
5.75 -C6H4-4-CI 4-Pyridyl Smp. 144-148°C
5.76 -C6H4-4-CI -C6H4-4-OCH2-C6H4-3-CF3 Harz
5.78 H -CβHs Smp. 60-63°C
5.79 -CβHδ -CH2C6H5 Smp. 95-96°C
5.80 -C2H5 -C6H4-4-CI Smp. 106-107°C
5.81 -C6H4-4-CI -C6H4-4-OSO2N(C H3)2 Smp. 105-115°C Verb. Nr. R, Phys. Daten
5.83 -CβHs Cyclopropyl Smp. 80-82°C
5.84 -CH3 -CeH3-3,5-(CF3)2 Smp. 103-105°C
5.85 -CβHs -C6H4-4-F Smp. 77-78°C
5.86 -CβHö -C6H3-2,4-F2 Smp. 109-110°C
5.87 -CβHδ -C6H4-4-F Smp. 99-101 °C
5.88 -C6H4-4-F -C6H4-4-F Smp. 76-77°C
5.92 -C6 6HIT5 Smp. 81-82°C
5.93 -CβH4-3-CF3 -CβH4-3-CF3 Smp. 62-63°C
5.94 -C6H4-4-OCH3 -C6H4-4-OCH3 Smp. 82-83°C
5.95 -C6H4-4-OCH3 -CH2-C6H4-4-OCH3 Smp. 123-124°C
5.96 -CβHs -C6H4-2-CI Smp. 69-70°C
5.97 -CβHs -C6H3-2,4-CI2 Smp. 117-118°C
5.98 -C6H4-4-N(CH3)2 -C6H4-4-N(CH3)2 Smp. 93-94°C
5.99 -CβHδ -C6H4-4-S-C6H4-4-CH3 Smp. 112-113°C
5.100 -C6 6Hπ5 nD 20 = 1 ,5510
5.101 -C6 6HIT5 nD 20 = 1 ,5355
Verb. Nr. Ri R2 Phys. Daten
6.53 CβHs CβHs Smp.. 50-53°C
6.54 CβHδ C6H4-4-CI Smp. 102-102°C
6.59 CeHs C6H4-4-OC6H5
6.60 CβHs C6H4-4-C(CH3)3
6.62 C6H4-4-CI CF3
6.64 C6H4-4-CI C3H7-n
6.65 C6H4-4-CI C3H7-i
6.67 C6H4-4-CI C4H9-n
6.69 C6H4-4-CI CH2CeH4-4-CH3
6.70 C6H4-4-CI C6H4-4-CI Smp. 73-75°C
6.71 C6H4-4-CI C6H4-4-OH
6.72 C6H4-4-CI CeH4-2-CH3
6.73 C6H4-4-CI C6H4-2-CI
6.74 C6H4-4-CI C6H4-4-Br
6.75 C6H4-4-CI 4-Pyridyl
6.76 C6H4-4-CI C6H4-4-OCH2-C6H4-3-CF3
6.78 H -CβHs Smp. 72-75°C
6.79 CβH5 -CH2CβH5 Smp. 104-106°C
6.80 C2H5 -C6H4-4-CI Smp. 79-80°C
6.81 CH3 -CeH3-3,5-(CF3)2 Smp. 148-150°C
6.82 C2H5 -C6H4-4-CI Smp. 79-80°C
Verb. Nr. Ri R2 Phys. Daten
8.51 CβHs Cyclopentyl
8.52 CβHs Cyclohexyl
8.56 C6Hs C6H4-4-CN
8.59 C-βHs C6H4-4-OC6H5
8.60 C6Hs C6H4-4-C(CH3)3
8.62 C6H4-4-CI CF3
8.63 C6H4-4-CI C2Hδ
8.64 C6H4-4-CI C3H7-n
8.65 C6H4-4-CI C3H7-i
8.68 C6H4-4-CI CH2CeHs
8.69 C6H4-4-CI CH2CeH4-4-CH3
8.70 C6H4-4-CI C6H4-4-CI
8.71 C6H4-4-CI C6H4-4-OH
8.72 C6H4-4-CI CβH4-2-CH3
8.73 C6H4-4-CI C6H4-2-CI
8.74 C6H4-4-CI C6H4-4-Br
8.75 C6H4-4-CI 4-Pyridyl
8.76 C6H4-4-CI C6H4-4-OCH2-C6H4-3-CF3
8.78 H -CeH5
8.80 C2Hs -C6H4-4-CI- Tabelle 9: Verbindungen der Formel
Verb. Nr. R, Phys. Daten
9.01 H H
9.02 H CH3
9.03 H C2Hδ
9.04 H C3H7-n
9.05 H C3H7-i
9.06 H C4H9-n
9.09 H CιoH2ι-n
9.10 H CH2C(CH3)3
9.1 1 CH3 H
9.12 CH3 CH3
9.13 CH3 C2Hδ
9.14 CH3 C3H7-n
9.15 CH3 C3H7-i
9.16 CH3 C4H9-n
9.19 CH3 CιoH2ι-n
9.20 CH3 CH2C(CH3)3
9.22 CH3 C6H4-2-CI
9.23 CH3 C6H4-3-CI
9.24 CH3 C6H4-4-CI
co co o CO CD O o CD CO O co co co co co co co co co co co o co co co
CJl 45. 45. 45. 45- 45. 45. 45. 45. CO CO o co co co ω co co co ho ro ro o CD 00 v| cn CO ro o co oo vi cn CJI 45. co ro ->■ o CO 00 v|
o o o o o o o o o o o O O O O O O O O O O O O O O
X X X X X X X X X X X X X X X X X X X X X X X X X
Tabelle 11 : Verbindungen der Formel
F
Verb. Nr. R, Phys. Daten
11.01 H H
11.02 H -CH3
11.03 H -C2H5
11.04 H -C3H7-n
11.05 H -C3H7-i
11.06 H -C4H9-n
11.08 H -CeHι3-n
11.09 H -CιoH2ι-n
11.10 H -CH2C(CH3)3
11.11 CH3 H
1 1.12 CH3 -CH3
11.13 CH3 -C2Hs
11.14 CH3 -C3H7-n
11.15 CH3 -C3H7-i
11.16 CH3 -C4H9-n
11.19 CH3 -CιoH2ι-n
11.20 CH3 -CH2C(CH3)3
11.22 CH3 -C6H4-2-CI
11.23 CH3 -C6H4-3-CI
11.24 CH3 -C6H4-4-CI
11.25 CH3 -CeH4-2-CF3
11.26 CH3 -C6H4-3-CF3
ro ro vl
xo
45.
00 O
rό o
X
Verb. Nr. R, Phys. Daten
20.16 CH3 -C6H4-4-CI NH 3
20.17 CH3 -C6H4-4-CI NH 4
20.18 CH3 -C6H4-4-CI NH 5
20.19 CH3 -C6H4-4-CI O 0
20.20 CH3 -C6H4-4-CI O 1
20.21 CH3 -C6H4-4-CI O 2
20.22 CH3 -C6H4-4-CI O 3
20.23 CH3 -C6H4-4-CI O 4
20.24 CH3 -C6H4-4-CI O 5
20.25 -CβH4 -4-CI -C6H4-4-CI NH 1
20.26 -CβH4 -4-CI -C6H4-4-CI O 1
Biologische Beispiele
Beispiel B1 : Ovizide Wirkung auf Heliothis virescens
Auf Filterpapier abgelegte Eier von Heliothis virescens werden für kurze Zeit in eine aceto- nisch-wässrige Testlösung, die 400 ppm des zu prüfenden Wirkstoffes enthält, eingetaucht. Nach dem Antrocknen der Testlösung werden die Eier in Petrischalen inkubiert. Nach 6 Tagen wird der prozentuale Schlupf der Eier im Vergleich zu unbehandelten Kontrollansätzen ausgewertet (% Schlupfreduktion).
Verbindungen gemäss Tabellen 1 - 20 zeigen in diesem Test gute Wirkung gegen Heliothis virescens. Insbesondere die Verbindungen 4.80, 4.53, 4.78, 4.12, 4.21 , 4,79, 4.02, 4.36, 4.26, 5.76, 5.77, 5.53, 5.21 , 5.78, 5.02, 5.12, 5.79, 5.36, 5.26, 5.80, 6.53, 6.21 , 6.78, 6.79, 6.12, 6.02, 6.36, 6.26 und 6.80 zeigen eine Wirkung über 80 %.
Beispiel B2: Wirkung gegen Nilaparvata luoens
Reispflanzen werden mit einer wässrigen Emulsions - Spritzbrühe, die 400 ppm des Wirkstoffes enthält, behandelt. Nach dem Antrocknen des Spritzbelages werden die Reispflanzen mit Larven von Nilaparvata lugens des 2. und 3. Stadiums besiedelt. 21 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl überlebender Zikaden auf den behandelten zu denjenigen auf den unbehandelten Pflanzen wird die prozentuale Reduktion der Population (% Wirkung) bestimmt. Die Verbindungen der Tabellen 1 - 20 zeigen eine gute Wirkung gegen Nilaparvata lugens in diesem Test. Insbesondere die Verbindungen 4.80, 4.53, 4.78, 4.12, 4.21 , 4,79, 4.02, 4.36, 4.26, 5.76, 5.77, 5.53, 5.21 , 5.78, 5.02, 5.12, 5.79, 5.36, 5.26, 5.80, 6.53, 6.21 , 6.78, 6.79, 6.12, 6.02, 6.36, 6.26 und 6.80 zeigen eine Wirkung über 80 %.
Beispiel B3: Wirkung gegen Diabrotica balteata Larven
Maiskeimlinge werden mit einer wässrigen Emulsions - Spritzbrühe, die 400 ppm des Wirkstoffes enthält, besprüht. Nach dem Antrocknen des Spritzbelages werden die Maiskeimlinge mit 10 Larven von Diabrotica balteata des zweiten Stadiums besiedelt und in einen Plastikbehälter gegeben. 6 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Larven auf den behandelten zu denjenigen auf den unbehandelten Pflanzen wird die prozentuale Reduktion der Population (% Wirkung) bestimmt.
Die Verbindungen der Tabellen 1 - 20 zeigen eine gute Wirkung gegen Diabrotica balteata in diesem Test. Insbesondere die Verbindungen 4.80, 4.53, 4.78, 4.12, 4.21 , 4,79, 4.02, 4.36, 4.26, 5.76, 5.77, 5.53, 5.21 , 5.78, 5.02, 5.12, 5.79, 5.36, 5.26, 6.53, 6.21 , 6.78, 6.79, 6.12, 6.02, 6.26 und 6.80 zeigen eine Wirkung über 80 %.
Beispiel B4: Wirkung gegen Tetranychus urticae
Junge Bohnenpflanzen werden mit einer Mischpopulation von Tetranychus urticae besiedelt und 1 Tag später mit einer wässrigen Emulsions - Spritzbrühe, die 400 ppm des Wirkstoffes enthält, besprüht. Die Pflanzen werden anschliessend für 6 Tage bei 25°C inkubiert und danach ausgewertet. Aus dem Vergleich der Anzahl toter Eier, Larven und Adulten auf den behandelten zu denjenigen auf den unbehandelten Pflanzen wird die prozentuale Reduktion der Population (% Wirkung) bestimmt.
Die Verbindungen der Tabellen 1 - 20 zeigen eine gute Wirkung gegen Tetranychus urticae in diesem Test. Insbesondere die Verbindungen 4.80, 4.53, 4.78, 4.12, 4.21 , 4,79, 4.02, 4.36, 4.26, 5.76, 5.77, 5.53, 5.21 , 5.78, 5.02, 5.12, 5.79, 5.36, 5.26, 5.80, 6.53, 6.21 , 6.78, 6.12, 6.02, 6.36, 6.26 und 6.80 zeigen eine Wirkung über 80 %.
Beispiel B5: Wirkung gegen Spodoptera littoralis Raupen
Junge Sojapflanzen werden mit einer wässrigen Emulsions - Spritzbrühe, die 400 ppm des Wirkstoffes enthält, besprüht. Nach dem Antrocknen des Spritzbelages werden die Sojapflanzen mit 10 Raupen des dritten Stadiums von Spodoptera littoralis besiedelt und in einen Plastikbehälter gegeben. Drei Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Raupen und des Frasschadens auf den behandelten zu denjenigen auf den unbehandelten Pflanzen wird die prozentuale Reduktion der Population bezw. die prozentuale Reduktion des Frasschadens (% Wirkung) bestimmt.
Die Verbindungen der Tabellen 1 - 20 zeigen eine gute Wirkung gegen Spodoptera littoralis in diesem Test. Insbesondere die Verbindungen 4.80, 4.53, 4.12, 4.21 , 4.36, 5.77, 5.53, 5.21 , 5.78, 5.79, 5.36, 5.26, 5.80, 6.53, 6.21 , 6.12, 6.02, 6.36, 6.26 und 6.80 zeigen eine Wirkung über 80 %.
Beispiel B6: Wirkung gegen Plutella xylostella Raupen
Junge Kohlpflanzen werden mit einer wässrigen Emulsions - Spritzbrühe, die 400 ppm des Wirkstoffes enthält, besprüht. Nach dem Antrocknen des Spritzbelages werden die Kohlpflanzen mit 10 Raupen des dritten Stadiums von Plutella xylostella besiedelt und in einen Plastikbehälter gegeben. 3 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Raupen und des Frasschadens auf den behandelten zu denjenigen auf den unbehandelten Pflanzen wird die prozentuale Reduktion der Population bezw. die prozentuale Reduktion des Frasschadens (% Wirkung) bestimmt.
Die Verbindungen der Tabellen 1 - 20 zeigen eine gute Wirkung gegen Plutella xylostella in diesem Test. Insbesondere die Verbindungen 4.80, 4.53, 4.78, 4.12, 4.21 , 4,79, 4.02, 4.36, 4.26, 5.77, 5.53, 5.78, 5.36, 5.26, 5.80, 6.53, 6.21 , 6.78, 6.12, 6.02 und 6.80 zeigen eine Wirkung über 80 %.
Beispiel B7: Wirkung gegen Aphis craccivora
Erbsenkeimlinge werden mit Aphis craccivora infiziert und anschliessend mit einer Spritzbrühe, die 400 ppm des Wirkstoffes enthält, besprüht und bei 20°C inkubiert. 3 und 6 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Blattspäte auf den behandelten zu denjenigen auf den unbehandelten Pflanzen wird die prozentuale Reduktion der Population (% Wirkung) bestimmt.
Die Verbindungen der Tabellen 1 - 20 zeigen eine gute Wirkung gegen Aphis craccivora in diesem Test. Insbesondere die Verbindungen 4.80, 4.53, 4.78, 4.12, 4.21 , 4,79, 4.36, 4.26, 5.77, 5.53, 5.21 , 5.78, 5.26, 5.80, 6.53, 6.21 , 6.78, 6.12, 6.02 und 6.80 zeigen eine Wirkung über 80 %. Beispiel B8: Wirkung gegen Mvzus persicae
Erbsenkeimlinge werden mit Myzus persicae infiziert und anschiiessend mit einer Spritzbrühe, die 400 ppm des Wirkstoffes enthält, besprüht und bei 20ΛC inkubiert. 3 und 6 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Blattläuse auf den behandelten zu denjenigen auf den unbehandelten Pflanzen wird die prozentuale Reduktion der Population (% Wirkung) bestimmt.
Die Verbindungen der Tabellen 1 - 20 zeigen eine gute Wirkung gegen Myzus persicae in diesem Test. Insbesondere die Verbindungen 4.80, 4.53, 4.78, 4.12, 4.21 , 4,79, 4.36, 4.26, 5.21 , 5.78, 5.26, 5.80, 6.53, 6.21 , 6.78, 6.12, 6.02 und 6.80 zeigen eine Wirkung über 80
%.
Beispiel B9: Systemische Wirkung gegen Mvzus persicae
Erbsenkeimlinge werden mit Myzus persicae infiziert, anschiiessend mit den Wurzeln in eine Spritzbrühe, die 400 ppm des Wirkstoffes enthält, gestellt und bei 20%C inkubiert. 3 und 6 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Blattläuse auf den behandelten zu denjenigen auf den unbehandelten Pflanzen wird die prozentuale Reduktion der Population (% Wirkung) bestimmt.
Die Verbindungen der Tabellen 1 - 20 zeigen eine gute Wirkung gegen Myzus persicae in diesem Test. Insbesondere die Verbindungen 4.80, 4.53, 4.78, 4.12, 4.21 , 4,79, 4.02, 4.36, 5.21 , 5.78, 5.02, 5.12, 6.21 , 6.78, 6.79, und 6.80 zeigen eine Wirkung über 80 %.
Beispiel B10: Ovo/Iarvizide Wirkung auf Heliothis virescens
Auf Baumwolle abgelegte Eier von Heliothis virescens werden mit einer wässrigen Emulsions - Spritzbrühe, die 400 ppm des Wirkstoffes enthält, besprüht. Nach 8 Tagen wird der prozentuale Schlupf der Eier und die Ueberlebensrate der Raupen im Vergleich zu unbehandelten Kontrollansätzen ausgewertet (% Reduktion der Population).
Verbindungen gemäss Tabellen 1 - 20 zeigen in diesem Test gute Wirkung gegen Heliothis virescens. Insbesondere die Verbindungen 4.80, 4.53, 4.78, 4.12, 4.21 , 4,79, 4.02, 4.36, 4.26, 5.76, 5.77, 5.53, 5.21 , 5.78, 5.02, 5.12, 5.79, 5.36, 5.26, 5.80, 6.53, 6.21 , 6.78, 6.79, 6.12, 6.02, 6.36, 6.26 und 6.80 zeigen eine Wirkung über 80 %.
Beispiel B11 : Wirkung gegen Tetranychus urticae ovizid
Junge Bohnenpflanzen werden mit Weibchen von Tetranychus urticae besiedelt, die nach 24 Stunden wieder entfernt werden. Die mit Eiern besiedelten Pflanzen werden mit einer wässrigen Emulsions - Spritzbrühe, die 400 ppm des Wirkstoffes enthält, besprüht. Die Pflanzen werden anschiiessend für 6 Tage bei 25°C inkubiert und anschiiessend ausgewertet. Aus dem Vergleich der Anzahl toter Eier, Larven und Adulten auf den behandelten zu denjenigen auf den unbehandelten Pflanzen wird die prozentuale Reduktion der Population (% Wirkung) bestimmt.
Die Verbindungen der Tabellen 1 - 20 zeigen eine gute Wirkung gegen Tetranychus urticae in diesem Test. Insbesondere die Verbindungen 4.53, 4.78, 4.12, 4.21 , 4,79, 4.02, 4.36, 4.26, 5.76, 5.77, 5.53, 5.21 , 5.78, 5.12, 5.79, 5.36, 5.26, 5.80, 6.53, 6.21 , 6.78, 6.12, 6.02, 6.36, 6.26 und 6.80 zeigen eine Wirkung über 80 %.
Beispiel B12: Wirkung gegen Panonvchus ulmi (OP und Carb. resistent)
Apfelsämlinge werden mit adulten Weibchen von Panonychus ulmi besiedelt. Nach sieben Tagen werden die infizierten Pflanzen mit einer wässrigen Emulsion- Spritzbrühe, enthaltend 400 ppm der zu prüfenden Verbindung, bis zur Tropfnässe besprüht und im Gewächshaus kultiviert. Nach 14 Tagen erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Spinnmilben auf den behandelten zu denjenigen auf den unbehandelten Pflanzen wird die prozentuale Reduktion an Population (% Wirkung) bestimmt.
Verbindungen der Tabellen 1 - 20 zeigen gute Wirkung in obigen Test. Insbesondere die Verbindungen 4.53, 4.78, 4.12, 4.21 , 4,79, 4.36, 4.26, 5.76, 5.77, 5.53, 5.21 , 5.78, 5.12, 5.79, 5.36, 5.26, 5.80, 6.53, 6.21 , 6.78, 6.12, 6.02, 6.36, 6.26 und 6.80 zeigen eine Wirkung über 80%.

Claims

Patentansprüche
1. Eine Verbindung der allgemeinen
in welcher
\
Ri und R2 unabhängig voneinander Wasserstoff; oder Alkyl, eine Gruppe Aryl,
Cycloalkyl, Alkenyl oder Alkinyl, welche gegebenenfalls substituiert sind;
R3 Wasserstoff, Fluor oder Methyl; m 0, 1 , 2, 3, 4 oder 5; n 0 oder 1 ;
X Sauerstoff oder NR4; und
R4 Wasserstoff oder CrC6-Alkyl oder Benzyl, welche gegebenenfalls substituiert sind, darstellt, und gegebenenfalls ihre möglichen E/Z-Isomeren, E/Z-Isomerengemische und/oder Tautomeren, jeweils in freier Form oder in Salzform. mit der Massgabe, dass a) R3 nicht Wasserstoff oder Fluor und m und n nicht beide 0 bedeuten, wenn X für Sauerstoff steht und Ri und R2 unabhängig voneinander für Wasserstoff oder unsubstituiertes oder substituiertes Alkyl, Alkenyl, Cycloalkyl, Aryl oder Heteroaryl bedeuten; b) R3 nicht Wasserstoff oder Fluor und m und n nicht beide 0 bedeuten, wenn R4 für Wasserstoff und Ri und R2 unabhängig voneinander für Wasserstoff oder unsubstituiertes oder substituiertes Alkyl, Aryl oder Heteroaryl stehen; c) m nicht 0, 1 oder 2 und R Wasserstoff, Alkyl oder Haloalkyl bedeutet, wenn einer der Reste Ri oder R2 4-Alkylsulfonyloxyphenyl, 4-Haloalkylsulfonyloxypphenyl oder 4-Haloalkoxysulfonyloxy- phenyl bedeutet, das gegebenenfalls weitere Substituenten tragen kann, und der andere für gegebenenfalls substituiertes Phenyl steht; und d) m nicht 0, 1 oder 2 und R4 nicht Wasserstoff, Alkyl oder Haloalkyl und n nicht 0 bedeutet, wenn einer der Reste Ri und R2 für 4-Perhaloalkoxyphenyl bedeutet, das gegebenenfalls weitere Substituenten tragen kann, und der andere für gegebenenfalls substituiertes Phenyl steht.
2. Eine Verbindung gemäss Anspruch 1 der Formel (I) in freier Form.
3. Eine Verbindung gemäss Anspruch 1 der Formel (I), in welcher
Ri und R2 unabhängig voneinander Wasserstoff; Cι-C2o-Alkyl, das geradkettig oder verzweigt und ein- bis vierfach durch Hydroxy, Halogen, Alkoxy, Halogenalkoxy, Alkoxyalkoxy, Alkythio, Halogenalkylthio, Alkylsulfinyl, Alkylsulfonyl, Alkylsulfonyloxy, Alkylcarbonyl, Dialkylamino, Pyrrolidino, Piperidino, Morphoiino, Alkoxycarbonyl, Alkyl- carbonyloxy, Cycloalkyl, Phenyl, Naphthyl, Phenoxy, Naphthoxy, Phenylthio, Naphthylthio, Phenylsulfonyl, Naphthylsulfonyl, Phenylsulfonyloxy, Naphthylsulfonyloxy, Benzoyl, Naphthoyl, Heteroaryl oder Heteroaryloxy mit 5 bis 6 Ringgliedern und 1 bis 2 Heteroatomen N, O oder S substituiert sein kann, wobei die genannten Aryl- oder Heteroarylgruppen ihrerseits ein- oder zweifach durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Nitro, Cyano, Phenoxy, Halophenoxy, Phenylthio oder Halo- phenylthio substituiert sein können;
C3-C2o-Alkenyl, das geradkettig oder verzweigt und ein- bis vierfach durch Halogen substituiert sein kann;
C3-C2o-Alkinyl, das geradkettig oder verzweigt und ein- bis vierfach durch Halogen substituiert sein kann;
C3-C7-Cycloalkyl, das ein- bis vierfach durch Halogen, Alkyl oder Halogenalkyl substituiert sein kann;
Phenyl oder Naphthyl, das ein- bis vierfach durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Cycloalkylalkoxy, Halogencycloalkylalkoxy, Alkylthio, Halogenalkylthio, Alkylsulfonyloxy, Haloalkylsulfonyloxy, Haloalkoxysulfonyloxy, Alkyiamino, Dialkylamino, Pyrrolidino, Piperidino, Morphoiino, Nitro, Cyano, Trialkylsilyl, Phenyl, Phenoxy, Phenylthio, Benzoyl, Benzyloxy, Anilino, Naphthyl, Heteroaryl oder Heteroaryloxy mit 5 bis 6 Ringgliedern und 1 bis 2 Heteroatomen N, O oder S substituiert sein kann, wobei Phenyl-, Phenoxy, Phenylthio-, Benzoyl-, Benzyloxy-, Anilino-, Naphthyl-, Heteroaryl- und Heteroaryloxyreste als Substituenten ihrerseits ein- oder zweifach durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Nitro, Cyano, Phenoxy, Phenylthio, Halogenphenylthio, Cycloalkylalkoxy oder Halogencycloalkylalkoxy substituiert sein können, Heteroaryl mit 5 bis 6 Ringgliedern und 1 bis 2 Heteroatomen N,O oder S, das ein- bis vierfach durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Cycloalkylalkoxy, Halogencycloalkylalkoxy, Alkylthio, Halogenalkylthio, Alkyiamino, Dialkylamino, Pyrrolidino, Piperidino, Morphoiino, Nitro, Cyano, Trialkylsilyl, Phenyl, Phenoxy, Phenylthio, Benzoyl, Benzyloxy, Anilino, Naphthyl, Heteroaryl oder Heteroaryloxy mit 5 bis 6 Ringgliedern und 1 bis 2 Heteroatomen N, O oder S substituiert sein kann, wobei Phenyl-, Phenoxy,
Phenylthio-, Benzoyl-, Benzyloxy-, Anilino-, Naphthyl-, Heteroaryl- und Heteroaryloxyreste als Substituenten ihrerseits ein- oder zweifach durch Halogen, Alkyl, Halogenalkyl, Alkoxy,
Halogenalkoxy, Alkylthio, Nitro, Cyano, Phenoxy, Phenylthio, Halogenphenylthio,
Cycloalkylalkoxy oder Halogencycloalkylalkoxy substituiert sein können;
R3 Wasserstoff, Fluor oder Methyl; m 0, 1 , 2, 3, 4 oder 5; n 0 oder 1 ; und
X Sauerstoff oder NR bedeutet, wobei
R4 für Wasserstoff, Cι-C4-Alkyl, das ein- oder mehrfach durch Halogen, CrC4-Alkoxy oder Di-Cι-C -Akylamino substituiert sein kann, oder für Benzyl steht, das ein- oder mehrfach durch Halogen, CrC4-Alkyl, Halogen-d-C4-alkyl, Cι-C -Alkoxy, Nitro oder Cyano substituiert sein kann.
4. Eine Verbindung gemäss einem der Ansprüche 1 oder 2 der Formel (I), in welcher
Ri und R2 unabhängig voneinander Wasserstoff oder unsubstituiertes oder substituiertes
Alkyl, Cycloalkyl, Alkenyl oder Alkinyl,
R3 Wasserstoff, Fluor oder Methyl, m 0, 1 , 2, 3, 4 oder 5; n 0 oder 1 ,
X Sauerstoff oder NR4, und
R4 Wasserstoff oder unsubstituiertes oder substituiertes d-C6-Alkyl oder Benzyl darstellt.
5. Eine Verbindung gemäss Anspruch 1 oder 2 der Formel (I), in welcher
Ri Wasserstoff oder unsubstituiertes oder substituiertes Alkyl, Alkenyl, Alkinyl oder
Cycloalkyl bedeuten,
R2 Wasserstoff oder unsubstituiertes oder substituieres Aryl oder Heteroaryl darstellt,
R3 für Wasserstoff, Fluor oder Methyl steht, m 0, 1 , 2, 3, 4 oder 5 und n 0 oder 1 ist,
X Sauerstoff oder NR4 bedeutet, und
R Wasserstoff oder unsubstituiertes oder substituiertes CrC6-Alkyi oder Benzyl darstellt.
6. Eine Verbindung gemäss Anspruch 1 oder 2 der Formel (I), in welcher
Ri und R2 unabhängig voneinander Wasserstoff oder unsubstituiertes oder substituiertes
Aryl oder bedeuten,
R3 für Wasserstoff, Fluor oder Methyl steht, m 0, 1 , 2, 3, 4 oder 5 und n 0 oder 1 ist,
X Sauerstoff oder NR bedeutet, und
R4 Wasserstoff oder unsubstituiertes oder substituiertes Cι-C6-Alkyl oder Benzyl darstellt.
7. Eine Verbindung gemäss einem der Ansprüche 1 - 5 der Formel (I), in welcher R3 Wasserstoff bedeutet und R1 ( R2, R4, m, n und X die angegebene Bedeutung haben.
8. Eine Verbindung gemäss einem der Ansprüche 1 - 5 der Formel (I), in welcher m 0, 1 , 2, 3 oder 4 bedeutet und R1 ( R2, R3, R , n und X die angegebene Bedeutung haben.
9. Eine Verbindung gemäss Anspruch 1 - 5 der Formel (I), in welcher m 1 oder 4 bedeutet und Ri, R2, R3, R , n und X die angegebene Bedeutung haben.
10. Eine Verbindung gemäss einem der Ansprüche 1 - 5 der Formel (I), in welcher n 0 bedeutet und Ri, R2, R3, R4, m und X die angegebene Bedeutung haben.
11. Eine Verbindung gemäss einem der Ansprüche 1 - 5 der Formel (I), in welcher n 0 und m 1 oder 4 bedeutet und Ri, R2, R3, R4 und X die angegebene Bedeutung haben.
12. Eine Verbindung gemäss einem der Ansprüche 1 - 5 der Formel (I), in welcher R3 Wasserstoff ist, n für 0 und m für 1 oder 4 steht, X NH oder Sauerstoff bedeutet, und Ri und R2 die angegebene Bedeutung haben.
13. Verfahren zur Herstellung einer Verbindung wie in Anspruch 1 , Formel (I) definiert, dadurch gekennzeichnet, dass man a) Verbindungen der Formel (I), in welcher n 0 bedeutet und R1 ( R2, R3, X und m die oben unter Formel (I) angegebene Bedeutung haben, herstellt, indem man eine Verbindung der Formel in welcher R3 und m die unter Formelt (I) angegebene Bedeutung haben und Y2 Cl, Br oder OSO2-Alkyl bedeuten, mit einer Verbindung der Formel
.R1
/
HX — N: ( III ) \ umsetzt, in welcher R1 ( R2 und X die unter Formel (I) angegebene Bedeutung haben; b) Verbindungen der Formel (I), in der n 0 ist und X NR4 bedeutet, und R1 ? R2, R3 und m die unter Formel (I) angegebene Bedeutung haben, herstellt, indem man eine Verbindung der Formel
in welcher R3, R4 und m die unter angegebene Bedeutung haben, mit einer Verbindung der Formel
.R1
/
( V )
\ umsetzt, in welcher RΪ und R2 die unter der Formel (I) angegebene Bedeutung haben; und c) Verbindungen der Formel (I), in der n 1 bedeutet und R1 ( R2, R3, R , X und m die unter der Formel (I) angegebene Bedeutung haben, herstellt, indem man eine Verbindung der Formel
in welcher R3 und m die oben unter angegebene Bedeutung haben, mit einer Verbindung der Formel umsetzt, in welcher Yi Cl, Br oder OSO2-Alkyl bedeutet und X, Ri und R2 die oben unter der
Formel (I) angegebene Bedeutung haben.
14. Schädlingsbekämpfungsmittel, dadurch gekennzeichnet, dass es neben inerten Hilfsund Trägerstoffen mindestens eine Verbindung gemäss Anspruch 1 der Formel (I) als Aktivsubstanz enthält.
15. Verfahren zur Herstellung eines Schädlingsbekämpfungsmittels gemäss Anspruch 14, dadurch gekennzeichnet, dass man eine Verbindung gemäss Anspruch 1 der Formel (I) mit inerten Hilfs- und Trägerstoffen vermischt.
16. Verfahren zur Bekämpfung von Schädlingen, dadurch gekennzeichnet, dass man eine Verbindung wie in Anspruch 1 beschrieben, der Formel (I), oder ein Mittel wie in Anspruch 14 beschrieben, auf die Schädli nge oder ihren Lebensraum appliziert.
17. Verwendung einer Verbindung wie in Anspruch 1 beschrieben, der Formel (I), oder gegebenenfalls eines E/Z-Isomeren oder Tautomeren davon, in freier Form oder in agrochemisch verwendbarer Salzform, zur Herstellung eines Mittels wie in Anspruch 14 beschrieben.
18. Verfahren gemäss Anspruch 14 zum Schutz von pflanzlichem Vermehrungsgut, dadurch gekennzeichnet, dass man das Vermehrungsgut oder den Ort der Ausbringung des Vermehrungsguts behandelt.
19. Verwendung einer Verbindung wie in Anspruch 1 beschrieben, der Formel (I), oder eines Mittels wie in Anspruch 14 beschrieben, zur Bekämpfung von Schädlingen.
EP98932100A 1997-06-03 1998-05-29 Organische verbindungen Withdrawn EP0986534A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH132797 1997-06-03
CH132797 1997-06-03
PCT/EP1998/003214 WO1998055448A2 (de) 1997-06-03 1998-05-29 Fluoralkencarbonsäurederivate, verfahren zu ihrer herstellung und diese enthaltende insektizidemittel

Publications (1)

Publication Number Publication Date
EP0986534A2 true EP0986534A2 (de) 2000-03-22

Family

ID=4207875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98932100A Withdrawn EP0986534A2 (de) 1997-06-03 1998-05-29 Organische verbindungen

Country Status (7)

Country Link
EP (1) EP0986534A2 (de)
JP (1) JP2002502405A (de)
CN (1) CN1259118A (de)
AU (1) AU734489B2 (de)
BR (1) BR9809912A (de)
CA (1) CA2291441A1 (de)
WO (1) WO1998055448A2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842727B2 (en) 2001-03-27 2010-11-30 Errant Gene Therapeutics, Llc Histone deacetylase inhibitors
US7214831B2 (en) 2002-05-22 2007-05-08 Errant Gene Therapeutics, Llc Histone deacetylase inhibitors based on alpha-chalcogenmethylcarbonyl compounds
US7057057B2 (en) 2002-05-22 2006-06-06 Errant Gene Therapeutics, Llc Histone deacetylase inhibitors based on alpha-ketoepoxide compounds
US7399577B2 (en) * 2003-02-19 2008-07-15 Ciba Specialty Chemicals Corporation Halogenated oxime derivatives and the use thereof
US8466151B2 (en) 2007-12-26 2013-06-18 Critical Outcome Technologies, Inc. Compounds and method for treatment of cancer
EP2318406B1 (de) 2008-07-17 2016-01-27 Critical Outcome Technologies, Inc. Thiosemicarbazonhemmerverbindungen und krebsbehandlungsverfahren
WO2011120153A1 (en) 2010-04-01 2011-10-06 Critical Outcome Technologies Inc. Compounds and method for treatment of hiv
EP3610730B1 (de) 2017-04-10 2024-01-10 Mitsui Chemicals Crop & Life Solutions, Inc. Bekämpfungsmittel parasitärer schädlinge mit pyridonverbindung als aktiver bestandteil und verwendungsverfahren dafür

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0662472B1 (de) * 1994-01-05 1998-03-11 Novartis AG Hydrazonderivate als Schädlingsbekämpfungsmittel
DE19524436A1 (de) * 1995-07-05 1997-01-09 Bayer Ag Fluorbutensäureoximester
WO1998003475A1 (en) * 1996-07-24 1998-01-29 Novartis Ag Pesticidal compositions
AU4297197A (en) * 1996-08-08 1998-03-06 Novartis Ag Substituted 4-nitroimino-perhydro-1,3,5-oxadiazine derivatives, their use as pesticides and intermediates for their preparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9855448A2 *

Also Published As

Publication number Publication date
CN1259118A (zh) 2000-07-05
JP2002502405A (ja) 2002-01-22
WO1998055448A2 (de) 1998-12-10
AU8211698A (en) 1998-12-21
WO1998055448A3 (de) 1999-05-06
CA2291441A1 (en) 1998-12-10
BR9809912A (pt) 2000-10-03
AU734489B2 (en) 2001-06-14

Similar Documents

Publication Publication Date Title
DE60018769T2 (de) Aromatische diamid-derivate oder ihre salze, chemikalien für die landwirtschaft/den gartenbau und verfahren zu ihrer anwendung
EP0172786B1 (de) Pyrimidinderivate wirksam als Schädlingsbekämpfungsmittel
EP0306696A1 (de) Substituierte Guanidine
EP0007990A1 (de) Pyrazolätherderivate, Verfahren zu ihrer Herstellung und Herbizide, die diese Verbindungen enthalten
DE3801743A1 (de) Schaedlingsbekaempfungsmittel auf basis von substituierten 1,4-naphthochinonen und neue substituierte 1,4-naphthochinone
DE3740840A1 (de) 2,2-difluorcyclopropylethanderivate, verfahren zu ihrer herstellung und ihre verwendung als schaedlingsbekaempfungsmittel
DE3713774A1 (de) Neue pyrazol-derivate, verfahren zu ihrer herstellung und fungizide fuer landwirtschaft und gartenbau, welche diese verbindungen enthalten
EP0986534A2 (de) Organische verbindungen
DE2543888C3 (de) l-Phenyl-S-alkyl-S-benzylharnstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung als Fungizide
EP0036390A2 (de) Diphenyläther-Harnstoffe mit herbizider Wirkung
EP0183650B1 (de) Phenylhydrazine, Verfahren zu ihrer Herstellung und ihre Verwendung in der Schädlingsbekämpfung
EP0373425A2 (de) Substituierte Pyridazinone, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel
EP0395581A1 (de) N-Sulfenyl- und N-sulfinyl-N,N&#39;-diacylhydrazide
DE4141721A1 (de) Substituierte heterocyclyltriazindione
EP0065483B1 (de) Mikrobizide Acylanilin- und Acylnaphthylamin-Derivate, Verfahren zu deren Herstellung und ihre Verwendung
EP0126235A1 (de) Neue fünfgliedrige stickstoffhaltige Heterocyclen, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Schädlingsbekämpfungsmittel
EP0062254A1 (de) Substituierte Acetanilide, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide
EP0144895A2 (de) Thiolan-2,4-dion-3-carboxamide
DE4327596A1 (de) 3-Methoxy-2-phenyl-acrylsäuremethylester
EP0007066B1 (de) 4-Alkyl- und 4-Allyl-merkapto-, sulfinyl- und sulfonyl-methyl-2-amino-6-N,N&#39;-dimethylcarbamoyloxy-pyrimidine, Verfahren zu ihrer Herstellung, Mittel welche diese Pyrimidine enthalten und deren Verwendung zur Bekämpfung von Insekten
DE69732539T2 (de) Arylheterocyclische Verbindungen mit herbizider Wirkung
JP2605651B2 (ja) グアニジン誘導体、その製造法及び殺虫剤
DE2815290A1 (de) Neue diarylamine, verfahren zu ihrer herstellung und ihre verwendung
EP0090247B1 (de) Substituierte N,N-Dimethyl-O-pyrimidin-4-yl-carbamin-säureester, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel
DE3003019A1 (de) N,n-dimethyl-o-(4,6-dihydro-2h-thieno (3,4-c) pyrazol-3-yl)-carbaminsaeure-ester sowie deren 5-oxide und 5,5-dioxide, verfahren zu deren herstellung und ihre verwendung in schaedlingsbekaempfungsmitteln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991104

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010131

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOVARTIS-ERFINDUNGEN VERWALTUNGSGESELLSCHAFT M.B.

Owner name: NOVARTIS AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020402