EP0976998A1 - Steam condenser - Google Patents

Steam condenser Download PDF

Info

Publication number
EP0976998A1
EP0976998A1 EP98810737A EP98810737A EP0976998A1 EP 0976998 A1 EP0976998 A1 EP 0976998A1 EP 98810737 A EP98810737 A EP 98810737A EP 98810737 A EP98810737 A EP 98810737A EP 0976998 A1 EP0976998 A1 EP 0976998A1
Authority
EP
European Patent Office
Prior art keywords
cover plate
condenser
condensate
cooler
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98810737A
Other languages
German (de)
French (fr)
Inventor
Peter Dr. Baumann
Walter Novak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to EP98810737A priority Critical patent/EP0976998A1/en
Publication of EP0976998A1 publication Critical patent/EP0976998A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate

Definitions

  • the invention relates to a steam condenser with pipes, the cooling water are flowed through and on which steam is deposited by the turbine.
  • the Pipes are grouped into tube bundles that are supported by bundle supports and in individual compartments are divided.
  • the tube bundles point over their entire Lengthen a cavity in which a cooler does not accumulate condensable gases is arranged, which are sucked off via a suction pipe.
  • the invention relates in particular to measures for controlled drainage of the condensate to improve the heat transfer to the Pipes.
  • Such a steam condenser is described for example in EP 0 384 200.
  • condenser tubes are arranged in several sub-bundles in a condenser housing. These sub-bundles are each supported by support plates or bundle carriers and divided into individual compartments.
  • the steam flows from the turbine via an exhaust pipe into the steam chamber of the condenser, in which it is distributed via flow channels. These flow channels narrow in the course of the flow direction, so that a pressure minimum is reached at the level of the air cooler.
  • the steam flows freely onto all the outside tubes of the partial bundles, part of the steam condenses on the surface thereof, the remaining steam flows into the interior of the tube bundle in the further course of the flow, the flow resistance being relatively small here due to a small row depth.
  • a good efficiency of a condenser is achieved, among other things, by keeping the condenser pressure as low as possible.
  • the cooler is used to collect non-condensable gases, essentially air, and to remove them from the condenser via an exhaust pipe. It lies at the point in the bundle where the minimum pressure prevails and essentially has a cover plate lying horizontally, a suction chamber with a suction pipe and a suction channel.
  • Cooler tubes are also arranged between the cover plate and the suction channel and are protected by the cover plate against condensate flowing down from the bundle area located above.
  • the non-condensable gases collect in the bundle zone with the lowest pressure, ie between the cover plate and the suction channel.
  • At the location of the cover plate there are numerous orifices arranged over the entire length of the condenser, which form the boundary between the condenser and the suction space for the non-condensable gases. This space is connected to a suction device via pipes, whereby the gases (steam-air mixture) are sucked out of the condensation area through the orifices. Any condensate can flow back into the slightly inclined suction channel.
  • the heat transfer is particularly favorable when a thin condensate film is present on the tube, from which drops quickly form and flow off the tube.
  • a thicker and continuous condensate film has a lower heat transfer coefficient.
  • measures are taken so that the condenser is vented as well as possible and the pipes are not subjected to excessive condensate from the pipes above them.
  • One of these measures is, for example, arranging the pipes at a sufficient distance from one another so that the condensate runs down between the pipes directly into a condensate collection vessel without coming into contact with the pipes underneath. In the area of the cooler, however, condensate flows from the cover plate to the pipes underneath.
  • the object of the invention to provide a Steam condenser to create the condensation performance for the Heat exchange of the condenser tubes in the area of the cooler is optimized.
  • the object is achieved by a capacitor consisting of a There are a plurality of tubes, which are combined in bundles, the Bundles of supports are supported and divided into compartments, each one Cavity for the collection and suction of non-condensable gases and a cooler with a cover plate, a suction chamber, several panels have between the condenser and suction chamber and a suction channel.
  • the cooler extends across all compartments over the entire length of the entire Bundle.
  • the cover plate has the purpose in each compartment a controlled condensate drainage a fold on which the condensate catches, that runs down from the upper part of the bundle above it, and it prevents access to the condenser tubes under the cover plate.
  • the Cover plate is according to the inclination of the pipes in the flow direction of the Cooling water slightly inclined towards the bundle carriers, so that the collected Condensate flows down there.
  • the condensate flows into a further Drainage channel and reaches the lowest point of the cover plates for the bundle beams in the compartment, from where it goes through a drain opening directly into the condensate collector is derived and from there, for example, back to the Water-steam cycle of a power plant.
  • FIG. 1 shows a steam condenser which, together with the (not shown) Turbine arranged at ground level and with it axially or via an exhaust pipe laterally connected to the turbine shaft.
  • the capacitor contains several one above the other and horizontally arranged tube bundle 1, the bundle carrier 13th supported and divided into several compartments. It is in every tube bundle 1 shows the condenser tubes 2 and a cooler 3 according to the invention.
  • FIG. 2 shows a section of a tube bundle 1 with condenser tubes 2 through which cooling water flows.
  • the majority of the tubes 2 are indicated by crossing lines.
  • the tube bundle 1 has a cooler 3, which is typical for this horizontal arrangement and is arranged in a cavity 4 in the bundle 1.
  • the cavity 4 is located at the point of the lowest pressure within the tube bundle 1.
  • a mixture of water vapor and non-condensable gases accumulates, which is sucked out of the condenser via the cooler 3 and a suction line, not shown.
  • the cooler 3 has a cover plate 5 and a suction channel 6 at the top, between which further condenser tubes 2 are arranged. The mixture of water vapor and gases flows through the cooler, with most of the steam condensing here.
  • the air cooler also has the effect that the steam-gas mixture is accelerated by the action of the suction, which improves the conditions for heat transfer.
  • the bundle is designed in such a way that the steam suction in the direction of the cavity 4 is uniform over all the tubes adjacent to the cavity, which results in a homogeneous pressure drop and thus a clear flow of the steam into the cooler 3.
  • the steam-gas mixture flows through orifices 7 into the suction chamber 9. These orifices are located at the youngest point of the cover plate 5 and represent the physical separation of the condenser chamber from the suction chamber 9. Condensate accumulating from the suction chamber 9 flows into the drainage channel, where it flows through an opening into the condensate collector.
  • the non-condensable gases are sucked out of the condenser by a suction pipe, not shown.
  • the cover plate 5 has a fold 10 along its edge, which is the farthest from the panel 7, in that the plate 5 is angled and forms a raised edge.
  • Condensate which runs down from the pipes 2 above the cooler onto the cover plate 5, is collected at the fold 10 and prevented from flowing down onto the pipes below. Instead, this condensate flows via the cover plate 5 to a drainage channel 11, which is then arranged along the edge of the cover plate 5 along the suction chamber 9. The condensate is collected in the drainage channel 11 and flows through its inclination to the closest bundle carrier.
  • a drain opening is arranged, through which the condensate flows, falls onto tie rods 12 and flows over them into a condensate collecting vessel, not shown.
  • the tie rods 12 serve to mechanically support the tube bundle 1 and their function is not impaired by the condensate flowing down.
  • the pipes 2 in the area of the cooler 3 are not excessively loaded with condensate, but are only acted upon by the condensate that has formed on them.
  • an improved heat transfer and an increased condensation efficiency are achieved for these tubes.
  • FIG. 3 shows a top view of the cover plate 5 of a cooler in the area of a Compartments of a tube bundle, which is delimited by two bundle carriers 13.
  • the tubes 2 of a tube bundle are each indicated by arrows Flow direction of the cooling water slightly inclined. According to this tendency, too Cover plates 5 inclined in each compartment of a tube bundle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

For the purpose of collecting and sucking away non-condensable gases, at the point of deepest pressure the pipe bundles (1) have a cooler (3) with a cover plate (5). The gases enter a suction chamber (9) via diaphragm (7) and are sucked away via a suction pipe. For the purpose of controlled drainage of condensate, on the cover plate a fold is formed. The condensate collects in the fold and via the inclined cover plate flows into a drainage channel (11) and further to an outflow aperture.

Description

Technisches GebietTechnical field

Die Erfindung betrifft einen Dampfkondensator mit Rohren, die von Kühlwasser durchflossen sind und an denen Dampf von der Turbine niedergeschlagen wird. Die Rohre sind in Rohrbündel zusammengefasst, die durch Bündelträger gestützt und in einzelne Kompartimente unterteilt sind. Die Rohrbündel weisen je über ihre gesamte Länge einen Hohlraum auf, in dem ein Kühler zwecks Ansammlung von nicht kondensierbaren Gasen angeordnet ist, die über ein Saugrohr abgesaugt werden. Die Erfindung betrifft insbesondere Massnahmen zu einer kontrollierten Drainage des anfallenden Kondensats zwecks Verbesserung des Wärmeübergangs an den Rohren.The invention relates to a steam condenser with pipes, the cooling water are flowed through and on which steam is deposited by the turbine. The Pipes are grouped into tube bundles that are supported by bundle supports and in individual compartments are divided. The tube bundles point over their entire Lengthen a cavity in which a cooler does not accumulate condensable gases is arranged, which are sucked off via a suction pipe. The invention relates in particular to measures for controlled drainage of the condensate to improve the heat transfer to the Pipes.

Stand der TechnikState of the art

Ein derartiger Dampfkondensator ist zum Beispiel in der EP 0 384 200 beschrieben. Hier sind in einem Kondensatorgehäuse Kondensatorrohre in mehreren Teilbündeln angeordnet. Diese Teilbündel sind jeweils durch Stützplatten oder Bündelträger gestützt und in einzelne Kompartimente unterteilt. Der Dampf strömt von der Turbine über einen Abdampfstutzen in den Dampfraum des Kondensators, in dem er sich über Strömungskanäle verteilt. Diese Strömungskanäle verengen sich dabei im Verlauf der Strömungsrichtung, sodass sich auf dem Niveau der Luftkühler ein Druckminimum einstellt. Der Dampf strömt alle aussenliegenden Rohre der Teilbündel frei an, ein Teil des Dampfes kondensiert an deren Oberfläche, der restliche Dampf gelangt im weiteren Strömungsverlauf in den Innenbereich der Rohrbündel, wobei hier der Strömungswiderstand durch eine geringe Rohrreihentiefe relativ klein ist.
Eine gute Effizienz eines Kondensators wird unter anderem dadurch erzielt, indem der Kondensatordruck möglichst tief gehalten wird. Hierzu befindet sich im innen liegenden Bereich jedes Rohrbündels ein Hohlraum, in dem ein asymmetrisch ausgebildeter Kühler angeordnet ist, der sich durch jedes der Kompartimente über die gesamte Länge des Rohrbündels erstreckt. Der Kühler dient der Ansammlung von nicht kondensierbaren Gasen, im wesentlichen Luft, und ihrer Entfernung aus dem Kondensator über ein Absaugrohr. Er liegt an der Stelle im Bündel, an welcher der minimalste Druck herrscht, und weist im wesentlichen ein horizontal liegendes Abdeckblech, einen Absaugraum mit Absaugrohr und einen Saugkanal auf. Zwischen dem Abdeckblech und dem Saugkanal sind ebenfalls Kühlerrohre angeordnet, die durch das Abdeckblech vor herabfliessendem Kondensat aus dem darüber befindlichen Bündelbereich geschützt sind. Die nicht kondensierbaren Gase sammeln sich in der Bündelzone mit dem tiefsten Druck, d.h. zwischen Abdeckblech und Absaugkanal an. An der Stelle des Abdeckblechs befinden sich zahlreiche über die gesamte Länge des Kondensators angeordnete Blenden, welche die Grenze zwischen Kondensator und dem Absaugraum für die nicht kondensierbaren Gase bildet. Dieser Raum steht über Leitungen in Verbindung mit einem Sauger, wodurch die Gase (Dampf-Luft-Gemisch) durch die Blenden aus dem Kondensationabereich abgesaugt wird. Anfallendes Kondensat kann im leicht geneigten Absaugkanal zurückfliessen. Es wird über eine Drainage nach unten, direkt in den Kondensatsammelbehälter ("Hotwell") abgeleitet. Über den am Absaugraum angeordneten Blenden entsteht durch die Wirkung des Saugers ein Druckverlust. Wegen der gleichmässigen Verteilung über die gesamte Länge ergibt sich eine homogene Saugwirkung in allen Kompartimenten des Kondensators.
Der Wärmeübergang an den Kondensatorrohren wird einerseits durch den Temperaturunterschied zwischen dem anströmenden Dampf und dem Kühlwasser und andererseits durch das Medium, welches das Rohr umgibt, bestimmt. Ist ein Rohr zum Beispiel von Luft umgeben, senkt dies den Wärmeübergangskoeffizienten, weshalb sorgfältige Massnahmen zur Entlüftung des Kondensators unternommen werden müssen. Der Einfluss von Kondensat auf den Wärmeübergang an einem Rohr hängt von der Menge des Kondensats ab. Der Wärmeübergang ist insbesondere dann begünstigt, wenn an dem Rohr ein dünner Kondensatfilm vorhanden ist, aus dem sich rasch Tropfen bilden, die vom Rohr abfliessen. Ein dickerer und kontinuierlicher Kondensatfilm hingegen besitzt im Vergleich dazu einen niedrigeren Wärmedurchgangskoeffizienten.
Um den Wärmeübergang an den Rohren zu optimieren werden Massnahmen getroffen, damit der Kondensator möglichst gut entlüftet ist und die Rohre nicht zu stark durch Kondensat von den über ihnen liegenden Rohren beaufschlagt werden. Eine dieser Massnahmen ist zum Beispiel eine Anordnung der Rohre mit genügend grossem Abstand voneinander, sodass das Kondensat zwischen den Rohren direkt in ein Kondensatsammelgefäss herabrinnt, ohne mit den darunterliegenden Rohren in Berührung zu kommen.
Im Bereich des Kühlers fliesst jedoch Kondensat vom Abdeckblech auf die darunterliegenden Rohre. Erfahrungsgemäss wird der Wärmeübergang und damit die Kondensationsleistungsfähigkeit für den Wärmeaustausch jener Kondensatorrohre durch Kondensat deutlich beeinträchtigt.
Such a steam condenser is described for example in EP 0 384 200. Here, condenser tubes are arranged in several sub-bundles in a condenser housing. These sub-bundles are each supported by support plates or bundle carriers and divided into individual compartments. The steam flows from the turbine via an exhaust pipe into the steam chamber of the condenser, in which it is distributed via flow channels. These flow channels narrow in the course of the flow direction, so that a pressure minimum is reached at the level of the air cooler. The steam flows freely onto all the outside tubes of the partial bundles, part of the steam condenses on the surface thereof, the remaining steam flows into the interior of the tube bundle in the further course of the flow, the flow resistance being relatively small here due to a small row depth.
A good efficiency of a condenser is achieved, among other things, by keeping the condenser pressure as low as possible. For this purpose, there is a cavity in the inner region of each tube bundle, in which an asymmetrically designed cooler is arranged, which extends through each of the compartments over the entire length of the tube bundle. The cooler is used to collect non-condensable gases, essentially air, and to remove them from the condenser via an exhaust pipe. It lies at the point in the bundle where the minimum pressure prevails and essentially has a cover plate lying horizontally, a suction chamber with a suction pipe and a suction channel. Cooler tubes are also arranged between the cover plate and the suction channel and are protected by the cover plate against condensate flowing down from the bundle area located above. The non-condensable gases collect in the bundle zone with the lowest pressure, ie between the cover plate and the suction channel. At the location of the cover plate there are numerous orifices arranged over the entire length of the condenser, which form the boundary between the condenser and the suction space for the non-condensable gases. This space is connected to a suction device via pipes, whereby the gases (steam-air mixture) are sucked out of the condensation area through the orifices. Any condensate can flow back into the slightly inclined suction channel. It is drained downwards, directly into the condensate collector ("Hotwell"). Due to the action of the suction device, a pressure loss occurs across the orifices arranged on the suction chamber. Because of the uniform distribution over the entire length, there is a homogeneous suction effect in all compartments of the condenser.
The heat transfer at the condenser tubes is determined on the one hand by the temperature difference between the incoming steam and the cooling water and on the other hand by the medium that surrounds the tube. For example, if a pipe is surrounded by air, this lowers the heat transfer coefficient, which is why careful measures must be taken to vent the condenser. The influence of condensate on the heat transfer on a pipe depends on the amount of condensate. The heat transfer is particularly favorable when a thin condensate film is present on the tube, from which drops quickly form and flow off the tube. In contrast, a thicker and continuous condensate film has a lower heat transfer coefficient.
In order to optimize the heat transfer on the pipes, measures are taken so that the condenser is vented as well as possible and the pipes are not subjected to excessive condensate from the pipes above them. One of these measures is, for example, arranging the pipes at a sufficient distance from one another so that the condensate runs down between the pipes directly into a condensate collection vessel without coming into contact with the pipes underneath.
In the area of the cooler, however, condensate flows from the cover plate to the pipes underneath. Experience has shown that the heat transfer and thus the condensation performance for the heat exchange of those condenser tubes is significantly impaired by condensate.

Darstellung der ErfindungPresentation of the invention

Aufgrund dieses Standes der Technik ist es die Aufgabe der Erfindung, einen Dampfkondensator zu schaffen, bei dem die Kondensationsleistungsfähigkeit für den Wärmeaustausch der Kondensatorrohre im Bereich des Kühlers optimiert ist. Die Aufgabe wird erfindungsgemäss durch einen Kondensator gelöst, der aus einer Mehrzahl von Rohren besteht, die in Bündeln zusammengefasst sind, wobei die Bündel von Trägern gestützt und in Kompartimente unterteilt sind, die je einen Hohlraum zwecks Ansammlung und Wegsaugung von nicht kondensierbaren Gasen und einen Kühler mit einem Abdeckblech, einem Saugraum, mehreren Blenden zwischen Kondensator- und Saugraum und einem Saugkanal aufweisen. Der Kühler erstreckt sich über sämtliche Kompartimente über die gesamte Länge des gesamten Bündels. Erfindungsgemäss weist das Abdeckblech in jedem Kompartiment zwecks einer kontrollierten Kondensatdrainage einen Falz auf der das Kondensat auffängt, das aus dem oberen sich darüber befindlichen Teil des Bündels herabrinnt, und es daran hindert, auf die Kondensatorrohre unter dem Abdeckblech zu gelangen. Das Abdeckblech ist dabei gemäss der Neigung der Rohre in der Fliessrichtung des Kühlwassers zu den Bündelträgem hin leicht geneigt, sodass das aufgefangene Kondensat dort hinabfliesst. Das Kondensat fliesst im weiteren Verlauf in eine Drainagerinne und erreicht bei den Bündelträgern die tiefste Stelle der Abdeckbleche im Kompartiment, von wo es durch eine Ablauföffnung direkt in den Kondensatsammelbehälter abgeleitet wird und von dort beispielsweise wieder zurück in den Wasser-Dampf-Kreislauf einer Kraftwerksanlage.Based on this prior art, it is the object of the invention to provide a Steam condenser to create the condensation performance for the Heat exchange of the condenser tubes in the area of the cooler is optimized. According to the invention, the object is achieved by a capacitor consisting of a There are a plurality of tubes, which are combined in bundles, the Bundles of supports are supported and divided into compartments, each one Cavity for the collection and suction of non-condensable gases and a cooler with a cover plate, a suction chamber, several panels have between the condenser and suction chamber and a suction channel. The cooler extends across all compartments over the entire length of the entire Bundle. According to the invention, the cover plate has the purpose in each compartment a controlled condensate drainage a fold on which the condensate catches, that runs down from the upper part of the bundle above it, and it prevents access to the condenser tubes under the cover plate. The Cover plate is according to the inclination of the pipes in the flow direction of the Cooling water slightly inclined towards the bundle carriers, so that the collected Condensate flows down there. The condensate flows into a further Drainage channel and reaches the lowest point of the cover plates for the bundle beams in the compartment, from where it goes through a drain opening directly into the condensate collector is derived and from there, for example, back to the Water-steam cycle of a power plant.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Es zeigen:

  • Figur 1 eine Ansicht eines Dampfkondensators mit den erfindungsgemässen Kühlern,
  • Figur 2 einen Querschnitt eines Teils eines Rohrbündels auf einer Ebene zwischen zwei Bündelträgern,
  • Figur 3 eine Draufsicht eines Abdeckblechs eines Kühlers mit einer Drainagerinne zwischen zwei Bündelträgern.
  • Show it:
  • FIG. 1 shows a view of a steam condenser with the coolers according to the invention,
  • FIG. 2 shows a cross section of part of a tube bundle on a plane between two bundle carriers,
  • Figure 3 is a plan view of a cover plate of a cooler with a drainage channel between two bundle carriers.
  • Weg der Ausführung der ErfindungWay of carrying out the invention

    Figur 1 zeigt einen Dampfkondensator, der zusammen mit der (nicht dargestellten) Turbine ebenerdig angeordnet und mit ihr über einen Abdampfstutzen axial oder seitlich zur Turbinenwelle verbunden. Der Kondensator enthält mehrere übereinander und horizontal angeordnete Rohrbündel 1, die von Bündelträgern 13 gestützt und in mehrere Kompartimente unterteilt sind. Es sind in jedem Rohrbündel 1 die Kondensatorrohre 2 und ein Kühler 3 gemäss der Erfindung dargestellt.FIG. 1 shows a steam condenser which, together with the (not shown) Turbine arranged at ground level and with it axially or via an exhaust pipe laterally connected to the turbine shaft. The capacitor contains several one above the other and horizontally arranged tube bundle 1, the bundle carrier 13th supported and divided into several compartments. It is in every tube bundle 1 shows the condenser tubes 2 and a cooler 3 according to the invention.

    In Figur 2 ist ein Ausschnitt eines Rohrbündels 1 gezeigt mit Kondensatorrohren 2, die mit Kühlwasser durchflossen sind. Die Mehrzahl der Rohre 2 sind durch sich kreuzende Linien angedeutet. Das Rohrbündel 1 weist einen für diese horizontale Anordnung typischen Kühler 3 auf der in einem Hohlraum 4 im Bündel 1 angeordnet ist. Der Hohlraum 4 befindet sich an der Stelle des tiefsten Drucks innerhalb des Rohrbündels 1. Hier sammelt sich ein Gemisch von Wasserdampf und nicht kondensierbaren Gasen an, das über den Kühler 3 und eine nicht dargestellte Saugleitung aus dem Kondensator abgesaugt wird.
    Der Kühler 3 weist oben ein Abdeckblech 5 und einen Saugkanal 6 auf, zwischen denen weitere Kondensatorrohre 2 angeordnet sind. Das Gemisch von Wasserdampf und Gasen durchströmt den Kühler, wobei der grösste Teil des Dampfes hier kondensiert. Der Luftkühler hat ferner die Wirkung, dass das Dampf-Gas-Gemisch durch die Wirkung der Absaugung beschleunigt wird, wodurch die Bedingungen für einen Wärmeübergang verbessert werden. Das Bündel ist hierzu so gestaltet, dass die Dampfabsaugung in Richtung Hohlraum 4 über alle den Hohlraum angrenzenden Rohre gleichmässig ist, wodurch sich ein homogenes Druckgefälle und damit ein eindeutiger Fluss des Dampfes in den Kühler 3 ergibt.
    Das Dampf-Gas-Gemisch fliesst durch Blenden 7 in den Saugraum 9. Diese Blenden befinden sich an der jüngsten Stelle des Abdeckblechs 5 und stellen die physikalische Trennung des Kondensatorraumes vom Saugraum 9 dar. Vom Saugraum 9 fliesst weiter anfallendes Kondensat in den Drainagekanal ab, wo es an dessen Ende durch eine Öffnung in den Kondensatsammelbehälter abfliesst. Die nicht kondensierbaren Gase werden durch ein nicht dargestelltes Absaugrohr aus dem Kondensator weggesaugt.
    Das Abdeckblech 5 besitzt entlang seiner Kante, die der Blende 7 am weitesten entfernt ist, einen Falz 10, indem das Blech 5 angewinkelt ist und einen erhöhten Rand bildet. Kondensat, das von den Rohren 2, über dem Kühler, auf das Abdeckblech 5 herabrinnt, wird am Falz 10 aufgefangen und daran gehindert auf die darunterliegenden Rohre hinabzufliessen. Stattdessen fliesst dieses Kondensat über das Abdeckblech 5 auf eine Drainagerinne 11 zu, die anschliessend der Kante des Abdeckblechs 5 entlang dem Saugraum 9 angeordnet ist. Das Kondensat wird in der Drainagerinne 11 gesammelt und fliesst durch deren Neigung zum nächstliegenden Bündelträger. Hier ist eine Abflussöffnung angeordnet, durch die das Kondensat abfliesst, auf Tie-Rods 12 fällt und über diese hinweg in ein nicht dargestelltes Kondensatsammelgefäss fliesst. Die Tie-Rods 12 dienen der mechanischen Stützung des Rohrbündels 1 und werden in ihrer Funktion durch das herabfliessende Kondensat nicht beeinträchtigt.
    Somit werden durch die kontrollierte Kondensatdrainage die Rohre 2 im Bereich des Kühlers 3 nicht übermässig mit Kondensat belastet, sondern nur von jenem Kondensat beaufschlagt, das an ihnen selbst gebildet worden ist. Im Vergleich zum erwähnten Stand der Technik wird für diese Rohre ein verbesserter Wärmeübergang und eine erhöhte Kondensationsleistungsfähigkeit erzielt.
    FIG. 2 shows a section of a tube bundle 1 with condenser tubes 2 through which cooling water flows. The majority of the tubes 2 are indicated by crossing lines. The tube bundle 1 has a cooler 3, which is typical for this horizontal arrangement and is arranged in a cavity 4 in the bundle 1. The cavity 4 is located at the point of the lowest pressure within the tube bundle 1. Here, a mixture of water vapor and non-condensable gases accumulates, which is sucked out of the condenser via the cooler 3 and a suction line, not shown.
    The cooler 3 has a cover plate 5 and a suction channel 6 at the top, between which further condenser tubes 2 are arranged. The mixture of water vapor and gases flows through the cooler, with most of the steam condensing here. The air cooler also has the effect that the steam-gas mixture is accelerated by the action of the suction, which improves the conditions for heat transfer. For this purpose, the bundle is designed in such a way that the steam suction in the direction of the cavity 4 is uniform over all the tubes adjacent to the cavity, which results in a homogeneous pressure drop and thus a clear flow of the steam into the cooler 3.
    The steam-gas mixture flows through orifices 7 into the suction chamber 9. These orifices are located at the youngest point of the cover plate 5 and represent the physical separation of the condenser chamber from the suction chamber 9. Condensate accumulating from the suction chamber 9 flows into the drainage channel, where it flows through an opening into the condensate collector. The non-condensable gases are sucked out of the condenser by a suction pipe, not shown.
    The cover plate 5 has a fold 10 along its edge, which is the farthest from the panel 7, in that the plate 5 is angled and forms a raised edge. Condensate, which runs down from the pipes 2 above the cooler onto the cover plate 5, is collected at the fold 10 and prevented from flowing down onto the pipes below. Instead, this condensate flows via the cover plate 5 to a drainage channel 11, which is then arranged along the edge of the cover plate 5 along the suction chamber 9. The condensate is collected in the drainage channel 11 and flows through its inclination to the closest bundle carrier. Here, a drain opening is arranged, through which the condensate flows, falls onto tie rods 12 and flows over them into a condensate collecting vessel, not shown. The tie rods 12 serve to mechanically support the tube bundle 1 and their function is not impaired by the condensate flowing down.
    Thus, due to the controlled condensate drainage, the pipes 2 in the area of the cooler 3 are not excessively loaded with condensate, but are only acted upon by the condensate that has formed on them. In comparison to the prior art mentioned, an improved heat transfer and an increased condensation efficiency are achieved for these tubes.

    Figur 3 zeigt in einer Draufsicht das Abdeckblech 5 eines Kühlers im Bereich eines Kompartiments eines Rohrbündels, das durch zwei Bündelträger 13 abgegrenzt wird. Die Rohre 2 eines Rohrbündels sind jeweils in der durch Pfeile angedeuteten Fliessrichtung des Kühlwassers leicht geneigt. Gemäss dieser Neigung sind auch die Abdeckbleche 5 in jedem Kompartiment eines Rohrbündels geneigt. In diesem Beispiel sind also die Rohre 2 und das Abdeckblech 5 am oberen Ende der Figur tiefer zu sehen als am unteren Ende der Figur. Das von Rohren oberhalb des Kühlers herabregnende Kondensat wird vom Abdeckblech 5 aufgefangen und am Falz 10 daran gehindert, auf darunterliegende Rohre zu gelangen. Es fliesst über das Abdeckblech 5 gemäss der Pfeilrichtung zur Drainagerinne 11 und schliesslich entlang dieser Rinne zu einer Abflussöffnung 14 beim Bündelträger 13, von wo aus es über die Tie-Rods in ein Sammelgefäss gelangt.FIG. 3 shows a top view of the cover plate 5 of a cooler in the area of a Compartments of a tube bundle, which is delimited by two bundle carriers 13. The tubes 2 of a tube bundle are each indicated by arrows Flow direction of the cooling water slightly inclined. According to this tendency, too Cover plates 5 inclined in each compartment of a tube bundle. In this Examples are the tubes 2 and the cover plate 5 at the upper end of the figure seen deeper than at the bottom of the figure. That of pipes above the Cooling raining condensate is collected by the cover plate 5 and on Fold 10 prevented from getting onto pipes underneath. It overflows the cover plate 5 according to the direction of the arrow to the drainage channel 11 and finally along this channel to a drain opening 14 at the bundle carrier 13, from where it reaches a collecting vessel via the tie rods.

    BezugszeichenlisteReference list

    11
    RohrbündelTube bundle
    22nd
    KondensatorrohreCondenser tubes
    33rd
    Kühlercooler
    44th
    Hohlraumcavity
    55
    AbdeckblechCover plate
    66
    SaugkanalSuction channel
    77
    Blende(n)Aperture (s)
    99
    SaugraumSuction chamber
    1010th
    FalzFold
    1111
    DrainagerinneDrainage channel
    1212th
    Tie-RodsTie rods
    1313
    BündelträgerBundle carrier
    1414
    AbflussöffnungDrain opening

    Claims (1)

    Dampfkondensator mit Kondensatorrohren (2), die von Kühlwasser durchflossen und in Rohrbündeln (1) zusammengefasst sind, die im Kondensator horizontal angeordnet sind und von Bündelträgem (13) gestützt und in einzelne Kompartimente unterteilt sind, und mit einem Kühler (3) zwecks Ansammlung und Wegsaugung von nicht kondensierbaren Gasen aus dem Dampfkondensator, wobei sich der Kühler (3) über alle Kompartimente des Rohrbündels (1) erstreckt und ein Abdeckblech (5), einen Saugraum (9) mit Blenden (7), einen Saugkanal (6) und ein Absaugrohr aufweist
    dadurch gekennzeichnet, dass
    das Abdeckblech (5) entlang einer ersten Kante einen Falz (10) aufweist, welcher das Kondensat, das von Kondensatorrohren (2) über dem Abdeckblech (5) herabrinnt, auffängt und daran hindert, auf darunterliegende Kondensatorrohre (2) zu gelangen, und das Abdeckblech (5) gleich wie die Neigung der Kondensatorrohre (2) in der Fliessrichtung des Kühlwassers ebenfalls geneigt ist, und entlang einer zweiten Kante des Abdeckblechs (5) eine Drainagerinne (11) mit einer Abflussöffnung (14) angeordnet ist, in der das Kondensat sich sammelt und durch die Abflussöffnung (14) in ein Kondensatsammelgefäss abgeleitet wird.
    Steam condenser with condenser tubes (2), through which cooling water flows and which are combined in tube bundles (1), which are arranged horizontally in the condenser and supported by bundle supports (13) and divided into individual compartments, and with a cooler (3) for the purpose of collection and Sucking away non-condensable gases from the steam condenser, the cooler (3) extending over all compartments of the tube bundle (1) and a cover plate (5), a suction chamber (9) with screens (7), a suction channel (6) and a Has suction pipe
    characterized in that
    the cover plate (5) has a fold (10) along a first edge, which catches the condensate that runs down from condenser tubes (2) over the cover plate (5) and prevents it from reaching the condenser tubes (2) underneath, and that Cover plate (5) is inclined in the same way as the inclination of the condenser tubes (2) in the flow direction of the cooling water, and along a second edge of the cover plate (5) there is a drainage channel (11) with a drain opening (14) in which the condensate collects and is discharged through the drain opening (14) into a condensate collection vessel.
    EP98810737A 1998-07-30 1998-07-30 Steam condenser Withdrawn EP0976998A1 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    EP98810737A EP0976998A1 (en) 1998-07-30 1998-07-30 Steam condenser

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP98810737A EP0976998A1 (en) 1998-07-30 1998-07-30 Steam condenser

    Publications (1)

    Publication Number Publication Date
    EP0976998A1 true EP0976998A1 (en) 2000-02-02

    Family

    ID=8236224

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98810737A Withdrawn EP0976998A1 (en) 1998-07-30 1998-07-30 Steam condenser

    Country Status (1)

    Country Link
    EP (1) EP0976998A1 (en)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN100498191C (en) * 2006-12-29 2009-06-10 东方电气集团东方汽轮机有限公司 Emulated steam floating flow path device of steam condenser of power station
    WO2013117730A3 (en) * 2012-02-10 2014-08-28 Alstom Technology Ltd Water/steam cycle and method for operating the same

    Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US1845549A (en) * 1931-06-26 1932-02-16 Westinghouse Electric & Mfg Co Condenser
    US1855231A (en) * 1931-11-19 1932-04-26 Worthington Pump & Mach Corp Surface condenser
    US2111240A (en) * 1936-02-19 1938-03-15 Worthington Pump & Mach Corp Surface condenser
    US2180840A (en) * 1937-11-27 1939-11-21 Westinghouse Electric & Mfg Co Condenser apparatus
    JPS6053783A (en) * 1983-09-05 1985-03-27 Mitsubishi Heavy Ind Ltd Condenser
    EP0384200A1 (en) 1989-02-23 1990-08-29 Asea Brown Boveri Ag Steam condenser
    DE4141132C1 (en) * 1991-12-13 1993-02-11 Preussenelektra Ag, 3000 Hannover, De

    Patent Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US1845549A (en) * 1931-06-26 1932-02-16 Westinghouse Electric & Mfg Co Condenser
    US1855231A (en) * 1931-11-19 1932-04-26 Worthington Pump & Mach Corp Surface condenser
    US2111240A (en) * 1936-02-19 1938-03-15 Worthington Pump & Mach Corp Surface condenser
    US2180840A (en) * 1937-11-27 1939-11-21 Westinghouse Electric & Mfg Co Condenser apparatus
    JPS6053783A (en) * 1983-09-05 1985-03-27 Mitsubishi Heavy Ind Ltd Condenser
    EP0384200A1 (en) 1989-02-23 1990-08-29 Asea Brown Boveri Ag Steam condenser
    DE4141132C1 (en) * 1991-12-13 1993-02-11 Preussenelektra Ag, 3000 Hannover, De

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    PATENT ABSTRACTS OF JAPAN vol. 009, no. 187 (M - 401) 3 August 1985 (1985-08-03) *

    Cited By (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN100498191C (en) * 2006-12-29 2009-06-10 东方电气集团东方汽轮机有限公司 Emulated steam floating flow path device of steam condenser of power station
    WO2013117730A3 (en) * 2012-02-10 2014-08-28 Alstom Technology Ltd Water/steam cycle and method for operating the same
    CN104093942A (en) * 2012-02-10 2014-10-08 阿尔斯通技术有限公司 Water/steam cycle and method for operating the same
    CN104093942B (en) * 2012-02-10 2015-10-21 阿尔斯通技术有限公司 Water/vapor recycle and for operating its method
    US9453428B2 (en) 2012-02-10 2016-09-27 Alstom Technology Ltd Water/steam cycle and method for operating the same

    Similar Documents

    Publication Publication Date Title
    EP0384200B1 (en) Steam condenser
    DE2845181C2 (en)
    DE2754330C2 (en)
    DE4439801C2 (en) Air-cooled dry cooler
    DE19817972C2 (en) Air-cooled surface condenser
    DE202005005302U1 (en) air condenser
    EP3728975B1 (en) Air-cooled condenser installation
    DE4009997A1 (en) Evaporator with undulating ribs
    DE2950194A1 (en) METHOD AND DEVICE FOR COLLECTING A LIQUID IN ONE LOCATION AND CONVEYING THE LIQUID FOR USE IN A SECOND LOCATION
    EP0325758B1 (en) Steam condenser
    DE19642100B4 (en) steam condenser
    EP0619466B1 (en) Steam condenser
    EP0976998A1 (en) Steam condenser
    DE102016002380B4 (en) Motor vehicle with an exhaust gas condenser
    EP0795729B1 (en) Steam condenser
    DE19701598C2 (en) Heat exchanger tube
    DE2414295A1 (en) CAPACITOR
    DE2166469A1 (en) Air cooled finned condenser tubes - widened to rectangular ends which adjoin one another at connection to headers, thus eliminating tubeplates
    EP1139051A2 (en) Condenser
    DE611002C (en) Heating chamber for evaporator and cooker with vertical heating pipes
    DE583058C (en) Condenser with cooling tubes arranged in groups in a jacket
    DE4422344A1 (en) Condenser for steam power installations
    DE102022108074A1 (en) Refrigerator and/or freezer
    DD296349A5 (en) HEAT TRANSFER WITH STEAM SEPARATION
    AT406459B (en) SETUP ON A SOLDERING MACHINE

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AKX Designation fees paid
    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20000803