EP0986264B1 - Détermination des différences visuellement perceptibles entre deux images - Google Patents

Détermination des différences visuellement perceptibles entre deux images Download PDF

Info

Publication number
EP0986264B1
EP0986264B1 EP99202925A EP99202925A EP0986264B1 EP 0986264 B1 EP0986264 B1 EP 0986264B1 EP 99202925 A EP99202925 A EP 99202925A EP 99202925 A EP99202925 A EP 99202925A EP 0986264 B1 EP0986264 B1 EP 0986264B1
Authority
EP
European Patent Office
Prior art keywords
input image
threshold
circuit
image
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99202925A
Other languages
German (de)
English (en)
Other versions
EP0986264A2 (fr
EP0986264A3 (fr
Inventor
Ping Wu
Kevin Murray
Paul Stallard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ericsson Television AS
Original Assignee
Tandberg Television AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tandberg Television AS filed Critical Tandberg Television AS
Publication of EP0986264A2 publication Critical patent/EP0986264A2/fr
Publication of EP0986264A3 publication Critical patent/EP0986264A3/fr
Application granted granted Critical
Publication of EP0986264B1 publication Critical patent/EP0986264B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/14Coding unit complexity, e.g. amount of activity or edge presence estimation

Definitions

  • the present invention relates to determining visually noticeable differences between two images.
  • the invention has particular application to the encoding and later decoding of an image in such fields as television signal generation, compression and transmission.
  • When encoding an original image for television transmission and display at a receiver it is important to know how well the system for transmitting and receiving will perform in reproducing the original image.
  • the performance of the system is related to the visually noticeable differences between the original image and the displayed image.
  • a number of models have already been proposed to predict whether a human observer will be able to discriminate between two images.
  • One such visual discrimination model is known as the Sarnoff visual discrimination model.
  • a visual discrimination model may take, as input, a pair of images and provide an output which is a map showing the probability, as a function of position on the images, that an observer would be able to detect differences between the images.
  • the map is referred to as a JND map showing Just Noticeable Differences. This JND map can itself be presented as an image, with higher grey levels corresponding to higher probabilities of discrimination.
  • the image fidelity should be directly proportional to the quantisation sampling density. This assumption may be erroneous with the result that encoding bits are squandered where they have little impact on the fidelity of reproduction of an image.
  • a better method of controlling quantisation parameters is to base control on a JND map to obtain either more uniform image fidelity for a fixed bit rate of encoding or better bit rates for a desired level of fidelity.
  • a method of identifying visually noticeable differences between a first input image and a second input image comprising the steps of: generating contrast images from each input image; forming a contrast difference image from the contrast images; calculating measures of the mean absolute difference in luminance between blocks of pixels of the first and second input image; selecting pixels from the said contrast difference image which exceed a first threshold so as to form a first threshold output signal; selecting measures of the said mean absolute difference which exceed a second threshold so as to form a second threshold output signal; and, producing a detection signal indicating when both the threshold signals are present.
  • apparatus for identifying visually noticeable differences between a first input image and a second input image
  • the apparatus comprising: a generator to generate contrast images from each input image; a difference forming circuit to form a contrast difference image from the contrast images; a calculator to calculate measures of the mean absolute difference in luminance between blocks of pixels of the first and second input image; a selector to select pixels from the said contrast difference image which exceed a first threshold, so as to form a first threshold output signal, and to select measures of the said mean absolute difference which exceed a second threshold, so as to form a second threshold output signal; and, a detector to produce a detection signal indicating when both the threshold signals are present.
  • the detection signal is indicative of visually noticeable differences between the first input image and the second input image. Where the second input image is a compressed form of the first input image, the detection signal indicates where noticeable differences occur between them as a result of the compression. The degree of compression can thus be increased in those areas of each image where visually noticeable differences do not appear.
  • Figure 1 shows a video signal transmission apparatus including an analogue to digital converter 10 to receive an input analogue television signal 11 for conversion to a digital signal.
  • the input digital signal is encoded and compressed in an encoder 12 and applied to a transmission circuit 13.
  • the transmission circuit 13 broadcasts the compressed signal in conventional manner for reception by one or more receiver circuits 14.
  • the receiver circuit 14 applies the received signal to a decoder 15 for decoding and supply to a display 16.
  • Figure 2 shows a frame 10 included in the digital signal output from the encoder 12.
  • the digital television signal includes a sequence of frames 10.
  • Each frame consists of a matrix of pixels divided into M x N blocks of pixels.
  • a control circuit 30 is incorporated into the encoder 12 to control the compression of the television signal so as to reduce the effect of the unwanted noise.
  • the control circuit 30 is shown in Figures 3 and 4.
  • a first current television signal frame 20 is supplied to a mean absolute difference circuit 21 and to a contrast model circuit 22.
  • a second, block motion compensated frame 23 is supplied to the mean absolute difference circuit 21 and to the contrast model circuit 22.
  • the outputs from the circuits 21 and 22 are normalised in circuits 24 and 25 respectively and the outputs from the normalising circuits 24 and 25 are passed to OR module 26.
  • control circuit 30 is shown in Figure 4, which will now be described.
  • the digital television signal from the analogue to digital converter 10 is applied to a compression circuit 31 for compression and supply to an output terminal 38 connected to the transmission circuit 13.
  • the digital television signal is also supplied to a contrast image generator 33.
  • the generator 33 generates a contrast image from the pixels of each frame and applies the contrast image to a difference circuit 35.
  • the compressed signal at the output terminal 38 is supplied to a decompression circuit 34 where the signal is subject to decompression and the resulting decompressed signal is passed to a 1 - frame store 32.
  • the output of the 1 - frame store 32 is applied to a second contrast image generator 36.
  • the difference circuit 35 receives the contrast images from the two contrast image generators and produces a contrast difference image.
  • the contrast difference image is mapped in a ND (noticeable difference) map circuit 37.
  • the map circuit 37 applies an output signal to a threshold circuit 42.
  • the digital television signal from the analogue to digital converter 10 is applied to a block luminance value circuit 27 which determines the luminance value of blocks of pixels in the television signal.
  • the output of the 1-frame store is passed to a second block luminance value circuit 28 which determines the luminance value of blocks of pixels in the decompressed signal.
  • the mean average difference circuit 29 receives the luminance values from the circuits 27 and 28 to produce a mean average difference.
  • the mean average difference is scaled in the scaling circuit 41 and supplied to the threshold circuit 42.
  • the threshold circuit 42 applies an output control signal to control the compression circuit 31.
  • Each frame of the digital television signal applied to the contrast image generator 33 and the compression circuit 31 includes the blocks of pixels already mentioned and shown in Figure 2.
  • each of the pixels is processed in relation to a 3 x 3 neighbourhood area as shown in Figure 5.
  • Each pixel a i,j is included in a 3 x 3 area extending from the pixel a i-1,j-1 to the pixel a i+1,j+1 .
  • Lmax is the maximum luminance value of the pixels in the 3 x 3 neighbourhood area and L min is the minimum luminance value of the pixels in the 3 x 3 neighbourhood area.
  • a signal frame I of the digital television signal is received by the contrast image generator 33 in step 50 at the same time that a signal frame II is received by the contrast image generator 36 in step 51.
  • the signal frame I is converted in step 52 into a contrast image I as already described above with reference to Figure 4.
  • the signal frame II is a reconstruction of the television signal frame which precedes the signal frame I.
  • the signal frame II is derived by the decompression circuit 34 and supplied to the 1 - frame store 32.
  • the signal frame II, supplied in step 51, is converted in step 53 into a contrast image II by the contrast image generator 36.
  • the contrast image generator 36 uses the same process as the contrast image generator 33 to generate its contrast image.
  • the difference circuit 35 compares the contrast value of each pixel in the contrast image I with the contrast value of each pixel in the contrast image II.
  • the result is a contrast difference image in which the contrast image differences for each frame are mapped in comparison with the preceding frame in the television signal.
  • the contrast image I is applied, in step 54, to the ND map circuit 37.
  • the contrast difference image is applied, in step 55, to the ND map circuit 37.
  • the contrast image I is used as a reference for each pixel of the contrast difference image so as to select pixels from the contrast difference image in each frame as will be explained with reference to Figure 7.
  • FIG. 7 there is shown a threshold curve Ct plotted against a difference value ⁇ c along one axis and a reference value C along the other axis. Each axis has a logarithmic scale.
  • the value ⁇ c is the difference value of a pixel in the contrast difference image supplied by the difference circuit 35.
  • the reference value C is the pixel value of the corresponding pixel in the reference contrast image supplied by the contrast image generator 33. It will be observed that the threshold curve Ct includes a constant portion for which ⁇ C approximates to 1 for values of log C between 0 and 3. For values of log C in excess of 3, the curve Ct has a gradient of 0.87.
  • a control signal output is supplied to an output terminal 47 from the ND map circuit 37.
  • the control signal output is subjected in step 57 to a threshold operation in the threshold circuit 42 which operates on blocks of pixels in the map 37.
  • the signal frame I of the digital television signal is also applied in step 50 to the block luminance value circuit 27.
  • the circuit 27 operates on blocks of pixels which are eight by eight blocks to produce in step 58 an average of the luminance values of each eight by eight block.
  • the signal frame II is applied in step 51 to the block luminance value circuit 28.
  • the circuit 28 operates on eight by eight blocks of pixels to produce the absolute difference pixel by pixel for the eight by eight blocks which provides 64 difference values.
  • the mean average difference is scaled in step 62 and subjected to a threshold operation in step 63.
  • the steps 58 to 62 produce a mean average difference which can be expressed as:- where two blocks have luminance values L 1 ij and L 2 ij 0 ⁇ i,j ⁇ 7 and the scaling factor applied in step 62 is 1/64.
  • the threshold steps 57 and 63 apply a variable threshold to the signal on the line 47 from the ND map and a variable threshold to the mean average difference signal from the scaling step 62.
  • the results of the threshold steps 57 and 63 are subjected in step 64 to an OR operation.
  • the OR operation determines if either of the thresholds in steps 57 and 63 is exceeded. If either is exceeded, the images being compared are assumed to have no visually noticeable differences.
  • the product of the OR step 64 is supplied to the compression circuit 31 to control the compression of the television signal from the analogue to digital converter 10.
  • the signal compression can thereby be varied in a selective manner to achieve a better image fidelity for a fixed bit rate of encoding in the compression circuit 31 or better bit rates for a desired level of fidelity.
  • a conventional video encoder comprises an input buffer 70 to receive a digital video signal.
  • the buffer 70 applies sliced and reordered picture frames to a summer 71.
  • the summer 71 has an output connected to a discrete cosine transform circuit 72 in which a discrete cosine transform is performed on the output from the summer 71.
  • the transform circuit 72 is connected to a quantisation circuit 73, which feeds a variable length coder 74.
  • the variable length coder 74 supplies an output buffer 75.
  • the output from the buffer 75 is an MPEG compressed bit stream representing the digital video signal applied to the input buffer 70.
  • a reverse quantisation circuit 76 receives an input from the quantisation circuit 73.
  • the circuit 76 is connected to feed a reverse transform circuit 77, which performs a reverse discrete cosine transformation.
  • Each frame of the input digital video signal is decompressed by the circuits 76 and 77 and applied to a frame store 78.
  • a forward motion estimation circuit 79 derives forward motion estimation signals by comparing each frame in the store 78 with the frame at the output from the buffer 70.
  • a forward motion compensation circuit 80 receives the frame stored in the frame store 78 and the motion estimation signals from the circuit 79. The motion compensation circuit 80 applies motion compensation to the video signals passing through the summer 71.
  • the apparatus of Figure 8 is shown adapted to include a control circuit 82.
  • the control circuit 82 receives at input 84 the decompressed and motion compensated signal generated by the circuit 80.
  • the circuit 82 also receives at input 86 the picture information from the buffer 70 in respect of the next succeeding frame.
  • the circuit 82 has an output terminal 88 connected to the transform circuit 72.
  • Figure 9A shows further detail of the control circuit 82.
  • the input terminal 84 is connected to a first contrast image generator 85 and the input terminal 86 is connected to a second contrast image generator 87.
  • the two contrast image generators 85 and 87 correspond respectively to the two contrast image generators 33 and 36 of Figure 4.
  • the contrast image generators 85 and 87 generate contrast images in the same manner as the corresponding contrast image generators 33 and 36 of Figure 4.
  • the contrast images generated by the generators 85 and 87 are applied to a difference circuit 89, which corresponds to the difference circuit 35 in Figure 4.
  • the output from the difference circuit 89 is applied to a ND map circuit 90 corresponding to the map circuit 37 of Figure 4.
  • the input terminals 84 and 86 are connected to first and second block luminance signal generators 100 and 101 which correspond to the circuits 27 and 28 of Figure 4.
  • the luminance signals from the generators 100 and 101 are applied to a mean average difference module 102 corresponding to the circuit 21 of Figure 4.
  • the mean average difference signal from the mean average difference module 102 is scaled by the scaler 103.
  • the output from the ND map circuit 90 and the output from the scaler 103 are applied to a threshold and OR circuit 104 which corresponds to the threshold and OR circuit 42 of Figure 4.
  • the thresholds in the circuit 104 may be controlled so that they change depending on the video sequence being coded. Images that are more difficult to code at the desired bit rate should be given higher thresholds, as the level of acceptable distortion will be higher in these cases.
  • the threshold values are thus linked to the quantisation parameter.
  • control circuit 82 operate in the same manner as the corresponding elements in the control circuit of Figure 4 to generate control signals at the output terminal 88.
  • the control signals are applied to control the transform circuit 72 such that DCT values are sent when either input to the circuit 104 exceeds its threshold.
  • FIG 10 a second adaptation of the apparatus of Figure 8 is shown.
  • the quantisation circuit 73 receives the output from the transform circuit 72 by way of a delay circuit 91.
  • the control circuit 82 has its input terminal 84 connected to a frame store 92, its input terminal 86 connected to the input buffer 70 and its output terminal 88 connected to the quantisation circuit 73 and the inverse quantisation circuit 76.
  • a quantisation circuit 94 receives the output from the transform circuit 72 and supplies a quantised signal to an inverse quantisation circuit 96.
  • the output from the inverse quantisation circuit is subject to an inverse DCT transformation in an inverse transform circuit 98 and is supplied to the frame store 92.
  • the control circuit 82 generates a control signal on the terminal 88 to vary the step size of the quantisation applied by the quantisation circuit 73.
  • the thresholds in the threshold and OR circuit 104 determine the quantisation parameters and hence the image fidelity of the MPEG bitstream supplied from the output buffer 75.
  • a series of encoders 110a to 110n each receives a digital video signal at a respective input terminal 111a to 111n.
  • Each of the encoders 110 quantises and encodes the respective input digital signal for supply to a statistical multiplexer 112. Only two encoders are shown in Figure 11 but it will be appreciated by those skilled in the art that multiple encoders may be linked to a common statistical multiplexer 112.
  • the bit rate of each encoder is a function of the input digital signal and each encoder places a varying demand on the bit rate capacity of the statistical multiplexer 112.
  • the bit rate capacity of the multiplexer 112 is shared between the encoders 110a to 110n in a known manner.
  • Control circuits 114a to 114n are provided for controlling the encoders 110a to 110n.
  • Each of the control circuits 114a to 114n has the same configuration and function as the control circuit shown in Figure 4 and described above.
  • the control circuits 114a to 114n each control the quantisation of the respective encoder to achieve a higher bit rate for a given image fidelity.
  • the number of encoders 110, which share the bit rate capacity of the statistical multiplexer 112, may thus be increased.
  • the contrast is expressed as a percentage, which requires a multiplication by 100, but this acts only to scale the contrast values.
  • a multiplication by 64 may be substituted for the multiplication by 100 so as to make the calculation easier to implement in binary circuits.
  • a multiplication by 64 requires only a shift and prevents the need for non-integer numbers.
  • the relation also requires a division which may be implemented by approximating the divisor to the next power of two.
  • the approximation requires the most significant set bit in the luminance sum to be found. Having determined the correct power of two, the division becomes a simple shift process in binary hardware.
  • the threshold function illustrated in Figure 7 may be replaced by a simple linear function, which in turn can be arranged to include only one division by four (a shift).
  • the control signal supplied by the contrast model may then be calculated as the difference, rather than the ratio, of the contrast difference and the threshold value.
  • the invention provides a method and apparatus which is able to identify areas in an image where visually noticeable differences occur between an original image and a reproduction of that image.
  • the performance of the system that provides the reproduction can be derived by means of the invention and adjustment made to the system to enable the requisite image fidelity to be achieved.
  • the degree of compression can be adjusted to reduce or eliminate the usually noticeable differences.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Picture Signal Circuits (AREA)
  • Facsimile Image Signal Circuits (AREA)

Claims (15)

  1. Procédé pour identifier des différences visuellement visibles entre une première image d'entrée et une deuxième image d'entrée, le procédé comprenant les étapes consistant à :
    générer des images de contraste à partir de chaque image d'entrée ;
    former une image de différence de contraste à partir des images de contraste ;
    calculer des mesures de la différence absolue moyenne de luminance entre des blocs de pixels de la première et deuxième images d'entrée ;
    sélectionner des pixels de ladite image de différence de contraste qui dépassent un premier seuil de manière à former un premier signal de sortie seuil ;
    sélectionner des mesures de ladite différence absolue moyenne qui dépassent un deuxième seuil de manière à former un deuxième signal de sortie seuil ; et
    produire un signal de détection indiquant quand les deux signaux seuils sont présents.
  2. Procédé selon la revendication 1, comprenant une autre étape consistant à sélectionner des blocs de pixel provenant du premier signal de sortie seuil qui dépassent un troisième seuil.
  3. Procédé selon la revendication 1 ou 2, dans lequel les première et deuxième images d'entrée consistent chacune en une matrice de pixels à l'intérieur d'une trame de signal de télévision.
  4. Procédé selon la revendication 1, 2 ou 3, comprenant l'étape supplémentaire qui consiste à dériver la deuxième image d'entrée de la première image d'entrée en comprimant d'abord et en décomprimant ensuite la première image d'entrée.
  5. Procédé selon la revendication 4, dans lequel l'étape consistant à dériver la deuxième image d'entrée de la première image d'entrée comprend la compression de la première image d'entrée par une étape de transformation de cosinus discrète et la décompression de la première image d'entrée comprimée par une étape de transformation de cosinus discrète inverse.
  6. Procédé selon la revendication 5, dans lequel l'étape consistant à dériver la deuxième image d'entrée de la première image d'entrée comprend la compression de la première image d'entrée par une étape de quantification numérique et la décompression de la première image d'entrée comprimée par une étape de quantification numérique inverse.
  7. Procédé selon la revendication 5 ou 6, comprenant l'étape supplémentaire consistant à contrôler le degré de compression par référence au signal de détection, afin de limiter le nombre de différences visuellement visibles entre la première et la deuxième images d'entrée.
  8. Appareil pour identifier des différences visuellement visibles entre une première image d'entrée et une deuxième image d'entrée, l'appareil comprenant :
    un générateur pour générer des images de contraste à partir de chaque image d'entrée ;
    un circuit de formation de différence pour former une image de différence de contraste à partir des images de contraste ;
    un calculateur pour calculer des mesures de la différence absolue moyenne de luminance entre des blocs de pixels de la première et deuxième images d'entrée ;
    un sélectionneur pour sélectionner des pixels de ladite image de différence de contraste qui dépassent un premier seuil, de manière à former un premier signal de sortie seuil, et pour sélectionner des mesures de ladite différence absolue moyenne qui dépassent un deuxième seuil, de manière à former un deuxième signal de sortie seuil ; et
    un détecteur pour produire un signal de détection à partir des signaux seuils.
  9. Appareil selon la revendication 8, comprenant en outre un sélectionneur pour sélectionner des blocs de pixel provenant du premier signal de sortie seuil qui dépassent un troisième seuil.
  10. Appareil selon la revendication 8 ou 9, dans lequel le générateur est adapté pour générer les première et deuxième images de contraste à partir de première et deuxième images d'entrée consistant chacune en une matrice de pixels à l'intérieur d'une trame de signal de télévision.
  11. Appareil selon la revendication 8, 9 ou 10, comprenant en outre des circuits de compression et de décompression adaptés pour dériver la deuxième image d'entrée de la première image d'entrée en comprimant d'abord et en décomprimant ensuite la première image d'entrée.
  12. Appareil selon la revendication 11, dans lequel le circuit de compression comprend des moyens pour comprimer la première image d'entrée par transformation de cosinus discrète et le circuit de décompression comprend des moyens pour décomprimer la première image d'entrée comprimée par transformation de cosinus discrète inverse.
  13. Appareil selon la revendication 11, dans lequel le circuit de compression comprend des moyens pour comprimer la première image d'entrée par quantification numérique et le circuit de décompression comprend des moyens pour décomprimer la première image d'entrée comprimée par quantification numérique inverse.
  14. Appareil selon la revendication 12 ou 13, comprenant en outre des moyens de contrôle pour contrôler la compression dans le circuit de compression en réponse au signal de détection, afin de limiter le nombre de différences visuellement visibles entre la première et la deuxième images d'entrée.
  15. Appareil de codage et multiplexage de signaux comprenant une pluralité de codeurs de signaux pour coder et comprimer une pluralité respective de signaux de télévision numérique d'entrée pour produire une pluralité correspondante de signaux de télévision comprimés codés et un multiplexeur statistique pour multiplexer les signaux de télévision codés, dans lequel chaque codeur de signal comprend un circuit de contrôle pour contrôler le degré de compression appliqué par le codeur de signal, le circuit de contrôle étant l'appareil selon la revendication 14.
EP99202925A 1998-09-10 1999-09-08 Détermination des différences visuellement perceptibles entre deux images Expired - Lifetime EP0986264B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9819648 1998-09-10
GBGB9819648.8A GB9819648D0 (en) 1998-09-10 1998-09-10 Determining visually noticeable differences between two images

Publications (3)

Publication Number Publication Date
EP0986264A2 EP0986264A2 (fr) 2000-03-15
EP0986264A3 EP0986264A3 (fr) 2000-04-19
EP0986264B1 true EP0986264B1 (fr) 2003-07-02

Family

ID=10838579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99202925A Expired - Lifetime EP0986264B1 (fr) 1998-09-10 1999-09-08 Détermination des différences visuellement perceptibles entre deux images

Country Status (4)

Country Link
US (1) US6701019B1 (fr)
EP (1) EP0986264B1 (fr)
DE (1) DE69909200D1 (fr)
GB (1) GB9819648D0 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001813A1 (fr) * 2001-06-21 2003-01-03 Koninklijke Philips Electronics N.V. Incorporation et detection de filigrane dans un signal d'image de mouvement
US6882685B2 (en) 2001-09-18 2005-04-19 Microsoft Corporation Block transform and quantization for image and video coding
US7460993B2 (en) * 2001-12-14 2008-12-02 Microsoft Corporation Adaptive window-size selection in transform coding
US7242713B2 (en) * 2002-05-02 2007-07-10 Microsoft Corporation 2-D transforms for image and video coding
US7487193B2 (en) * 2004-05-14 2009-02-03 Microsoft Corporation Fast video codec transform implementations
US7546240B2 (en) * 2005-07-15 2009-06-09 Microsoft Corporation Coding with improved time resolution for selected segments via adaptive block transformation of a group of samples from a subband decomposition
US7689052B2 (en) * 2005-10-07 2010-03-30 Microsoft Corporation Multimedia signal processing using fixed-point approximations of linear transforms
GB2444992A (en) 2006-12-21 2008-06-25 Tandberg Television Asa Video encoding using picture division and weighting by luminance difference data
US8942289B2 (en) * 2007-02-21 2015-01-27 Microsoft Corporation Computational complexity and precision control in transform-based digital media codec
US7761290B2 (en) 2007-06-15 2010-07-20 Microsoft Corporation Flexible frequency and time partitioning in perceptual transform coding of audio
EP3021583B1 (fr) 2014-11-14 2019-10-23 Axis AB Procédé d'identification des zones pertinentes dans des images numériques, procédé de codage d'images numériques et système de codeur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2014935C (fr) * 1989-05-04 1996-02-06 James D. Johnston Systeme de codage d'images adapte a la perception visuelle
KR930003757A (ko) * 1991-07-31 1993-02-24 오오가 노리오 영상 신호 전송 장치 및 방법
US5394483A (en) * 1992-06-30 1995-02-28 Eastman Kodak Co Method and apparatus for determining visually perceptible differences between images
US5566208A (en) * 1994-03-17 1996-10-15 Philips Electronics North America Corp. Encoder buffer having an effective size which varies automatically with the channel bit-rate
WO1997037322A1 (fr) * 1996-03-29 1997-10-09 Sarnoff Corporation Appareil et procede permettant d'optimiser le codage et d'effectuer une compression d'image automatique et orientable a l'aide d'une echelle de perception

Also Published As

Publication number Publication date
US6701019B1 (en) 2004-03-02
DE69909200D1 (de) 2003-08-07
EP0986264A2 (fr) 2000-03-15
EP0986264A3 (fr) 2000-04-19
GB9819648D0 (en) 1998-11-04

Similar Documents

Publication Publication Date Title
KR100303054B1 (ko) 정지영상과동영상부호화를위한양자화매트릭스
JP3109854B2 (ja) 画像符号化方法及び装置
JP3442028B2 (ja) データ復号化方法及びその装置
JP3888597B2 (ja) 動き補償符号化装置、及び動き補償符号化復号化方法
EP0084270B1 (fr) Système pour la réduction de la largeur de bande d'un signal vidéo par la formation de la différence de trames et codage dans le domaine de transformation
JP3406546B2 (ja) 連続画像の復号化方法
US6912318B2 (en) Method and system for compressing motion image information
JPH06153180A (ja) 画像データ符号化方法及び装置
JPH11513205A (ja) ビデオ符号化装置
EP0986264B1 (fr) Détermination des différences visuellement perceptibles entre deux images
WO2007093923A1 (fr) Appareil de traitement d'image utilisant un codage partiel
JPH09200758A (ja) 画像符号化装置
JP2001519988A (ja) ビデオデータから符号化パラメータを抽出するシステム
US5699122A (en) Method and apparatus for encoding a video signal by using a modified block truncation coding method
WO1999043161A1 (fr) Identification des differences visuellement perceptibles entre deux images
US6631161B1 (en) Method and system for compressing motion image information
JPH0951504A (ja) 画像符号化装置及び画像復号化装置
US20080056585A1 (en) Image processing method for facilitating data transmission
KR100220582B1 (ko) 적응적 부호화기능을 갖는 영상 부호화기
JP2843024B2 (ja) 変換符号化システムの変換係数選択方法及びその装置
US20090060363A1 (en) System and method for image compression
KR900004962B1 (ko) 화상 송신 시스템
JP3397682B2 (ja) 画像符号化装置
EP1170956A2 (fr) Procédé et système pour la compression de l'information des images animées
JPS63177672A (ja) 画像符号化伝送方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TANDBERG TELEVISION ASA

17P Request for examination filed

Effective date: 20001019

AKX Designation fees paid

Free format text: DE ES FR GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030702

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69909200

Country of ref document: DE

Date of ref document: 20030807

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031013

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040405

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090416 AND 20090422

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130919

Year of fee payment: 15

Ref country code: GB

Payment date: 20130927

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140908

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930