EP0979861A1 - Compositions d'entretien des tissus - Google Patents

Compositions d'entretien des tissus Download PDF

Info

Publication number
EP0979861A1
EP0979861A1 EP98870174A EP98870174A EP0979861A1 EP 0979861 A1 EP0979861 A1 EP 0979861A1 EP 98870174 A EP98870174 A EP 98870174A EP 98870174 A EP98870174 A EP 98870174A EP 0979861 A1 EP0979861 A1 EP 0979861A1
Authority
EP
European Patent Office
Prior art keywords
units
group
dye fixing
fixing agent
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98870174A
Other languages
German (de)
English (en)
Other versions
EP0979861B1 (fr
Inventor
Christian Leo Marie Vermote
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT98870174T priority Critical patent/ATE284947T1/de
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP98870174A priority patent/EP0979861B1/fr
Priority to DE69828162T priority patent/DE69828162T2/de
Priority to CA002338762A priority patent/CA2338762C/fr
Priority to JP2000563755A priority patent/JP2002522651A/ja
Priority to CN99810185A priority patent/CN1314938A/zh
Priority to BRPI9912711-3A priority patent/BR9912711B1/pt
Priority to US09/762,081 priority patent/US6830593B1/en
Priority to AU52526/99A priority patent/AU5252699A/en
Priority to PCT/US1999/017558 priority patent/WO2000008128A1/fr
Publication of EP0979861A1 publication Critical patent/EP0979861A1/fr
Priority to US10/970,421 priority patent/US20050108835A1/en
Application granted granted Critical
Publication of EP0979861B1 publication Critical patent/EP0979861B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/122Sulfur-containing, e.g. sulfates, sulfites or gypsum
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/1233Carbonates, e.g. calcite or dolomite
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2072Aldehydes-ketones
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/24Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/28Heterocyclic compounds containing nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/32Amides; Substituted amides
    • C11D3/323Amides; Substituted amides urea or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/34Organic compounds containing sulfur
    • C11D3/3454Organic compounds containing sulfur containing sulfone groups, e.g. vinyl sulfones
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3719Polyamides or polyimides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions

Definitions

  • composition which provides care to the treated fabrics, in particular color protection, especially after multiple wash cycles.
  • Short fibers are dislodged from woven and knit fabric/textile structures by the mechanical action of laundering. These dislodged fibers may form lint, fuzz or "pills" which are visible on the surface of fabrics and diminish the appearance of newness of the fabric. Further, repeated laundering of fabrics and textiles, especially with bleach-containing laundry products, can remove dye from fabrics and textiles and impart a faded, worn out appearance as a result of diminished color intensity, and in many cases, as a result of changes in hues or shades of color.
  • Solutions may be found for use in the industrial treatments. However, these solutions are not usually transposable to domestic treatments. Indeed, in industrial processes a strict control over parameters such as pH, electrolyte concentration, water hardness, temperature, etc.. is possible whereas in a domestic washing machine, such a high level of control is not possible.
  • EP462806 provides the use of a cationic dye fixing agent in domestic treatment which assist in binding the loosely held dye to the fabric.
  • a cationic dye fixing agent in domestic treatment which assist in binding the loosely held dye to the fabric.
  • compositions provide a synergistic increase in performance of the above mentioned benefit.
  • a further advantage of the invention is that the treated fabrics will thereafter show a reduced tendency in the subsequent wash to release dye. Such benefit is more particularly seen after multi-wash cycles (e.g. 20 wash cycles).
  • the present invention relates to a colour care composition
  • a colour care composition comprising a dye fixing agent and a divalent salt.
  • Dye fixing agent is an essential component of the invention composition.
  • Dye fixing agents or "fixatives" are well-known, commercially available materials which are designed to improve the appearance of dyed fabrics by minimizing the loss of dye from fabrics due to washing. Not included within this definition are components which are fabric softeners or those described hereinafter as amino-functional polymers.
  • Cationic fixatives are available under various trade names from several suppliers. Representative examples include: CROSCOLOR PMF (July 1981, Code No. 7894) and CROSCOLOR NOFF (January 1988, Code No. 8544) from Crosfield; INDOSOL E-50 (February 27, 1984, Ref. No.
  • Dye fixing agents suitable for use in the present invention are ammonium compounds such as fatty acid - diamine condensates e.g. the hydrochloride, acetate, metosulphate and benzyl hydrochloride of oleyldiethyl aminoethylamide, oleylmethyl-diethylenediaminemethosulphate, monostearyl-ethylene diaminotrimethylammonium methosulphate and oxidized products of tertiary amines; derivatives of polymeric alkyldiamines, polyamine-cyanuric chloride condensates and aminated glycerol dichlorohydrins.
  • ammonium compounds such as fatty acid - diamine condensates e.g. the hydrochloride, acetate, metosulphate and benzyl hydrochloride of oleyldiethyl aminoethylamide, oleylmethyl-diethylenediaminemethosulphate, monostearyl-ethylene
  • Preferred dye fixing agents are the cellulose reactive dye fixing agents.
  • cellulose reactive dye fixing agent it is meant that the agent reacts with the cellulose fibers upon heat treatment.
  • agents suitable for use herein can be defined by the following test procedure, so called cellulose reactivity test measurement.
  • Two pieces of bleeding fabrics e.g. 10 x 10 cm of knitted cotton dyed with Direct Red 80
  • an aqueous solution of 1% (w/w) of the cellulose reactive dye fixing agent candidate The pH of the solution is as it is obtained at this concentration.
  • the swatches are then dried.
  • One of the dried swatches as well as an unsoaked swatch (control 1) are passed 10 times trough an ironing calender set on a linen setting.
  • a control 2 swatch is also used in this measurement test which is a non-soaked and non-ironed swatch.
  • the 4 swatches are washed separately in Launder-o-meter pots under typical conditions with a commercial detergent used at the recommended dosage for 1 ⁇ 2 hour at 60°C, followed by a thorough rinsing of 4 times 200 ml of cold water and then line dried.
  • Delta E is the computed color difference as defined in ASTM D2244, i.e the magnitude and direction of the difference between two psychophysical color stimuli defined by tristimulus values, or by chromaticity coordinates and luminance factor, as computed by means of a specified set of color-difference equations defined in the CIE 1976 CIELAB opponent-color space, the Hunter opponent-color space, the Friele-Mac Adam-Chickering color space or any equivalent color space.
  • the candidate is a cellulose reactive dye fixing agent for the purpose of the invention.
  • Typical cellulose reactive dye fixing agents are products containing the reactive group of the reactive dye classes selected from halogeno-triazine products, vinyl sulphones compounds, epichlorhydrine derivatives, hydroxyethylene urea derivatives, formaldehyde condensation products, polycarboxylates, glyoxal and glutaraldehyde derivatives and mixtures thereof.
  • Preferred hydroxyethylene urea derivatives include dimethyloldihydroxyethylene, urea, and dimethyl urea glyoxal.
  • Preferred formaldehyde condensation products include the condensation products derived from formaldehyde and a group selected from an amino-group, an imino-group, a phenol group, an urea group, a cyanamide group and an aromatic group.
  • Commercially available compounds among this class are Sandofix WE 56 from Clariant, Zetex E from Zeneca and Levogen BF from Bayer.
  • Preferred polycarboxylates derivatives include butane tetracarboxilic acid derivatives, citric acid derivatives, polyacrylates and derivatives thereof.
  • a most preferred cellulosic reactive dye fixing agents is one of the hydroxyethylene urea derivatives class commercialised under the tradename of Indosol CR from Clariant. Still other most preferred cellulosic reactive dye fixing agents are commercialised under the tradename Rewin DWR and Rewin WBS from CHT R. Beitlich.
  • the preferred agent for use in the present invention are cationic, in particular polycationic dye fixing agents.
  • a typical amount of the dye fixing agent to be employed in the composition of the invention is from 0.01 % to 50% by weight, preferably from 0.01 % to 25% by weight, more preferably from 1 % to 10% by weight, most preferably from 1.5% to 5% active by weight of the composition.
  • a divalent salt is an essential ingredient of the invention. By use of this ingredient, the fabric appearance, in particular the color protection of the fabrics, is improved. Not to be bound by theory, it is believed that the salt acts by reducing the dye solubility.
  • a divalent salt is defined as a salt which in water dissociates and releases a metal ion with a valence of two.
  • the salt useful in the present invention is made of earth alkaline metal, and is a compound that can form hydrates upon crystallization.
  • the salt for use in the present invention have the following formula: AM; wherein A is a cation.
  • This cation is an earth alkaline metal, preferably selected from magnesium, calcium, more preferably magnesium, and wherein M is a couteranion selected from sulfate, chloride, nitrate, carbonate, borate, and carboxylates.
  • Preferred salts are salts selected from magnesium, calcium and mixtures thereof; more preferably salt of magnesium.
  • Particularly preferred salts for use herein are selected from magnesium sulphate, magnesium bicarbonate, magnesium chloride, magnesium borate, magnesium citrate, and mixtures thereof, more preferably are selected from magnesium sulphate, magnesium chloride and mixtures thereof.
  • a typical amount of the divalent salt to be employed in the composition of the invention is from 0.01 % to 90% by weight, preferably from 0.5% and 90%, more preferably between 1% and 20%, most preferably between 3% and 10%, by weight of the composition.
  • a weight ratio of the divalent salt to dye fixing agent greater than 1:1.
  • the fabric care compositions may also comprise one or more of the following colour care component:
  • Amino-functional polymers advantageously provide care to the colors of fabrics.
  • components which are polymers as defined herein before or those described hereinafter as dye fixing agents are included within this definition.
  • the amino-functional polymers suitable for use in the present invention are water-soluble or dispersible, polyamines.
  • the amino-functional polymers for use herein have a molecular weight between 150 and 10 6 , preferably between 600 and 20,000, most preferably between 1000 and 10,000.
  • These polyamines comprise backbones that can be either linear or cyclic.
  • the polyamine backbones can also comprise polyamine branching chains to a greater or lesser degree.
  • the polyamine backbones described herein are modified in such a manner that at least one, preferably each nitrogen of the polyamine chain is thereafter described in terms of a unit that is substituted, quaternized, oxidized, or combinations thereof.
  • the term "modification" as it relates to the chemical structure of the polyamines is defined as replacing a backbone - NH hydrogen atom by an R' unit (substitution), quaternizing a backbone nitrogen (quaternized) or oxidizing a backbone nitrogen to the N-oxide (oxidized).
  • substitution and “substitution” are used interchangably when referring to the process of replacing a hydrogen atom attached to a backbone nitrogen with an R' unit. Quaternization or oxidation may take place in some circumstances without substitution, but substitution is preferably accompanied by oxidation or quaternization of at least one backbone nitrogen.
  • linear or non-cyclic polyamine backbones that comprise the amino-functional polymer have the general formula:
  • cyclic polyamine backbones that comprise the amino-functional polymer have the general formula:
  • the above backbones prior to optional but preferred subsequent modification comprise primary, secondary and tertiary amine nitrogens connected by R "linking" units
  • primary amine nitrogens comprising the backbone or branching chain once modified are defined as V or Z "terminal" units.
  • V or Z "terminal” units when a primary amine moiety, located at the end of the main polyamine backbone or branching chain having the structure H 2 N-[R]- is modified according to the present invention, it is thereafter defined as a V "terminal" unit, or simply a V unit.
  • some or all of the primary amine moieties can remain unmodified subject to the restrictions further described herein below. These unmodified primary amine moieties by virtue of their position in the backbone chain remain "terminal" units.
  • a primary amine moiety located at the end of the main polyamine backbone having the structure -NH 2 is modified according to the present invention, it is thereafter defined as a Z "terminal" unit, or simply a Z unit. This unit can remain unmodified subject to the restrictions further described herein below.
  • secondary amine nitrogens comprising the backbone or branching chain once modified are defined as W "backbone” units.
  • W backbone
  • the major constituent of the backbones and branching chains of the present invention, having the structure is modified according to the present invention it is thereafter defined as a W "backbone” unit, or simply a W unit.
  • some or all of the secondary amine moieties can remain unmodified. These unmodified secondary amine moieties by virtue of their position in the backbone chain remain "backbone” units.
  • tertiary amine nitrogens comprising the backbone or branching chain once modified are further referred to as Y "branching" units.
  • Y tertiary amine nitrogens
  • a tertiary amine moiety which is a chain branch point of either the polyamine backbone or other branching chains or rings, having the structure is modified according to the present invention, it is thereafter defined as a Y "branching" unit, or simply a Y unit.
  • some or all or the tertiary amine moieties can remain unmodified. These unmodified tertiary amine moieties by virtue of their position in the backbone chain remain “branching" units.
  • the R units associated with the V, W and Y unit nitrogens which serve to connect the polyamine nitrogens are described herein below.
  • the final modified structure of the polyamines of the present invention can be therefore represented by the general formula V (n+1) W m Y n Z for linear amino-functional polymer and by the general formula V (n-k+1) W m Y n Y ' k Z for cyclic amino-functional polymer.
  • a Y' unit of the formula serves as a branch point for a backbone or branch ring.
  • the polyamine backbone has the formula therefore comprising no Z terminal unit and having the formula V n-k W m Y n Y ' k wherein k is the number of ring forming branching units.
  • the polyamine backbones of the present invention comprise no rings.
  • the ratio of the index n to the index m relates to the relative degree of branching.
  • a fully non-branched linear modified polyamine according to the present invention has the formula VW m Z that is, n is equal to 0. The greater the value of n (the lower the ratio of m to n), the greater the degree of branching in the molecule.
  • the value for m ranges from a minimum value of 2 to 700, preferably 4 to 400, however larger values of m, especially when the value of the index n is very low or nearly 0, are also preferred.
  • Each polyamine nitrogen whether primary, secondary or tertiary, once modified according to the present invention, is further defined as being a member of one of three general classes; simple substituted, quaternized or oxidized. Those polyamine nitrogen units not modified are classed into V, W, Y, Y' or Z units depending on whether they are primary, secondary or tertiary nitrogens. That is unmodified primary amine nitrogens are V or Z units, unmodified secondary amine nitrogens are W units or Y' units and unmodified tertiary amine nitrogens are Y units for the purposes of the present invention.
  • V "terminal" units having one of three forms:
  • Modified secondary amine moieties are defined as W "backbone" units having one of three forms:
  • modified secondary amine moieties are defined as Y' units having one of three forms:
  • Modified tertiary amine moieties are defined as Y "branching" units having one of three forms:
  • a primary amine unit comprising one R' unit in the form of a hydroxyethyl moiety is a V terminal unit having the formula (HOCH 2 CH 2 )HN-.
  • Non-cyclic polyamine backbones according to the present invention comprise only one Z unit whereas cyclic polyamines can comprise no Z units.
  • the Z "terminal” unit can be substituted with any of the R' units described further herein below, except when the Z unit is modified to form an N-oxide. In the case where the Z unit nitrogen is oxidized to an N-oxide, the nitrogen must be modified and therefore R' cannot be a hydrogen.
  • the polyamines of the present invention comprise backbone R "linking" units that serve to connect the nitrogen atoms of the backbone.
  • R units comprise units that for the purposes of the present invention are referred to as “hydrocarbyl R” units and “oxy R” units.
  • the "hydrocarbyl" R units are C 2 -C 12 alkylene, C 4 -C 12 alkenylene, C 3 -C 12 hydroxyalkylene wherein the hydroxyl moiety may take any position on the R unit chain except the carbon atoms directly connected to the polyamine backbone nitrogens; C 4 -C 12 dihydroxyalkylene wherein the hydroxyl moieties may occupy any two of the carbon atoms of the R unit chain except those carbon atoms directly connected to the polyamine backbone nitrogens; C 8 -C 12 dialkylarylene which for the purpose of the present invention are arylene moieties having two alkyl substituent groups as part of the linking chain.
  • a dialkylarylene unit has the formula although the unit need not be 1,4-substituted, but can also be 1,2 or 1,3 substituted C 2 -C 12 alkylene, preferably ethylene, 1,2-propylene, and mixtures thereof, more preferably ethylene.
  • the "oxy" R units comprise - (R 1 O) x R 5 (OR 1 ) x -, -CH 2 CH(OR 2 )CH 2 O) z (R 1 O) y R 1 (OCH 2 CH(OR 2 )CH 2 ) w -, - CH 2 CH(OR 2 )CH 2 -, -(R 1 O) x R 1 -, and mixtures thereof
  • Preferred R units are selected from the group consisting of C 2 -C 12 alkylene, C 3 -C 12 hydroxyalkylene, C 4 -C 12 dihydroxyalkylene, C 8 -C 12 dialkylarylene, - (R 1 O) x R 1 -, -CH 2 CH(OR 2 )CH 2 -, -(CH 2 CH(OH)CH 2 O) z (R 1 O) y R 1 (OCH 2 CH(OH)CH 2 ) w -, -(R 1 O) x R 5 (OR 1 ) x
  • R 1 units are C 2 -C 6 alkylene, and mixtures thereof, preferably ethylene.
  • R 2 is hydrogen, and -(R 1 O) x B, preferably hydrogen.
  • R 3 is C 1 -C 18 alkyl, C 7 -C 12 arylalkylene, C 7 -C 12 alkyl substituted aryl, C 6 -C 12 aryl, and mixtures thereof, preferably C 1 -C 12 alkyl, C 7 -C 12 arylalkylene, more preferably C 1 -C 12 alkyl, most preferably methyl.
  • R 3 units serve as part of R' units described herein below.
  • R 4 is C 1 -C 12 alkylene, C 4 -C 12 alkenylene, C 8 -C 12 arylalkylene, C 6 -C 10 arylene, preferably C 1 -C 10 alkylene, C 8 -C 12 arylalkylene, more preferably C 2 -C 8 alkylene, most preferably ethylene or butylene.
  • R 5 is C 1 -C 12 alkylene, C 3 -C 12 hydroxyalkylene, C 4 -C 12 dihydroxyalkylene, C 8 -C 12 dialkylarylene, -C(O)-, -C(O)NHR 6 NHC(O)-, -C(O)(R 4 ) r C(O)-, - R 1 (OR 1 )-, -CH 2 CH(OH)CH 2 O(R 1 O) y R 1 OCH 2 CH(OH)CH 2 -, -C(O)(R 4 ) r C(O)-, -CH 2 CH(OH)CH 2 -, R 5 is preferably ethylene, -C(O)-, -C(O)NHR 6 NHC(O)-, - R 1 (OR 1 )-, -CH 2 CH(OH)CH 2 -, -CH 2 CH(OH)CH 2 O(R 1 O) y R 1 OCH 2 CH(OH)CH 2 -
  • the preferred "oxy" R units are further defined in terms of the R 1 , R 2 , and R 5 units.
  • Preferred "oxy" R units comprise the preferred R 1 , R 2 , and R 5 units.
  • the preferred cotton soil release agents of the present invention comprise at least 50% R 1 units that are ethylene.
  • Preferred R 1 , R 2 , and R 5 units are combined with the "oxy" R units to yield the preferred "oxy” R units in the following manner.
  • R' units do not comprise carbonyl moieties directly bonded to a nitrogen atom when the V, W or Z units are oxidized, that is, the nitrogens are N-oxides.
  • the R' unit -C(O)R 3 moiety is not bonded to an N-oxide modified nitrogen, that is, there are no N-oxide amides having the structure or combinations thereof.
  • B is hydrogen, C 1 -C 6 alkyl, -(CH 2 ) q SO 3 M, -(CH 2 ) p CO 2 M, -(CH 2 ) q (CHSO 3 M)CH 2 SO 3 M, -(CH 2 ) q (CHSO 2 M)CH 2 SO 3 M, -(CH 2 ) p PO 3 M, -PO 3 M, preferably hydrogen, -(CH 2 ) q SO 3 M, -(CH 2 ) q (CHSO 3 M)CH 2 SO 3 M, -(CH 2 ) q (CHSO 2 M)CH 2 SO 3 M, more preferably hydrogen or -(CH 2 ) q SO 3 M.
  • M is hydrogen or a water soluble cation in sufficient amount to satisfy charge balance.
  • a sodium cation equally satisfies -(CH 2 ) p CO 2 M, and -(CH 2 ) q SO 3 M, thereby resulting in -(CH 2 ) p CO 2 Na, and -(CH 2 ) q SO 3 Na moieties.
  • More than one monovalent cation, (sodium, potassium, etc.) can be combined to satisfy the required chemical charge balance.
  • more than one anionic group may be charge balanced by a divalent cation, or more than one mono-valent cation may be necessary to satisfy the charge requirements of a poly-anionic radical.
  • a -(CH 2 ) p PO 3 M moiety substituted with sodium atoms has the formula -(CH 2 ) p PO 3 Na 3 .
  • Divalent cations such as calcium (Ca 2+ ) or magnesium (Mg 2+ ) may be substituted for or combined with other suitable mono-valent water soluble cations.
  • Preferred cations are sodium and potassium, more preferred is sodium.
  • X is a water soluble anion such as chlorine (Cl - ), bromine (Br - ) and iodine (I - ) or X can be any negatively charged radical such as sulfate (SO 4 2- ) and methosulfate (CH 3 SO 3 - ).
  • indices have the following values: p has the value from 1 to 6, q has the value from 0 to 6; r has the value 0 or 1; w has the value 0 or 1, x has the value from 1 to 100; y has the value from 0 to 100; z has the value 0 or 1; m has the value from 2 to 700, preferably from 4 to 400, n has the value from 0 to 350, preferably from 0 to 200; m + n has the value of at least 5.
  • x has a value lying in the range of from 1 to 20, preferably from 1 to 10.
  • the preferred amino-functional polymers of the present invention comprise polyamine backbones wherein less than 50% of the R groups comprise "oxy" R units, preferably less than 20%, more preferably less than 5%, most preferably the R units comprise no "oxy" R units.
  • the most preferred amino-functional polymers which comprise no "oxy" R units comprise polyamine backbones wherein less than 50% of the R groups comprise more than 3 carbon atoms.
  • ethylene, 1,2-propylene, and 1,3-propylene comprise 3 or less carbon atoms and are the preferred "hydrocarbyl" R units. That is when backbone R units are C 2 -C 12 alkylene, preferred is C 2 -C 3 alkylene, most preferred is ethylene.
  • the amino-functional polymers of the present invention comprise modified homogeneous and non-homogeneous polyamine backbones, wherein 100% or less of the -NH units are modified.
  • the term "homogeneous polyamine backbone” is defined as a polyamine backbone having R units that are the same (i.e., all ethylene). However, this sameness definition does not exclude polyamines that comprise other extraneous units comprising the polymer backbone which are present due to an artifact of the chosen method of chemical synthesis.
  • ethanolamine may be used as an "initiator" in the synthesis of polyethyleneimines, therefore a sample of polyethyleneimine that comprises one hydroxyethyl moiety resulting from the polymerization "initiator” would be considered to comprise a homogeneous polyamine backbone for the purposes of the present invention.
  • a polyamine backbone comprising all ethylene R units wherein no branching Y units are present is a homogeneous backbone.
  • a polyamine backbone comprising all ethylene R units is a homogeneous backbone regardless of the degree of branching or the number of cyclic branches present.
  • non-homogeneous polymer backbone refers to polyamine backbones that are a composite of various R unit lengths and R unit types.
  • a non-homogeneous backbone comprises R units that are a mixture of ethylene and 1,2-propylene units.
  • a mixture of "hydrocarbyl” and “oxy” R units is not necessary to provide a non-homogeneous backbone.
  • Preferred amino-functional polymers of the present invention comprise homogeneous polyamine backbones that are totally or partially substituted by polyethyleneoxy moieties, totally or partially quaternized amines, nitrogens totally or partially oxidized to N-oxides, and mixtures thereof.
  • polyethyleneoxy moieties totally or partially quaternized amines
  • nitrogens totally or partially oxidized to N-oxides, and mixtures thereof.
  • backbone amine nitrogens must be modified in the same manner, the choice of modification being left to the specific needs of the formulator.
  • the degree of ethoxylation is also determined by the specific requirements of the formulator.
  • the preferred polyamines that comprise the backbone of the compounds of the present invention are generally polyalkyleneimines (PAI's), preferably polyethyleneimines (PEI's), or PEI's connected by moieties having longer R units than the parent PAI's or PEI's.
  • PAI's polyalkyleneimines
  • PEI's polyethyleneimines
  • PEI's polyethyleneimines
  • Preferred amine polymer backbones comprise R units that are C 2 alkylene (ethylene) units, also known as polyethylenimines (PEI's).
  • Preferred PEI's have at least moderate branching, that is the ratio of m to n is less than 4:1, however PEI's having a ratio of m to n of 2:1 are most preferred.
  • Preferred backbones, prior to modification have the general formula: wherein R', m and n are the same as defined herein above. Preferred PEI's will have a molecular weight greater than 200 daltons.
  • the relative proportions of primary, secondary and tertiary amine units in the polyamine backbone will vary, depending on the manner of preparation.
  • Each hydrogen atom attached to each nitrogen atom of the polyamine backbone chain represents a potential site for subsequent substitution, quaternization or oxidation.
  • polyamines can be prepared, for example, by polymerizing ethyleneimine in the presence of a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc.
  • a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc.
  • Specific methods for preparing these polyamine backbones are disclosed in U.S. Patent 2,182,306, Ulrich et al., issued December 5, 1939; U.S. Patent 3,033,746, Mayle et al., issued May 8, 1962; U.S. Patent 2,208,095, Esselmann et al., issued July 16, 1940; U.S. Patent 2,806,839, Crowther, issued September 17, 1957; and U.S. Patent 2,553,696, Wilson, issued May 21, 1951; all herein incorporated by reference.
  • the present invention allows the formulator to have a portion of the secondary amine nitrogens ethoxylated while having other secondary amine nitrogens oxidized to N-oxides.
  • This also applies to the primary amine nitrogens, in that the formulator may choose to modify all or a portion of the primary amine nitrogens with one or more substituents prior to oxidation or quaternization. Any possible combination of R' groups can be substituted on the primary and secondary amine nitrogens, except for the restrictions described herein above.
  • amino-functional polymer suitable for use herein are poly(ethyleneimine) with a MW 1200, hydroxyethylated poly(ethyleneimine) from Polysciences, with a MW 2000, and 80% hydroxyethylated poly(ethyleneimine) from Aldrich. Still other suitable amino-functional polymer are oligoamine of low molecular weight. Most particularly preferred for use herein are oligoamines selected from 1,4-Bis(3-aminopropyl)piperazine, N,N -Bis(3-aminopropyl)1,3-propanediamine, and mixtures therof.
  • a typical amount of amino-functional polymer to be employed in the composition of the invention is preferably up to 90% by weight, preferably from 0.01% to 50% active by weight, more preferably from 0.1% to 20% by weight and most preferably from 0.5% to 15% by weight of the composition.
  • compositions of the present invention can further contain a crystal growth inhibitor component, preferably an organodiphosphonic acid component, and/or organo monophosphonic acid, incorporated preferably at a level of from 0.01% to 5%, more preferably from 0.1% to 2% by weight of the compositions.
  • a crystal growth inhibitor component preferably an organodiphosphonic acid component, and/or organo monophosphonic acid, incorporated preferably at a level of from 0.01% to 5%, more preferably from 0.1% to 2% by weight of the compositions.
  • organo diphosphonic acid it is meant herein an organo diphosphonic acid which does not contain nitrogen as part of its chemical structure. This definition therefore excludes the organo aminophosphonates, which however may be included in compositions of the invention as heavy metal ion sequestrant components.
  • the organo diphosphonic acid is preferably a C 1 -C 4 diphosphonic acid, more preferably a C 2 diphosphonic acid, such as ethylene diphosphonic acid, or most preferably ethane 1-hydroxy-1,1-diphosphonic acid (HEDP) and may be present in partially or fully ionized form, particularly as a salt or complex.
  • HEDP ethane 1-hydroxy-1,1-diphosphonic acid
  • crystal growth inhibitor are the organic monophosphonic acid Organo monophosphonic acid or one of its salts or complexes is also suitable for use herein as a CGI.
  • organo monophosphonic acid it is meant herein an organo monophosphonic acid which does not contain nitrogen as part of its chemical structure. This definition therefore excludes the organo aminophosphonates, which however may be included in compositions of the invention as heavy metal ion sequestrants.
  • the organo monophosphonic acid component may be present in its acid form or in the form of one of its salts or complexes with a suitable counter cation.
  • any salts/complexes are water soluble, with the alkali metal and alkaline earth metal salts/complexes being especially preferred.
  • a prefered organo monophosphonic acid is 2-phosphonobutane-1,2,4-tricarboxylic acid commercially available from Bayer under the tradename of Bayhibit.
  • Still other components may be suitable for use in the present invention are as follows:
  • Soil Release agents are desirably used in fabric care compositions of the present invention. Any polymeric soil release agent known to those skilled in the art can optionally be employed in the compositions of this invention. Polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
  • soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent compositions herein, typically from about 0.1% to about 5%, preferably from about 0.2% to about 3.0%.
  • soil release agents include the METOLOSE SM100, METOLOSE SM200 manufactured by Shin-etsu Kagaku Kogyo K.K., SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (Germany), ZELCON 5126 (from Dupont) and MILEASE T (from ICI).
  • composition When the composition is formulated as a softening composition, it will also comprises a fabric softening compound.
  • Typical levels of incorporation of the softening compound in the composition are of from 1% to 80% by weight, preferably from 5% to 75%, more preferably from 15% to 70%, and even more preferably from 19% to 65%, by weight of the composition.
  • Typical of the cationic softening components are the quaternary ammonium compounds or amine precursors thereof as defined hereinafter.
  • Examples of the above class cationic nitrogenous salts are the well-known dialkyldi methylammonium salts such as ditallowdimethylammonium chloride, ditallowdimethylammonium methylsulfate, di(hydrogenatedtallow)dimethylammonium chloride, distearyldimethylammonium chloride, dibehenyldimethylammonium chloride. Di(hydrogenatedtallow)di methylammonium chloride and ditallowdimethylammonium chloride are preferred.
  • dialkyldimethyl ammonium salts examples include di(hydrogenatedtallow)dimethylammonium chloride (trade name Adogen® 442), ditallowdimethylammonium chloride (trade name Adogen® 470, Praepagen® 3445), distearyl dimethylammonium chloride (trade name Arosurf ® TA-100), all available from Witco Chemical Company.
  • Dibehenyldimethylammonium chloride is sold under the trade name Kemamine Q-2802C by Humko Chemical Division of Witco Chemical Corporation.
  • Dimethylstearylbenzyl ammonium chloride is sold under the trade names Varisoft® SDC by Witco Chemical Company and Ammonyx® 490 by Onyx Chemical Company.
  • Suitable amine fabric softening compounds for use herein, which may be in amine form or cationic form are selected from:
  • Compound (iii) is the compound having the formula: wherein R 1 is derived from oleic acid.
  • softening active can also encompass mixed softening active agents.
  • Preferred among the classes of softener compounds disclosed herein before are the diester or diamido quaternary ammonium fabric softening active compound (DEQA).
  • DEQA diester or diamido quaternary ammonium fabric softening active compound
  • Fully formulated fabric softening compositions may contain, in addition to the hereinbefore described components, one or more of the following ingredients.
  • the liquid carrier employed in the instant compositions is preferably at least primarily water due to its low cost, relative availability, safety, and environmental compatibility.
  • the level of water in the liquid carrier is preferably at least about 50%, most preferably at least about 60%, by weight of the carrier.
  • Mixtures of water and low molecular weight, e.g., ⁇ about 200, organic solvent, e.g., lower alcohols such as ethanol, propanol, isopropanol or butanol are useful as the carrier liquid.
  • Low molecular weight alcohols include monohydric, dihydric (glycol, etc.) trihydric (glycerol, etc.), and higher polyhydric (polyols) alcohols.
  • compositions of the present invention may comprise one or more solvents which provide increased ease of formulation.
  • ease of formulation solvents are all disclosed in WO 97/03169. This is particularly the case when formulating liquid, clear fabric softening compositions.
  • the ease of formulation solvent system preferably comprises less than about 40%, preferably from about 10% to about 35%, more preferably from about 12% to about 25%, and even more preferably from about 14% to about 20%, by weight of the composition.
  • the ease of formulation solvent is selected to minimize solvent odor impact in the composition and to provide a low viscosity to the final composition.
  • isopropyl alcohol is not very effective and has a strong odor.
  • n-Propyl alcohol is more effective, but also has a distinct odor.
  • butyl alcohols also have odors but can be used for effective clarity/stability, especially when used as part of a ease of formulation solvent system to minimize their odor.
  • the alcohols are also selected for optimum low temperature stability, that is they are able to form compositions that are liquid with acceptable low viscosities and translucent, preferably clear, down to about 40°F (about 4.4°C) and are able to recover after storage down to about 20°F (about minus 6.7°C).
  • Suitable solvents can be selected based upon their octanol/water partition coefficient (P) as defined in WO 97/03169.
  • the ease of formulation solvents herein are selected from those having a ClogP of from about 0.15 to about 0.64, preferably from about 0.25 to about 0.62, and more preferably from about 0.40 to about 0.60, said ease of formulation solvent preferably being at least somewhat asymmetric, and preferably having a melting, or solidification, point that allows it to be liquid at, or near room temperature. Solvents that have a low molecular weight and are biodegradable are also desirable for some purposes.
  • the more assymetric solvents appear to be very desirable, whereas the highly symmetrical solvents such as 1,7-heptanediol, or 1,4-bis(hydroxymethyl) cyclohexane, which have a center of symmetry, appear to be unable to provide the essential clear compositions when used alone, even though their ClogP values fall in the preferred range.
  • the most preferred ease of formulation solvents can be identified by the appearance of the softener vesicles, as observed via cryogenic electron microscopy of the compositions that have been diluted to the concentration used in the rinse. These dilute compositions appear to have dispersions of fabric softener that exhibit a more unilamellar appearance than conventional fabric softener compositions. The closer to uni-lamellar the appearance, the better the compositions seem to perform. These compositions provide surprisingly good fabric softening as compared to similar compositions prepared in the conventional way with the same fabric softener active.
  • Particularly preferred ease of formulation solvents include hexanediols such as 1,2-Hexanediol and 2-Ethyl-1,3-hexanediol and pentanediols such as 2,2,4-Trimethyl-1,3-pentanediol.
  • compositions containing both saturated and unsaturated diester quaternary ammonium compounds can be prepared that are stable without the addition of concentration aids.
  • the compositions of the present invention may require organic and/or inorganic concentration aids to go to even higher concentrations and/or to meet higher stability standards depending on the other ingredients.
  • concentration aids which typically can be viscosity modifiers may be needed, or preferred, for ensuring stability under extreme conditions when particular softener active levels are used.
  • the surfactant concentration aids are typically selected from the group consisting of (1) single long chain alkyl cationic surfactants; (2) nonionic surfactants; (3) amine oxides; (4) fatty acids; and (5) mixtures thereof.
  • the total level is from 2% to 25%, preferably from 3% to 17%, more preferably from 4% to 15%, and even more preferably from 5% to 13% by weight of the composition.
  • These materials can either be added as part of the active softener raw material, (I), e.g., the mono-long chain alkyl cationic surfactant and/or the fatty acid which are reactants used to form the biodegradable fabric softener active as discussed hereinbefore, or added as a separate component.
  • the total level of dispersibility aid includes any amount that may be present as part of component (I).
  • Inorganic viscosity/dispersibility control agents which can also act like or augment the effect of the surfactant concentration aids, include water-soluble, ionizable salts which can also optionally be incorporated into the compositions of the present invention.
  • ionizable salts can be used. Examples of suitable salts are the halides of the Group IA and IIA metals of the Periodic Table of the Elements, e.g., calcium chloride, magnesium chloride, sodium chloride, potassium bromide, and lithium chloride.
  • the ionizable salts are particularly useful during the process of mixing the ingredients to make the compositions herein, and later to obtain the desired viscosity.
  • the amount of ionizable salts used depends on the amount of active ingredients used in the compositions and can be adjusted according to the desires of the formulator. Typical levels of salts used to control the composition viscosity are from about 20 to about 20,000 parts per million (ppm), preferably from about 20 to about 11,000 ppm, by weight of the composition.
  • Alkylene polyammonium salts can be incorporated into the composition to give viscosity control in addition to or in place of the water-soluble, ionizable salts above.
  • these agents can act as scavengers, forming ion pairs with anionic detergent carried over from the main wash, in the rinse, and on the fabrics, and may improve softness performance.
  • alkylene polyammonium salts include l-lysine monohydrochloride and 1,5-diammonium 2-methyl pentane dihydrochloride.
  • Stabilizers can be present in the compositions of the present invention.
  • the term "stabilizer,” as used herein, includes antioxidants and reductive agents. These agents are present at a level of from 0% to about 2%, preferably from about 0.01% to about 0.2%, more preferably from about 0.035% to about 0.1% for antioxidants, and more preferably from about 0.01% to about 0.2% for reductive agents. These assure good odor stability under long term storage conditions for the compositions and compounds stored in molten form.
  • the use of antioxidants and reductive agent stabilizers is especially critical for low scent products (low perfume).
  • antioxidants examples include a mixture of ascorbic acid, ascorbic palmitate, propyl gallate, available from Eastman Chemical Products, Inc., under the trade names Tenox® PG and Tenox S-1; a mixture of BHT (butylated hydroxytoluene), BHA (butylated hydroxyanisole), propyl gallate, and citric acid, available from Eastman Chemical Products, Inc., under the trade name Tenox-6; butylated hydroxytoluene, available from UOP Process Division under the trade name Sustane® BHT; tertiary butylhydroquinone, Eastman Chemical Products, Inc., as Tenox TBHQ; natural tocopherols, Eastman Chemical Products, Inc., as Tenox GT-1/GT-2; and butylated hydroxyanisole, Eastman Chemical Products, Inc., as BHA; long chain esters (C 8 -C 22 ) of gallic acid, e.g., dodecyl
  • reductive agents examples include sodium borohydride, hypophosphorous acid, Irgafos® 168, and mixtures thereof.
  • bactericides used in the compositions of this invention include glutaraldehyde, formaldehyde, 2-bromo-2-nitro-propane-1,3-diol sold by Inolex Chemicals, located in Philadelphia, Pennsylvania, under the trade name Bronopol®, and a mixture of 5-chloro-2-methyl-4-isothiazoline-3-one and 2-methyl-4-isothiazoline-3-one sold by Rohm and Haas Company under the trade name Kathon 1 to 1,000 ppm by weight of the agent.
  • the present invention can contain a perfume. Suitable perfumes are disclosed in U.S. Pat. 5,500,138, said patent being incorporated herein by reference.
  • perfume includes fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants), artificial (i.e., a mixture of different nature oils or oil constituents) and synthetic (i.e., synthetically produced) odoriferous substances.
  • natural i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants
  • artificial i.e., a mixture of different nature oils or oil constituents
  • synthetic i.e., synthetically produced
  • perfumes are complex mixtures of a plurality of organic compounds.
  • perfume ingredients useful in the perfumes of the present invention compositions include, but are not limited to, hexyl cinnamic aldehyde; amyl cinnamic aldehyde; amyl salicylate; hexyl salicylate; terpineol; 3,7-dimethyl- cis -2,6-octadien-1-ol; 2,6-dimethyl-2-octanol; 2,6-dimethyl-7-octen-2-ol; 3,7-dimethyl-3-octanol; 3,7-dimethyl- trans -2,6-octadien-1-ol; 3,7-dimethyl-6-octen-1-ol; 3,7-dimethyl-1-octanol; 2-methyl-3-(para-tert-butylphenyl)-propionaldehyde; 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-carbox
  • fragrance materials include, but are not limited to, orange oil; lemon oil; grapefruit oil; bergamot oil; clove oil; dodecalactone gamma; methyl-2-(2-pentyl-3-oxo-cyclopentyl) acetate; beta-naphthol methylether; methyl-beta-naphthylketone; coumarin; decylaldehyde; benzaldehyde; 4-tert-butylcyclohexyl acetate; alpha,alpha-dimethylphenethyl acetate; methylphenylcarbinyl acetate; Schiff's base of 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-carboxaldehyde and methyl anthranilate; cyclic ethyleneglycol diester of tridecandioic acid; 3,7-dimethyl-2,6-octadiene-1-nitrile; i
  • perfume components are geraniol; geranyl acetate; linalool; linalyl acetate; tetrahydrolinalool; citronellol; citronellyl acetate; dihydromyrcenol; dihydromyrcenyl acetate; tetrahydromyrcenol; terpinyl acetate; nopol; nopyl acetate; 2-phenylethanol; 2-phenylethyl acetate; benzyl alcohol; benzyl acetate; benzyl salicylate; benzyl benzoate; styrallyl acetate; dimethylbenzylcarbinol; trichloromethylphenylcarbinyl methylphenylcarbinyl acetate; isononyl acetate; vetiveryl acetate; vetiverol; 2-methyl-3-(p-tert-butylphenyl)-propanal; 2-methyl-3-(
  • the perfumes useful in the present invention compositions are substantially free of halogenated materials and nitromusks.
  • Suitable solvents, diluents or carriers for perfumes ingredients mentioned above are for examples, ethanol, isopropanol, diethylene glycol, monoethyl ether, dipropylene glycol, diethyl phthalate, triethyl citrate, etc.
  • the amount of such solvents, diluents or carriers incorporated in the perfumes is preferably kept to the minimum needed to provide a homogeneous perfume solution.
  • Perfume can be present at a level of from 0% to 10%, preferably from 0.1% to 5%, and more preferably from 0.2% to 3%, by weight of the finished composition.
  • Fabric softener compositions of the present invention provide improved fabric perfume deposition.
  • Perfume ingredients may also be suitably added as releasable fragrances, for example, as pro-perfumes or pro-fragrances as described in U.S. 5,652,205 Hartman et al., issued July 29, 1997, WO95/04809, WO96/02625, PCT US97/14610 filed 19 August 1997 and claiming priority of 19 August 1996, and EP-A-0,752,465, incorporated herein by reference.
  • compositions and processes herein can optionally employ one or more enzymes such as lipases, proteases, cellulase, amylases and peroxidases.
  • a preferred enzyme for use herein is a cellulase enzyme. Indeed, this type of enzyme will further provide a color care benefit to the treated fabric.
  • Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5. U.S.
  • 4,435,307 discloses suitable fungal cellulases from Humicola insolens or Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas , and cellulase extracted from the hepatopancreas of a marine mollusk, Dolabella Auricula Solander. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832. CAREZYME® and CELLUZYME® (Novo) are especially useful.
  • compositions herein will typically comprise from 0.001% to 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation.
  • activity units are preferred (e.g. CEVU or cellulase Equivalent Viscosity Units).
  • compositions of the present invention can contain cellulase enzymes at a level equivalent to an activity from 0.5 to 1000 CEVU/gram of composition.
  • Cellulase enzyme preparations used for the purpose of formulating the compositions of this invention typically have an activity comprised between 1,000 and 10,000 CEVU/gram in liquid form, around 1,000 CEVU/gram in solid form.
  • the present invention can include optional components conventionally used in textile treatment compositions, for example: brighteners, chlorine scavengers such the non-polymeric one described in EP-A-0,841,391, colorants; surfactants; anti-shrinkage agents; fabric crisping agents; spotting agents; germicides; fungicides; anti-oxidants such as butylated hydroxy toluene, anti-corrosion agents, antifoam agents, sun-protection agents such as described in EP-A-0,773,987, and the like.
  • brighteners chlorine scavengers such the non-polymeric one described in EP-A-0,841,391, colorants
  • surfactants anti-shrinkage agents
  • fabric crisping agents fabric crisping agents
  • spotting agents germicides
  • fungicides fungicides
  • anti-oxidants such as butylated hydroxy toluene, anti-corrosion agents, antifoam agents, sun-protection agents such as
  • the present invention can also include other compatible ingredients, including those as disclosed in WO96/02625, WO96/21714, and WO96/21715, and dispersible polyolefin such as Velustrol® as disclosed in co-pending application PCT/US 97/01644, and the like.
  • the present invention can also contain optional chelating agents such as ethylenediamine-N,N'-disuccinic acid, (S,S) isomer in the form of its sodium salt (EDDS).
  • adjunct ingredients may also be used to provide fully-formulated deteregent compositions.
  • Typical of such conventional deteresive ingredients include detersive surfactants, builders, bleaching compounds, and mixtures thereof, such as described in WO 98/20098.
  • the colour care composition can take a variety of physical forms including liquid such as aqueous or non-aqueous compositions and solid forms such as solid particulate forms. Such compositions may be applied onto a substrate such as a dryer sheet product, used as a rinse added product, or as a spray or foam product.
  • a method for preventing or reducing the colour fading of fabrics which comprises the steps of contacting the fabric with a divalent salt or composition of the invention. Also herein provided is the use of said divalent salt to prevent or reduce the colour fading of fabrics
  • the treated fabric had better fabric appearance, especially in term of their color protection, compared to fabrics which had been treated with either no divalent salt.
  • the method is performed in a domestic process.
  • domestic process it is meant any step conventional to domestic laundering such as soaking, washing, rinsing, and/or spraying as well as by means of a dryer sheet onto which is adsorbed the composition.
  • the contacting occurs in the step of a laundering process, preferably a rinse step of a laundry process, which more preferably occurs at a temperature range below 30°C, preferably between 5 and 25°C.
  • Step A)-The ethoxylation is conducted in a 2 gallon stirred stainless steel autoclave equipped for temperature measurement and control, pressure measurement, vacuum and inert gas purging, sampling, and for introduction of ethylene oxide as a liquid.
  • a ⁇ 20 lb. net cylinder of ethylene oxide (ARC) is set up to deliver ethylene oxide as a liquid by a pump to the autoclave with the cylinder placed on a scale so that the weight change of the cylinder could be monitored.
  • a 750 g portion of polyethyleneimine (PEI) (Nippon Shokubai, Epomin SP-018 having a listed average molecular weight of 1800 equating to 0.417 moles of polymer and 17.4 moles of nitrogen functions) is added to the autoclave.
  • the autoclave is then sealed and purged of air (by applying vacuum to minus 28'' Hg followed by pressurization with nitrogen to 250 psia, then venting to atmospheric pressure).
  • the autoclave contents are heated to 130 °C while applying vacuum.
  • the autoclave is charged with nitrogen to about 250 psia while cooling the autoclave to about 105 °C.
  • Ethylene oxide is then added to the autoclave incrementally over time while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate.
  • the ethylene oxide pump is turned off and cooling is applied to limit any temperature increase resulting from any reaction exotherm.
  • the temperature is maintained between 100 and 110 °C while the total pressure is allowed to gradually increase during the course of the reaction.
  • Step B)- The reaction mixture is then deodorized by passing about 100 cu. ft. of inert gas (argon or nitrogen) through a gas dispersion frit and through the reaction mixture while agitating and heating the mixture to 130 °C.
  • inert gas argon or nitrogen
  • the final reaction product is cooled slightly and collected in glass containers purged with nitrogen.
  • Step A and B Vacuum is continuously applied while the autoclave is cooled to about 50 °C while introducing 376 g of a 25% sodium methoxide in methanol solution (1.74 moles, to achieve a 10% catalyst loading based upon PEI nitrogen functions).
  • the methoxide solution is sucked into the autoclave under vacuum and then the autoclave temperature controller setpoint is increased to 130 °C.
  • a device is used to monitor the power consumed by the agitator. The agitator power is monitored along with the temperature and pressure.
  • Agitator power and temperature values gradually increase as methanol is removed from the autoclave and the viscosity of the mixture increases and stabilizes in about 1 hour indicating that most of the methanol has been removed.
  • the mixture is further heated and agitated under vacuum for an additional 30 minutes. Vacuum is removed and the autoclave is cooled to 105 °C while it is being charged with nitrogen to 250 psia and then vented to ambient pressure. The autoclave is charged to 200 psia with nitrogen. Ethylene oxide is again added to the autoclave incrementally as before while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate while maintaining the temperature between 100 and 110 °C and limiting any temperature increases due to reaction exotherm.
  • PEI 1800 E3, PEI 1800 E4, PEI 1800 E15 and PEI 1800 E20 can be prepared by the above method by adjusting the reaction time and the relative amount of ethylene oxide used in the reaction.
  • Step A)-The ethoxylation is conducted in a 2 gallon stirred stainless steel autoclave equipped for temperature measurement and control, pressure measurement, vacuum and inert gas purging, sampling, and for introduction of ethylene oxide as a liquid.
  • a ⁇ 20 lb. net cylinder of ethylene oxide (ARC) is set up to deliver ethylene oxide as a liquid by a pump to the autoclave with the cylinder placed on a scale so that the weight change of the cylinder could be monitored.
  • a 750 g portion of polyethyleneimine (PEI) (having a listed average molecular weight of 1200 equating to about 0.625 moles of polymer and 17.4 moles of nitrogen functions) is added to the autoclave.
  • the autoclave is then sealed and purged of air (by applying vacuum to minus 28'' Hg followed by pressurization with nitrogen to 250 psia, then venting to atmospheric pressure).
  • the autoclave contents are heated to 130 °C while applying vacuum.
  • the autoclave is charged with nitrogen to about 250 psia while cooling the autoclave to about 105 °C.
  • Ethylene oxide is then added to the autoclave incrementally over time while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate.
  • the ethylene oxide pump is turned off and cooling is applied to limit any temperature increase resulting from any reaction exotherm.
  • the temperature is maintained between 100 and 110 °C while the total pressure is allowed to gradually increase during the course of the reaction.
  • Step B)- The reaction mixture is then deodorized by passing about 100 cu. ft. of inert gas (argon or nitrogen) through a gas dispersion frit and through the reaction mixture while agitating and heating the mixture to 130 °C.
  • inert gas argon or nitrogen
  • the final reaction product is cooled slightly and collected in glass containers purged with nitrogen. In other preparations the neutralization and deodorization is accomplished in the reactor before discharging the product.
  • Step A If a PEI 1200 E 7 is desired, the following step of catalyst addition will be included between Step A and B.
  • Vacuum is continuously applied while the autoclave is cooled to about 50 °C while introducing 376 g of a 25% sodium methoxide in methanol solution (1.74 moles, to achieve a 10% catalyst loading based upon PEI nitrogen functions).
  • the methoxide solution is sucked into the autoclave under vacuum and then the autoclave temperature controller setpoint is increased to 130 °C.
  • a device is used to monitor the power consumed by the agitator.
  • the agitator power is monitored along with the temperature and pressure. Agitator power and temperature values gradually increase as methanol is removed from the autoclave and the viscosity of the mixture increases and stabilizes in about 1 hour indicating that most of the methanol has been removed.
  • the mixture is further heated and agitated under vacuum for an additional 30 minutes. Vacuum is removed and the autoclave is cooled to 105 °C while it is being charged with nitrogen to 250 psia and then vented to ambient pressure. The autoclave is charged to 200 psia with nitrogen. Ethylene oxide is again added to the autoclave incrementally as before while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate while maintaining the temperature between 100 and 110 °C and limiting any temperature increases due to reaction exotherm. After the addition of 4500 g of ethylene oxide (resulting in a total of 7 moles of ethylene oxide per mole of PEI nitrogen function) is achieved over several hours, the temperature is increased to 110 °C and the mixture stirred for an additional hour.
  • reaction mixture is then collected in nitrogen purged containers and eventually transferred into a 22 L three neck round bottomed flask equipped with heating and agitation.
  • the strong alkali catalyst is neutralized by adding 167 g methanesulfonic acid (1.74 moles).
  • PEI 1200 E2, PEI 1200 E4, PEI 1200 E15 and PEI 1200 E20 can be prepared by the above method by adjusting the reaction time and the relative amount of ethylene oxide used in the reaction.
  • compositions for use as dryer-added sheets are in accordance with the invention I II III IV V VI DOEQA 40 25 - - - - - DHEQA - - 20 - - - DTDMAMS - - 20 12 60 SDASA 30 30 20 30 20 - Glycosperse S-20 - - 10 - - - Glycerol Monostearate - - - 20 10 - Clay 4 4 3 4 4 - Perfume 0.7 1.1 0.7 1.6 2.6 1.4 PEI 1800 E1 - 5 - - - - PEI 1200 E1 - - 4 2.2 - - PEI 1800 E3 2 - - - 5 7.0 Dye fix 2 2 5 4 2.2 5 3 Divalent salt 1 5 3 10 2 5 6 HEDP 0.2 - 0.5 - - 0.7 Glycolic - 0.2 - 0.2 - - Polycarboxylic - 0.2 - - 0.4 - Stearic acid
  • liquid detergent formulations were prepared in accord with the invention (levels are given in parts per weight): I II III IV V VI VII VIII LAS 10.0 13.0 9.0 - 25.0 - - - C25AS 4.0 1.0 2.0 10.0 - 13.0 18.0 15.0 C25E3S 1.0 - - 3.0 - 2.0 2.0 4.0 C25E7 6.0 8.0 13.0 2.5 - - 4.0 4.0 TFAA - - - 4.5 - 6.0 8.0 APA - 1.4 - - 3.0 1.0 2.0 - TPKFA 2.0 - 13.0 7.0 - 15.0 11.0 11.0 Citric acid 2.0 3.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 Dodecenyl/tetradecenyl succinic acid 12.0 10.0 - - 15.0 - - - Rape seed fatty acid 4.0 2.0 1.0 - 1.0 - 3.5 - Ethanol 4.0 4.0 7.0 2.0 7.0 2.0 3.0 2.0 1,2 Propane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Coloring (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Luminescent Compositions (AREA)
EP98870174A 1998-08-03 1998-08-03 Compositions d'entretien des tissus Expired - Lifetime EP0979861B1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP98870174A EP0979861B1 (fr) 1998-08-03 1998-08-03 Compositions d'entretien des tissus
DE69828162T DE69828162T2 (de) 1998-08-03 1998-08-03 Gewebepflegmittel
AT98870174T ATE284947T1 (de) 1998-08-03 1998-08-03 Gewebepflegmittel
JP2000563755A JP2002522651A (ja) 1998-08-03 1999-08-03 布地保護組成物
CN99810185A CN1314938A (zh) 1998-08-03 1999-08-03 织物护理组合物
BRPI9912711-3A BR9912711B1 (pt) 1998-08-03 1999-08-03 composições de cuidados com tecido, uso das mesmas e método para prevenir ou reduzir o desbotamento da cor dos tecidos.
CA002338762A CA2338762C (fr) 1998-08-03 1999-08-03 Compositions d'entretien de tissus
US09/762,081 US6830593B1 (en) 1998-08-03 1999-08-03 Fabric care compositions
AU52526/99A AU5252699A (en) 1998-08-03 1999-08-03 Fabric care compositions
PCT/US1999/017558 WO2000008128A1 (fr) 1998-08-03 1999-08-03 Compositions d'entretien de tissus
US10/970,421 US20050108835A1 (en) 1998-08-03 2004-10-21 Fabric care compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98870174A EP0979861B1 (fr) 1998-08-03 1998-08-03 Compositions d'entretien des tissus

Publications (2)

Publication Number Publication Date
EP0979861A1 true EP0979861A1 (fr) 2000-02-16
EP0979861B1 EP0979861B1 (fr) 2004-12-15

Family

ID=8237080

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98870174A Expired - Lifetime EP0979861B1 (fr) 1998-08-03 1998-08-03 Compositions d'entretien des tissus

Country Status (10)

Country Link
US (1) US20050108835A1 (fr)
EP (1) EP0979861B1 (fr)
JP (1) JP2002522651A (fr)
CN (1) CN1314938A (fr)
AT (1) ATE284947T1 (fr)
AU (1) AU5252699A (fr)
BR (1) BR9912711B1 (fr)
CA (1) CA2338762C (fr)
DE (1) DE69828162T2 (fr)
WO (1) WO2000008128A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048302A1 (fr) * 2000-12-15 2002-06-20 Unilever Plc Composition de blanchissage
EP1236793A2 (fr) * 2001-03-03 2002-09-04 Clariant GmbH Compositions pour lavage et pour traitement de linge comprenant un ou de plus inhibiteurs de transfer de colorant
EP1239025A3 (fr) * 2001-03-03 2003-09-03 Clariant GmbH Composition détergente et composition de traitement du linge comprenant un agent inhibant le transfert des couleurs et fixant les couleurs
DE102006012018B3 (de) * 2006-03-14 2007-11-15 Henkel Kgaa Farbschützendes Waschmittel
WO2010105943A1 (fr) * 2009-03-20 2010-09-23 Henkel Ag & Co. Kgaa Utilisation de polymères à groupes carboxyle, en combinaison avec des cations bivalents pour la formation d'une couche protectrice
CN104532626A (zh) * 2014-12-17 2015-04-22 黄涛 一种纯天然防褪色剂
WO2018083170A1 (fr) * 2016-11-03 2018-05-11 Basf Se Matériau de capture de colorant

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100975461B1 (ko) * 2002-02-14 2010-08-11 소니 주식회사 액정 표시 장치
US7977303B2 (en) * 2004-02-27 2011-07-12 The Procter & Gamble Company Multiple use fabric conditioning block with indentations
US7531490B2 (en) * 2004-10-01 2009-05-12 Kao Corporation Detergent composition comprising calcium gluconate and a mixture of calcium ion sequestering agents

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462806A2 (fr) * 1990-06-20 1991-12-27 Unilever Plc Procédé et composition pour le traitement de textiles
WO1996027649A1 (fr) * 1995-03-03 1996-09-12 The Procter & Gamble Company Composition pour le lavage du linge contenant des fixateurs des couleurs et une cellulase
WO1997032956A1 (fr) * 1996-03-08 1997-09-12 The Procter & Gamble Company Composant detergent comprenant un silicate stratifie cristallin qui contient un ion metallique
EP0811680A1 (fr) * 1996-06-03 1997-12-10 The Procter & Gamble Company Compositions d'adoucissants textiles
WO1998012295A1 (fr) * 1996-09-19 1998-03-26 The Procter & Gamble Company Compositions respectant les couleurs
WO1998017758A1 (fr) * 1996-10-18 1998-04-30 The Procter & Gamble Company Compositions detergentes
WO1998029529A1 (fr) * 1996-12-31 1998-07-09 The Procter & Gamble Company Compositions de detergent a lessive contenant des fixatifs de colorant

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3049446A (en) * 1960-02-05 1962-08-14 Sun Chemical Corp Process for the manufacture of urea, glyoxal and formaldehye reaction product useful for improving cellulosic textile materials
US4208173A (en) * 1975-06-06 1980-06-17 United Merchants And Manufacturers, Inc. Method for treating fabrics
US4347145A (en) * 1978-09-19 1982-08-31 United Merchants & Manufacturers, Inc. Foam composition for treating textile materials and method of preparation
US4300898A (en) * 1979-11-08 1981-11-17 Sun Chemical Corporation Compositions for treating textile fabrics
US4345063A (en) * 1979-11-08 1982-08-17 Sun Chemical Corporation Glyoxal/cyclic urea condensates
US4605418A (en) * 1983-03-09 1986-08-12 Diamond Shamrock Chemicals Company Aftertreatment of dyed cellulosic materials
US5460736A (en) * 1994-10-07 1995-10-24 The Procter & Gamble Company Fabric softening composition containing chlorine scavengers
DE59710645D1 (de) * 1996-08-15 2003-10-02 Clariant Finance Bvi Ltd Wasserlösliche Harnstoffderivat-Polymere mit quaternären Ammonium-Gruppen und deren Verwendung
US6020302A (en) * 1997-09-18 2000-02-01 The Procter & Gamble Company Color care compositions
US6830593B1 (en) * 1998-08-03 2004-12-14 The Procter & Gamble Company Fabric care compositions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462806A2 (fr) * 1990-06-20 1991-12-27 Unilever Plc Procédé et composition pour le traitement de textiles
WO1996027649A1 (fr) * 1995-03-03 1996-09-12 The Procter & Gamble Company Composition pour le lavage du linge contenant des fixateurs des couleurs et une cellulase
WO1997032956A1 (fr) * 1996-03-08 1997-09-12 The Procter & Gamble Company Composant detergent comprenant un silicate stratifie cristallin qui contient un ion metallique
EP0811680A1 (fr) * 1996-06-03 1997-12-10 The Procter & Gamble Company Compositions d'adoucissants textiles
WO1998012295A1 (fr) * 1996-09-19 1998-03-26 The Procter & Gamble Company Compositions respectant les couleurs
WO1998017758A1 (fr) * 1996-10-18 1998-04-30 The Procter & Gamble Company Compositions detergentes
WO1998029529A1 (fr) * 1996-12-31 1998-07-09 The Procter & Gamble Company Compositions de detergent a lessive contenant des fixatifs de colorant

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048302A1 (fr) * 2000-12-15 2002-06-20 Unilever Plc Composition de blanchissage
US7077870B2 (en) 2000-12-15 2006-07-18 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Laundry composition
EP1236793A2 (fr) * 2001-03-03 2002-09-04 Clariant GmbH Compositions pour lavage et pour traitement de linge comprenant un ou de plus inhibiteurs de transfer de colorant
EP1239025A3 (fr) * 2001-03-03 2003-09-03 Clariant GmbH Composition détergente et composition de traitement du linge comprenant un agent inhibant le transfert des couleurs et fixant les couleurs
EP1236793A3 (fr) * 2001-03-03 2003-09-03 Clariant GmbH Compositions pour lavage et pour traitement de linge comprenant un ou de plus inhibiteurs de transfer de colorant
US7091167B2 (en) 2001-03-03 2006-08-15 Clariant Gmbh Laundry detergents and laundry treatment compositions comprising dye-transfer-inhibiting dye fixatives
DE102006012018B3 (de) * 2006-03-14 2007-11-15 Henkel Kgaa Farbschützendes Waschmittel
US7947087B2 (en) 2006-03-14 2011-05-24 Henkel Ag & Co. Kgaa Color transfer inhibitors, detergent compositions containing the same and uses therefor
WO2010105943A1 (fr) * 2009-03-20 2010-09-23 Henkel Ag & Co. Kgaa Utilisation de polymères à groupes carboxyle, en combinaison avec des cations bivalents pour la formation d'une couche protectrice
CN104532626A (zh) * 2014-12-17 2015-04-22 黄涛 一种纯天然防褪色剂
WO2018083170A1 (fr) * 2016-11-03 2018-05-11 Basf Se Matériau de capture de colorant

Also Published As

Publication number Publication date
JP2002522651A (ja) 2002-07-23
CA2338762C (fr) 2007-04-10
AU5252699A (en) 2000-02-28
BR9912711A (pt) 2001-05-02
ATE284947T1 (de) 2005-01-15
BR9912711B1 (pt) 2009-08-11
CA2338762A1 (fr) 2000-02-17
CN1314938A (zh) 2001-09-26
EP0979861B1 (fr) 2004-12-15
WO2000008128A1 (fr) 2000-02-17
DE69828162D1 (de) 2005-01-20
US20050108835A1 (en) 2005-05-26
DE69828162T2 (de) 2005-12-22

Similar Documents

Publication Publication Date Title
US6608024B1 (en) Concentrated, stable, translucent or clear, fabric softening compositions
US20030220210A1 (en) Concentrated, stable, translucent or clear, fabric softening compositions
EP0931133B1 (fr) Compositions pour l'entretien des couleurs
US6268332B1 (en) Low solvent rinse-added fabric softners having increased softness benefits
EP0979861B1 (fr) Compositions d'entretien des tissus
US6830593B1 (en) Fabric care compositions
EP0918089A1 (fr) Compositions d'entretien du tissu
EP1114134A1 (fr) Compositions d'entretien des tissus a ajouter au rin age comportant des polyamines lineaires et cycliques de faible poids moleculaire
JP4049996B2 (ja) 透明液体布地柔軟化組成物
EP1100857B1 (fr) Utilisation d'agents tensioactive pour reduir scum dand des compositions pour le soin des tissus
EP1019447A1 (fr) Polymeres amino-fonctionnels ethoxyles
US6410503B1 (en) Fabric care compositions
CA2310434C (fr) Compositions adoucissantes stabilisees pour tissus
US6500796B1 (en) Stabilized fabric softening compositions
CA2311324A1 (fr) Compositions assouplissantes pour tissus
MXPA01001323A (en) Fabric care compositions
MXPA01001149A (en) Fabric care compositions
DE69831850T3 (de) Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben
MXPA00005126A (es) Composiciones para el cuidado de telas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000802

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20030328

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69828162

Country of ref document: DE

Date of ref document: 20050120

Kind code of ref document: P

Owner name: DEFIBRATOR AKTIEBOLAG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050326

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050803

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050916

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090806

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090812

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110831

Year of fee payment: 14

Ref country code: GB

Payment date: 20110722

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69828162

Country of ref document: DE

Effective date: 20130301