EP0973998B1 - Verfahren zur kühlung einer turbinenschaufel - Google Patents
Verfahren zur kühlung einer turbinenschaufel Download PDFInfo
- Publication number
- EP0973998B1 EP0973998B1 EP98924039A EP98924039A EP0973998B1 EP 0973998 B1 EP0973998 B1 EP 0973998B1 EP 98924039 A EP98924039 A EP 98924039A EP 98924039 A EP98924039 A EP 98924039A EP 0973998 B1 EP0973998 B1 EP 0973998B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- turbine blade
- cooling fluid
- wall
- vane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/201—Heat transfer, e.g. cooling by impingement of a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/202—Heat transfer, e.g. cooling by film cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/205—Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
Definitions
- the invention relates to a turbine blade which has an inflow region, an outflow region and lying between them, a pressure side and a suction side and also a wall structure around which an action fluid can flow.
- the wall structure includes an outer wall surrounding an interior for guiding cooling fluid.
- the invention further relates to the use of such a turbine blade and a method for cooling a turbine blade around which a hot action fluid flows.
- a guide vane of a gas turbine with a guide of cooling air for cooling it is described in US Pat. No. 5,419,039.
- the guide vane is designed as a casting or composed of two castings. In its interior, it has a supply of cooling air from the compressor of the associated gas turbine system.
- cast-in cooling pockets which are open on one side are provided in their wall structure exposed to the hot gas flow of the gas turbine and enclosing the cooling air supply.
- the cooling pockets are arranged on the outside of the wall structure both in the flow direction of the hot gas and perpendicular to the flow direction of the hot gas along the main direction of expansion of the guide vane. Cooling air flows into the cooling bag from the cooling air supply through a plurality of holes in the wall structure into each cooling bag.
- the cooling air flows through this in the direction of flow of the hot gas.
- the cooling air exits into the flow of the hot gas in an opening area already formed by the casting of the guide vanes.
- film cooling is achieved to some extent on the outer surface of the wall structure.
- US Pat. No. 3,191,908 shows a coolable turbine blade.
- the turbine blade has an interior consisting of several sub-rooms and an outer wall.
- the outer wall is traversed by cooling channels extending axially along a turbine blade axis.
- the cooling air is guided through the turbine blades through the individual compartments in a sepine pattern.
- a cooling channel of the outer wall communicates with a partial space via an inlet.
- the cooling channels of the outer wall are also connected to each other via holes.
- GB-2,111,604 A also shows a coolable turbine blade.
- An outer wall encloses an interior that is divided into three sub-rooms.
- the outer wall has a supporting structure which is surrounded by a shell.
- Narrow cooling channels spaced apart from one another, run between the support structure and the shell, following the blade profile.
- the cooling channels are fluidically connected to the subspaces. The cooling fluid exits the cooling channels at the trailing edge of the turbine blade.
- GB 21 12 869 describes a gas turbine blade which has a wall structure which determines the blade shape and has two cooling air supply chambers and one cooling air discharge chamber. Cooling channels are arranged on the outside of the wall structure in the direction of flow. The cooling channels are made as depressions in the form of elongated grooves in the wall structure. The cooling channels are connected on the one hand in terms of flow technology to a cooling air supply chamber and on the other hand to the cooling air discharge chamber. In order to close off the cooling channels from the outside, a metal sheet completely surrounding the turbine blade is arranged.
- the object of the invention is to provide a turbine blade with a coolable wall structure. Further tasks consist in specifying the use of such a turbine blade and a method for cooling a turbine blade which is exposed to a hot action fluid.
- the object directed to a turbine blade is achieved by such a turbine blade according to the preamble of claim 1, in which at least one cooling chamber thermally coupled to the outer wall with an inlet and an outlet for cooling fluid and in the interior at least one cooling fluid supply and a cooling fluid discharge are provided .
- the cooling chamber is fluidly connected via the inlet to the cooling fluid supply and via the outlet to the cooling fluid discharge.
- Such a turbine blade can thus be cooled by cooling fluid which is guided entirely inside the turbine blade.
- a closed cooling circuit is therefore formed in the turbine blade. That through the turbine blade Cooling fluid flowing through and thereby heating up can be fed to a further turbine blade or a component of the turbine system assigned to the turbine blade, for example a combustion chamber wall, for further cooling purposes.
- Such a closed cooling circuit allows a cooling fluid to be used, for example steam, which should not flow into an action fluid flowing around the turbine blade.
- the cooling fluid can first be used to cool a guide blade with the highest thermal load and then a rotor blade axially downstream of the guide blade.
- a closed cooling circuit in the turbine blade also prevents the hot action fluid flowing around the turbine blade from being influenced, as a result of which the aerodynamic efficiency is increased.
- the cooling chamber extends both in the direction of flow and perpendicularly thereto (i.e. essentially in the direction of a main axis of the turbine blade), in particular the extent perpendicular to the direction of flow can be approximately as large or larger than in the direction of flow. Due to this two-dimensional expansion of the cooling chamber, a uniform cooling performance is achieved. In particular, a uniform temperature distribution can be achieved, which leads to a prolongation of the life of the turbine blade by avoiding high temperature gradients, as can occur with individual cooling channels, in particular due to the wide webs of solid material that are inevitably present between the cooling channels. Furthermore, the type, location, size and number of inlets and outlets allow cooling fluid to flow into the cooling chamber, adapted to the cooling requirement. As a result, significantly less cooling fluid is required to achieve a certain cooling capacity than when using a plurality of individual cooling channels.
- the cooling chamber is preferably cast into the wall structure, whereby a self-contained cooling system is formed.
- a cast-in cooling chamber reliably avoids the risk of a sheathing forming the cooling system becoming detached due to high mechanical and thermal loads.
- the cooling chamber can be produced in a single step with the turbine blade by casting and with high accuracy.
- the turbine blade extends along a main axis, the outlet and the inlet being arranged such that a flow of cooling fluid can be formed essentially perpendicular to the main axis in the cooling chamber.
- a plurality of cooling chambers are preferably provided on the pressure side and / or the suction side of the turbine blade, so that effective cooling of the outer wall is ensured even in the case of complicatedly shaped turbine blades.
- a guide vane of a stationary gas turbine can have three times three cooling chambers both on the suction side and on the pressure side and, depending on the heat transfer to be achieved, also more or fewer cooling chambers.
- the cooling chambers are preferably fed from at least two cooling fluid feeds with cooling fluid, which can also be led out of the turbine blade again through at least two cooling fluid discharges.
- the cooling fluid inlets and cooling fluid outlets are preferably each fluidically parallel to one another. The cooling fluid inlets and outlets are arranged alternately one behind the other in a direction perpendicular to the main axis, so that cooling chambers arranged one behind the other can be supplied with cooling fluid with little design effort.
- the outer wall to be cooled is made as thin as possible.
- the outer wall preferably has, at least in some areas, an average wall thickness which is less than 2.5 mm, in particular approximately 1 mm.
- the inner wall can therefore, since it is not directly exposed to a flow of a hot action fluid, in particular a hot gas, be made with a larger wall thickness than the outer wall. It can essentially take over the mechanical supporting function for the turbine blade.
- the outer wall on the other hand, can be designed with a smaller wall thickness, as a result of which it can be cooled particularly effectively via heat transfer elements.
- heat transfer elements around which the cooling fluid can flow are preferably arranged one behind the other in a main flow direction and are thermally connected to the outer wall. This ensures effective heating of the cooling fluid in the cooling chamber over a long distance.
- the thermal connection of the heat transfer elements to the outer wall ensures effective heat transfer from the outer wall to the cooling fluid.
- the cross section of the cooling area between the inner wall and the outer wall is preferably small to form a high speed of the cooling fluid and is in particular in the range of the wall thickness of the outer wall. High heat transfer coefficients can be achieved due to the smaller cross-section of the cooling chamber through which the cooling fluid is designed and the high speed.
- the main flow direction in the cooling chamber preferably corresponds to that Flow direction of an action fluid flowing around the turbine blade, or is the opposite.
- the heat transfer elements are preferably column-like or platform-like and extend from the outer wall to the inner wall. They can also be firmly connected to the inner wall.
- the cross section of the heat transfer elements can be adapted to the heat transfer and flow requirements, for example circular, polygonal or in the manner of a flow profile.
- the turbine blade with a wall structure comprising at least one cooling chamber, which is arranged between an outer wall and an inner wall, can be produced as a whole by casting in one work step.
- the turbine blade can also contain two or more cast parts, which are firmly connected to one another after casting by suitable methods (joining processes).
- the outlet and the inlet are made by casting.
- the turbine blade preferably has a plurality of cooling chambers both along its main axis and in a plane perpendicular to the main axis.
- the inlet is preferably approximately perpendicular to the outer wall, so that inflowing cooling fluid impinges on the outer wall, whereby additional impingement cooling of the outer wall can be achieved at least in the region of the inlet.
- An additional cooling fluid supply is preferably provided in the inflow region and / or in the outflow region and opens through at least one outlet on the outer surface of the outer wall.
- the additional cooling fluid supply as well as the cooling fluid supply and the cooling fluid discharge are directed essentially parallel to the main axis of the turbine blade.
- the turbine blade has a large number of outlets, which can be designed, for example, as bores.
- the cooling fluid that reaches the outer surface of the turbine blade through the outlets is made possible the formation of a film of cooling fluid on the outer surface.
- the inflow region which is subject to high thermal stress, can also be cooled from the outside according to the so-called film cooling principle.
- the inflow area and the outflow area can be cooled with a different cooling fluid than the outer wall in the area of the suction and pressure side due to the separate cooling fluid supply system.
- Cooling air which can be supplied in particular by a compressor assigned to the gas turbine, is particularly suitable for cooling the outflow region and the inflow region in a turbine blade for a gas turbine.
- water vapor which has a higher heat transfer ratio than air, is also suitable for cooling the cooling chambers.
- a turbine blade is preferably suitable for use in a gas turbine, a hot gas flowing around the turbine blade. At a temperature of the hot gas that is above the melting temperature of the base material of the turbine blade, a failure of the turbine blade is avoided by cooling.
- the temperature on the outer wall can be reduced to an uncritical temperature level by cooling by means of the closed cooling circuit. Cooling fluid from the interior leads to a convective transition and to heat conduction through the outer wall, as a result of which the surface of the outer wall can be cooled sufficiently.
- the turbine blade can be both a moving blade and a guide blade, each of which is connected to the housing of the turbine or the rotor of the turbine via a suitable fastening device, for example a blade root.
- the turbine blade is therefore particularly suitable according to the invention for use as a moving blade or guide blade in a gas turbine system, in particular in a gas turbine. occur in the temperatures of well over 1000 ° C of the hot gas flowing around the turbine blade.
- the object directed to a method for cooling a turbine blade is achieved in that in the case of a turbine blade which has a wall structure which is surrounded by a hot action fluid, the wall structure comprising an outer wall which surrounds an interior space, a first cooling fluid through a cooling fluid supply is led into the interior, from there flows into a cooling chamber which is thermally coupled to the outer wall and flows out of the turbine blade again through a cooling fluid discharge in the interior.
- Such cooling avoids that cooling fluid gets into the flow of the hot action fluid and thus influences the flow of the action fluid to reduce efficiency. An increase in efficiency can therefore be achieved.
- a cooling fluid different from the hot action fluid can also be used through a closed cooling process.
- steam can be used as the cooling fluid in a gas turbine in which the action fluid is a hot gas. In the case of a combined gas and steam turbine system, for example, this steam can be easily removed from a steam turbine connected downstream of the gas turbine.
- a further cooling fluid is preferably fed to the inflow region and / or the outflow region of the turbine blade and introduced into the action fluid through the wall structure. In addition to cooling the inflow region and / or the outflow region, this also ensures film cooling on the outer surface of the turbine blade.
- Both the cooling fluid supplied to the additional cooling fluid feeds and the cooling fluid supplied to the inflow region and / or outflow region preferably flow in the interior parallel to the main axis of the turbine blade, a partial flow in each case into the cooling chambers or through the Outlets in the inflow area and outflow area are fed to the hot action fluid.
- FIGS. 1 and 2 each schematically show a turbine blade of a gas turbine in a cross section, showing the structural and functional features used for the explanation.
- FIG. 1 shows a turbine blade 1 of a gas turbine which extends along a main axis 19.
- the turbine blade 1 can be curved, twisted and twisted along the main axis 19, so that the cross section of the turbine blade 1 shown in the figure can change over the main axis 19.
- the turbine blade 1 has a blade root for attachment at one end, not shown.
- the turbine blade 1 has a wall structure 2 with an inflow region 8, an outflow region 9 and a pressure side 10 and a suction side 11, which are arranged opposite one another.
- the wall structure 2 also has an outer wall 3 which encloses an interior 21.
- cooling fluid inlets 22, 22a, 25, 25a and cooling fluid outlets 23, 23a extend from the blade root, not shown, to a second end, not shown, opposite the first end of the turbine blade 1, where they are closed.
- a hot gas 18 (action fluid) flows around the turbine blade 1, so that the hot gas 18 can act on an outer surface 14 of the outer wall 3. The hot gas 18 flows the turbine blade 1 at the inflow region 8 and flows along the turbine blade 1 to the outflow region 9.
- the wall structure 2 has a plurality of cooling chambers 20 arranged one behind the other on the suction side 10 and the pressure side 11. Further cooling chambers 20, not shown, are provided on the suction side 10 and on the pressure side 11 in the direction of the main axis 19.
- the cooling chambers 20 are arranged between an inner wall 4 facing the interior 21 and the outer wall 3.
- Each cooling chamber 20 has a respective inlet 15 for cooling fluid 6, which is connected to an associated cooling fluid supply 22, 22a.
- each cooling chamber 20 has an outlet 16 which establishes a fluidic connection between the cooling chamber 20 and an associated cooling fluid outlet 23, 23a. Cooling fluid 6 can each flow through cooling chambers 20 in the direction of or counter to the direction of flow of hot gas 18.
- a plurality of heat transfer elements 7 arranged one after the other are arranged in each cooling chamber 20 in the flow direction 12 of the cooling fluid 6. Further heat transfer elements 7 arranged in the cooling chambers along the axis 19 are not shown.
- the additional cooling fluid supply 25 in the inflow region 8 has a plurality of outlets 16, through which cooling fluid 6 a reaches the outer surface 14 of the turbine blade 1. This results in additional film cooling of the turbine blade 1 the cooling fluid 6a ensures.
- the additional fluid supply 25a of the outflow region 9 likewise has an outlet 16a for the outflow of cooling fluid 6a, heat transfer elements 7 being arranged between the outer walls of the suction side 11 and the pressure side 10.
- a partial flow of the cooling fluid 6 is discharged into each cooling chamber 20 arranged axially one above the other. Each partial flow flows through the cooling chamber 20 and absorbs heat via a heat exchange with the outer wall 3 and the heat transfer elements 7, as a result of which the outer wall 3 is cooled.
- each partial flow After flowing through the cooling chamber 20, each partial flow enters a cooling fluid discharge 23, 23a.
- the cooling fluid flow recombined in the cooling fluid outlets 23, 23a comes out of the turbine blade 1 again through the first end (not shown).
- the cooling fluid 6 can thus be reused for cooling a further component of the gas turbine.
- externally cooled cooling air can flow through a first row of turbine guide vanes, which are exposed to the hot gas at the highest temperature, and the cooling air heated therein can be supplied to the first row of turbine blades, which is immediately downstream of the first row of guide blades.
- the same cooling fluid 6 or another cooling fluid 6a can be supplied to the inflow region 8 and / or the outflow region 9 via the additional cooling fluid supply 25, 25a.
- This cooling fluid 6a enters the flow of the hot gas 18 via the outlets 16a and thus enables film cooling of the inflow region 8 or the outflow region 9.
- FIG. 2 shows a turbine blade 1 with a closed cooling circuit for a cooling fluid 6.
- the turbine blade 1 according to FIG. 2 is similar to that Turbine blade 1 constructed according to Figure 1.
- the cooling chambers 20 extend both into the inflow region 8 and into the outflow region 9, so that these regions 8, 9 can also be cooled in a closed cooling circuit via the cooling fluid 6.
- the explanations regarding the routing of the cooling fluid, the cooling chambers 20, the cooling fluid discharge 23, 23a and the cooling fluid supply 22, 22a for FIG. 1 also apply correspondingly to the turbine blade 1 according to FIG. 2.
- the meaning of the reference symbols in FIG. 2 corresponds to the meaning of the reference symbols Figure 1
- the invention is characterized in that the outer wall of a turbine blade on the suction side and the pressure side can be cooled by a closed cooling circuit.
- Cooling chambers are supplied with cooling fluid, in particular cooling air or water vapor, via cooling fluid feeds.
- the cooling fluid flowing through the cooling chambers passes out of the turbine blade via cooling fluid discharges, without reaching the flow of a hot action fluid flowing around the turbine blade.
- the inflow area and outflow area of the turbine blade can be cooled with an open cooling system, wherein a cooling fluid different from that in the closed cooling circuit can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
- Die Erfindung betrifft eine Turbinenschaufel, die einen Anströmbereich, einen Abströmbereich und dazwischen sich gegenüberliegend, eine Druckseite und eine Saugseite sowie eine mit einer von einem Aktionsfluid umströmbare Wandstruktur aufweist. Die Wandstruktur umfaßt eine Außenwand, die einen Innenraum zur Führung von Kühlfluid umgibt. Die Erfindung betrifft weiterhin eine Verwendung einer solchen Turbinenschaufel sowie ein Verfahren zur Kühlung einer von einem heißen Aktionsfluid umströmten Turbinenschaufel.
- Eine Leitschaufel einer Gasturbine mit einer Führung von Kühlluft zu deren Kühlung ist in der US-PS 5,419,039 beschrieben. Die Leitschaufel ist als ein Gußstück ausgeführt bzw. aus zwei Gußstücken zusammengesetzt. Sie weist in ihrem Inneren eine Zuführung von Kühlluft aus dem Verdichter der zugeordneten Gasturbinenanlage auf. In ihrer der Heißgasströmung der Gasturbine ausgesetzten, die Kühlluftzuführung umschließenden Wandstruktur sind eingegossene, einseitig offene Kühltaschen vorgesehen. Die Kühltaschen sind an der Außenseite der Wandstruktur sowohl in Strömungsrichtung des Heißgases als auch senkrecht zur Strömungsrichtung des Heißgases entlang der Hauptausdehnungsrichtung der Leitschaufel angeordnet. In jede Kühltasche strömt von der Kühlluftzuführung über eine Mehrzahl von Löchern in der Wandstruktur Kühlluft in die Kühltasche ein. Diese wird in Strömungsrichtung des Heißgases von der Kühlluft durchströmt. Die Kühlluft tritt in einem bereits durch das Gießen der Leitschaufeln gebildeten Öffnungsbereich in die Strömung des Heißgases aus. Hierdurch wird in gewissem Maße an der äußeren Oberfläche der Wandstruktur eine Filmkühlung erreicht. In der Kühltasche kann ein nicht näher spezifizierter Sockel oder können mehrere nicht näher spezifizierte Sockel zur Verbesserung der Wärmeleitung vorgesehen sein.
- Die US-PS 3,191,908 zeigt eine kühlbare Turbinenschaufel. Die Turbinenschaufel weist einen aus mehreren Teilräumen bestehenden Innenraum und eine Außenwand auf. Die Außenwand ist von sich axial entlang einer Turbinenschaufelachse erstrekkenden Kühlkanälen durchzogen. Die Kühlluft wird durch die Turbinenschaufel sepentinenartig durch die einzelnen Teilräume geführt. Ein Kühlkanal der Außenwand kommuniziert dabei über einen Einlaß mit einem Teilraum. Die Kühlkanäle der Außenwand stehen außerdem untereinander über Bohrungen in Verbindung.
- Die GB-2,111,604 A zeigt ebenfalls eine kühlbare Turbinenschaufel. Eine Außenwand umschließt einen Innenraum, der in drei Teilräume unterteilt ist. Die Außenwand weist eine Tragstruktur auf, die von einer Schale umgeben ist. Zwischen der Tragstruktur und der Schale verlaufen dem Schaufelprofil folgend voneinander beabstandete, schmale Kühlkanäle. Die Kühlkanäle sind mit den Teilräumen strömungstechnisch verbunden. Das Kühlfluid tritt aus den Kühlkanälen an der Abströmkante der Turbinenschaufel aus.
- In der GB 21 12 869 ist eine Gasturbinenschaufel beschrieben, die eine die Schaufelform bestimmende Wandstruktur mit zwei Kühlluftzufuhrkammern und einer Kühlluftabfuhrkammer aufweist. Außen an der Wandstruktur sind in Strömungsrichtung Kühlkanäle angeordnet. Die Kühlkanäle sind als Vertiefungen in Form von langgestreckten Nuten in die Wandstruktur eingebracht. Die Kühlkanäle sind hierbei einerseits strömungstechnisch mit einer Kühlluftzufuhrkammer und andererseits mit der Kühlluftabfuhrkammer verbunden. Um die Kühlkanäle nach außen hin abzuschließen, ist ein die Turbinenschaufel vollständig umschließendes Metallblech angeordnet.
- Aufgabe der Erfindung ist es, eine Turbinenschaufel mit einer kühlbaren Wandstruktur anzugeben. Weitere Aufgaben bestehen darin, eine Verwendung einer solchen Turbinenschaufel sowie ein Verfahren zur Kühlung einer einem heißen Aktionsfluid ausgesetzten Turbinenschaufel anzugeben.
- Erfindungsgemäß wird die auf eine Turbinenschaufel gerichtete Aufgabe durch eine solche Turbinenschaufel nach dem Oberbegriff des Patentanspruchs 1 gelöst, bei der zumindest eine an die Außenwand wärmetechnisch gekoppelte Kühlkammer mit einem Einlaß und einem Auslaß für Kühlfluid sowie in dem Innenraum zumindest eine Kühlfluidzuführung und eine Kühlfluidabführung vorgesehen sind. Die Kühlkammer ist strömungstechnisch über den Einlaß mit der Kühlfluidzuführung und über den Auslaß mit der Kühlfluidabführung verbunden. Je nach erforderlicher Kühlleistung und je nach der Geometrie der Turbinenschaufel können auch mehrere Ein- und Auslässe pro Kühlkammer vorgeshen sein.
- Eine solche Turbinenschaufel ist somit durch Kühlfluid kühlbar, welches vollständig im Inneren der Turbinenschaufel geführt ist. Es bildet sich mithin in der Turbinenschaufel ein geschlossener Kühlkreislauf aus. Das durch die Turbinenschaufel hindurchströmende und sich dabei aufheizende Kühlfluid kann einer weiteren Turbinenschaufel oder einer Komponente der der Turbinenschaufel zugeordneten Turbinenanlage, z.B. einer Brennkammerwand, zu weiteren Kühlzwecken zugeführt werden. Durch einen solchen geschlossenen Kühlkreislauf kann ein Kühlfluid eingesetzt werden, z.B. Dampf, welches nicht in ein die Turbinenschaufel umströmendes Aktionsfluid einströmen sollte. In einer Turbinenanlage mit alternierend in axialer Richtung nachgeschalteten Leit- und Laufschaufeln kann mit dem Kühlfluid zuerst eine thermisch am höchsten belastete Leitschaufel und anschließend eine der Leitschaufel axial nachgeordnete Laufschaufel gekühlt werden. Durch einen geschlossenen Kühlkreis in der Turbinenschaufel wird zudem eine Beeinflussung des die Turbinenschaufel umströmenden heißen Aktionsfluides vermieden, wodurch der aerodynamische Wirkungsgrad gesteigert ist.
- Die Kühlkammer erstreckt sich sowohl in Strömungsrichtung als auch senkrecht hierzu (d.h. im wesentlichen in Richtung einer Hauptachse der Turbinenschaufel), insbesondere kann die Ausdehnung senkrecht zu Strömungsrichtung etwa genauso groß oder größer als in Strömungsrichtung sein. Durch diese zweidimensionale Ausdehnung der Kühlkammer, wird eine gleichmäßig Kühlleistung erzielt. Insbesondere ist eine gleichmäßig Temperaturverteilung erreichbar, die zu einer Lebensdauerverlängerung der Turbinenschaufel führt, indem hohe Temperaturgradienten, wie sie bei einzelnen Kühlkanälen, insbeosnder aufgrund der zwischen den Kühlkanälen zwangsläufug vorhandenen breiten Stegen aus Vollmaterial, auftreten können vermieden werden. Weiterhin kann durch Art, Lage, Größe und Anzahl von Einlässen und Auslässen Kühlfluid an den Kühlbedarf angepaßt in die Kühlkammer einströmen. Hierdurch wird für die Erzielung einer bestimmten Kühlleistung wesentlich weniger Kühlfluid benötigt als bei der Verwendung einer Mehrzahl von einzelnen Kühlkanälen.
- Die Kühlkammer ist vorzugsweise in die Wandstruktur eingegossen, wodurch ein sicher in sich geschlossenes Kühlsystem gebildet ist. Durch eine eingegossen Kühlkammer ist die Gefahr des Ablösen einer das Kühlsystem mitbildenden Ummantelung infolge hoher mechanischer und thermischer Belastungen sicher vermieden. Darüber hinaus ist die Kühlkammer durch Gießen einfach und mit hoher Genauigkeit in einem Arbeitsschritt mit der Turbinenschaufel herstellbar.
- Die Turbinenschaufel erstreckt sich entlang einer Hauptachse, wobei der Auslaß und der Einlaß so angeordnet sind, daß vorzugsweise in der Kühlkammer eine Strömung von Kühlfluid im wesentlichen senkrecht zur Hauptachse ausbildbar ist. Dies gilt für sämtliche Turbinenschaufeln, die entlang einer Hauptachse eine Längsausdehnung haben, wobei die Turbinenschaufeln gegenüber der Hauptachse gekrümmt, verwunden sowie verdreht sein können, wie es beispielsweise bei Turbinenschaufeln, die eine vollständig dreidimensionale Umströmung bewirken, der Fall ist.
- Vorzugsweise sind an der Druckseite und/oder der Saugseite der Turbinenschaufel eine Mehrzahl von Kühlkammern vorgesehen, so daß auch bei kompliziert geformten Turbinenschaufeln eine wirksame Kühlung der Außenwand gewährleistet ist. Eine Leitschaufel einer stationären Gasturbine kann sowohl an der Saugseite als auch an der Druckseite drei mal drei Kühlkammern sowie je nach zu erzielendem Wärmeübertrag auch mehr oder weniger Kühlkammern aufweisen. Die Kühlkammern werden vorzugsweise aus zumindest zwei Kühlfluidzuführungen mit Kühlfluid gespeist, welches durch ebenfalls zumindest zwei Kühlfluidabführungen wieder aus der Turbinenschaufel herausführbar ist. Die Kühlfluidzuführungen und Kühlfluidabführungen sind vorzugsweise jeweils untereinander strömungstechnisch parallel. Die Kühlfluidzuführungen und -abführungen sind in einer Richtung senkrecht zur Hauptachse alternierend hintereinander angeordnet, so daß hintereinander angeordnete Kühlkammern mit konstruktiv geringem Aufwand mit Kühlfluid versorgbar sind.
- Eine besonders effektive Kühlung wird erzielt, wenn die zu kühlende Außenwand möglichst dünn ausgeführt ist. Vorzugsweise hat die Außenwand zumindest bereichsweise eine mittlere Wandstärke, die geringer als 2,5 mm beträgt, insbesondere etwa bei 1 mm liegt. Weiterhin gestattet die konzeptionelle Aufteilung der Wandstruktur in eine Außenwand und eine Innenwand eine Entkopplung der funktionellen Eigenschaften der Wandstruktur, wobei an die Außenwand geringere Anforderungen an die mechanische Stabilität gestellt werden können als an die Innenwand. Die Innenwand kann mithin, da sie nicht unmittelbar einer Strömung eines heißen Aktionsfluides, insbesondere eines Heißgases, ausgesetzt ist, mit einer größeren Wandstärke als die Außenwand ausgeführt sein. Sie kann im wesentlichen die mechanische Tragfunktion für die Turbinenschaufel übernehmen. Die Außenwand hingegen kann mit einer geringeren Wandstärke ausgebildet sein, wodurch sie besonders effektiv über Wärmeübertragungselemente kühlbar ist.
- In jeder Kühlkammer sind vorzugsweise in einer Hauptströmungsrichtung des Kühlfluides von diesem umströmbare Wärmeübertragungselemente hintereinander angeordnet, die wärmetechnisch mit der Außenwand verbunden sind. Hierdurch ist eine wirksame Erwärmung des Kühlfluides in der Kühlkammer über eine große Wegstrecke gewährleistet. Durch die wärmetechnische Verbindung der Wärmeübertragungselemente mit der Außenwand ist eine wirksame Wärmeübertragung von der Außenwand auf das Kühlfluid gegeben.
- Der Querschnitt des Kühlbereichs zwischen der Innenwand und der Außenwand ist vorzugsweise zur Ausbildung einer hohen Geschwindigkeit des Kühlfluides gering ausgebildet und liegt insbesondere im Bereich der Wandstärke der Außenwand. Durch einen geringeren durchströmten Querschnitt der Kühlkammer und eine damit ausgebildete hohe Geschwindigkeit des Kühlfluides sind hohe Wärmeübergangszahlen erreichbar. Die Hauptströmungsrichtung in der Kühlkammer entspricht vorzugsweise der Strömungsrichtung eines die Turbinenschaufel umströmenden Aktionsfluides, oder ist dieser entgegengesetzt. Die Wärmeübertragungselemente sind vorzugsweise säulenartig oder podestartig ausgebildet und reichen von der Außenwand bis an die Innenwand heran. Sie können auch mit der Innenwand fest verbunden sein. Der Querschnitt der Wärmeübertragungselemente ist jeweils den wärmeübertragungs- und strömungstechnischen Anforderungen anpaßbar, beispielsweise kreisförmig, vieleckig oder nach Art eines Strömungsprofils ausgebildet.
- Die Turbinenschaufel mit einer Wandstruktur umfassend zumindest eine Kühlkammer, die zwischen einer Außenwand und einer Innenwand angeordnet ist, ist als Ganzes durch Gießen in einem Arbeitsschritt herstellbar. Selbstverständlich kann die Turbinenschaufel auch zwei oder mehrere gegossene Teile enthalten, die mit geeigneten Methoden (Fügeverfahren) nach dem Gießen miteinander fest verbunden werden. Vorzugsweise sind der Auslaß sowie der Einlaß durch Gießen hergestellt. Die Turbinenschaufel weist vorzugsweise eine Vielzahl von Kühlkammern sowohl entlang ihrer Hauptachse als auch in einer Ebene senkrecht zur Hauptachse auf.
- Der Einlaß ist vorzugsweise in etwa senkrecht zur Außenwand ausgeführt, so daß einströmendes Kühlfluid auf die Außenwand aufprallt, wodurch eine zusätzliche Prallkühlung der Außenwand zumindest im Bereich des Einlasses erreichbar ist.
- Vorzugsweise ist in dem Anströmbereich und/oder im Abströmbereich eine Zusatzkühlfluid-Zuführung vorgesehen, welche durch zumindest einen Auslaß an der Außenoberfläche der Außenwand mündet. Die Zusatzkühlfluid-Zuführung sowie die Kühlfluidzuführung und die Kühlfluidabführung sind im wesentlichen parallel zur Hauptachse der Turbinenschaufel gerichtet. Insbesondere in dem Anströmbereich weist die Turbinenschaufel eine Vielzahl von Auslässen auf, die beispielsweise als Bohrungen ausgeführt sein können. Das durch die Auslässe an die Außenoberfläche der Turbinenschaufel gelangende Kühlfluid ermöglicht die Ausbildung eines Kühlfluidfilmes auf der Außenoberfläche. Der thermisch hoch belastete Anströmbereich ist mithin zusätzlich zu einer Kühlung aufgrund von Wärmeübertrag aus dem Inneren der Turbinenschaufel auch noch von außen nach dem sogenannten Filmkühlprinzip kühlbar. Der Anströmbereich sowie der Abströmbereich können aufgrund des getrennten Kühlfluid-Zuführungssystems mit einem anderen Kühlfluid als die Außenwand im Bereich der Saug- und Druckseite gekühlt werden. Besonders eignet sich zur Kühlung des Abströmbereichs und des Anströmbereichs bei einer Turbinenschaufel für eine Gasturbine Kühlluft, die insbesondere von einem der Gasturbine zugeordneten Verdichter zuführbar ist. Für die Kühlung der Kühlkammern eignet sich neben einem Kühlgas, insbesondere Kühlluft aus einem Verdichter einer Gasturbinenanlage, auch Wasserdampf, welcher einen gegenüber Luft höheren Wärmeübertragungsquotienten aufweist.
- Vorzugsweise eignet sich eine Turbinenschaufel für den Einsatz in einer Gasturbine, wobei die Turbinenschaufel von einem Heißgas umströmt wird. Bei einer Temperatur des Heißgases, die oberhalb der Schmelztemperatur des Grundmaterials der Turbinenschaufel liegt, wird durch eine Kühlung ein Versagen der Turbinenschaufel vermieden. Die Temperatur an der Außenwand ist über eine Kühlung mittels des geschlossenen Kühlkreislaufs auf ein unkritisches Temperaturniveau absenkbar. Kühlfluid aus dem Innenraum führt zu einem konvektiven Übergang und zu einer Wärmeleitung durch die Außenwand hindurch, wodurch die Oberfläche der Außenwand ausreichend kühlbar ist. Die Turbinenschaufel kann sowohl eine Laufschaufel als auch eine Leitschaufel sein, die jeweils über eine geeignete Befestigungsvorrichtung, beispielsweise einen Schaufelfuß, mit dem Gehäuse der Turbine bzw. dem Läufer der Turbine verbunden sind.
- Mithin eignet sich die Turbinenschaufel erfindungsgemäß besonders für eine Verwendung als Laufschaufel oder Leitschaufel in einer Gasturbinenanlage, insbesondere in einer Gasturbine, in der Temperaturen von deutlich über 1000 °C des die Turbinenschaufel umströmenden Heißgases auftreten.
- Die auf ein Verfahren zur Kühlung einer Turbinenschaufel gerichtete Aufgabe wird dadurch gelöst, daß bei einer Turbinenschaufel, die eine Wandstruktur aufweist, welche von einem heißen Aktionsfluid umströmt wird, wobei die Wandstruktur eine Außenwand umfaßt, die einen Innenraum umgibt, ein erstes Kühlfluid durch eine Kühlfluidzuführung in den Innenraum hineingeführt wird, von dort in eine wärmetechnisch an die Außenwand gekoppelte Kühlkammer strömt und durch eine Kühlfluid-Abführung in dem Innenraum aus der Turbinenschaufel wieder herausströmt.
- Durch eine solche Kühlung wird vermieden, daß Kühlfluid in die Strömung des heißen Aktionsfluides gelangt und damit die Strömung des Aktionsfluides wirkungsgradvermindernd beeinflußt. Mithin ist eine Steigerung des Wirkungsgrades erreichbar. Weiterhin kann durch einen geschlossenen Kühlprozeß auch ein von dem heißen Aktionsfluid verschiedenes Kühlfluid verwendet werden. Insbesondere kann bei einer Gasturbine, bei der das Aktionsfluid ein Heißgas ist, als Kühlfluid Dampf verwendet werden. Dieser Dampf ist beispielsweise bei einer kombinierten Gas- und Dampfturbinenanlage aus einer der Gasturbine nachgeschalteten Dampfturbine einfach entnehmbar.
- Vorzugsweise wird ein weiteres Kühlfluid dem Einströmbereich und/oder dem Abströmbereich der Turbinenschaufel zugeführt und durch die Wandstruktur hindurch in das Aktionsfluid eingeleitet. Hierdurch ist neben einer Kühlung des Anströmbereichs und/oder des Abströmbereiches von innen heraus eine Filmkühlung an der Außenoberfläche der Turbinenschaufel gewährleistet. Sowohl das den Zusatzkühlfluid-Zuführungen zugeführte Kühlfluid als auch dem Anströmbereich und/oder Abströmbereich zugeführte Kühlfluid strömt in dem Innenraum vorzugsweise parallel zur Hauptachse der Turbinenschaufel, wobei jeweils ein Teilstrom in die Kühlkammern bzw. durch die Auslässe im Anströmbereich und Abströmbereich dem heißen Aktionsfluid zugeführt wird.
- Anhand der in der Zeichnung dargestellten Ausführungsbeispiele werden die Turbinenschaufel sowie das Verfahren zur Kühlung der Turbinenschaufel näher erläutert.
- Die Figuren 1 und 2 zeigen jeweils schematisiert unter Darstellung der für die Erläuterung verwendeten konstruktiven und funktionellen Merkmale eine Turbinenschaufel einer Gasturbine in einem Querschnitt.
- In der Figur 1 ist eine sich entlang einer Hauptachse 19 erstreckende Turbinenschaufel 1 einer Gasturbine dargestellt. Die Turbinenschaufel 1 kann entlang der Hauptachse 19 gekrümmt, verwunden sowie verdreht sein, so daß sich der in der Figur dargestellte Querschnitt der Turbinenschaufel 1 über die Hauptachse 19 verändern kann. Die Turbinenschaufel 1 weist an einem nicht dargestellten Ende einen Schaufelfuß zur Befestigung auf. Die Turbinenschaufel 1 weist eine Wandstruktur 2 auf mit einem Anströmbereich 8, einem Abströmbereich 9 sowie einer Druckseite 10 und einer Saugseite 11, die einander gegenüber angeordnet sind. Die Wandstruktur 2 weist zudem eine Außenwand 3 auf, die einen Innenraum 21 umschließt. In diesem Innenraum 21 sind strömungstechnisch voneinander getrennte und parallel liegende Kühlfluidzuführungen 22, 22a, Kühlfluidabführungen 23, 23a sowie Zusatzkühlfluidzuführungen 25, 25a vorgesehen, die jeweils im wesentlichen parallel zu der Hauptachse 19 gerichtet sind. Die genannten Kühlfluidzuführungen 22, 22a, 25, 25a und Kühlfluidabführungen 23, 23a erstrecken sich von dem nicht dargestellten Schaufelfuß bis zu einem dem ersten Ende der Turbinenschaufel 1 gegenüberliegenden nicht dargestellten zweiten Ende, wo sie verschlossen sind. Die Turbinenschaufel 1 wird von einem Heißgas 18 (Aktionsfluid) umströmt, so daß eine Außenoberfläche 14 der Außenwand 3 von dem Heißgas 18 beaufschlagbar ist. Das Heißgas 18 strömt die Turbinenschaufel 1 an dem Anströmbereich 8 an und strömt entlang der Turbinenschaufel 1 bis zu dem Abströmbereich 9. In der Strömungsrichtung des Heißgases 18 sind in dem Innenraum 21 nacheinander die Kühlfluidzuführung 25 des Anströmbereichs 8, die Kühlfluidabführung 23, die Kühlfluidzuführung 22, die Kühlfluidabführung 23a, die Kühlfluidzuführung 22a sowie die Kühlfluidzuführung 25a des Abströmbereiches 9 angeordnet. An der Saugseite 10 sowie der Druckseite 11 weist die Wandstruktur 2 eine Mehrzahl hintereinander angeordneter Kühlkammern 20 auf. Weitere, nicht dargestellte, Kühlkammern 20 sind an der Saugseite 10 sowie an der Druckseite 11 in Richtung der Hauptachse 19 vorgesehen. Die Kühlkammern 20 sind zwischen einer dem Innenraum 21 zugewandten Innenwand 4 und der Außenwand 3 angeordnet. Jede Kühlkammer 20 weist einen jeweiligen Einlaß 15 für Kühlfluid 6 auf, der jeweils mit einer zugeordneten Kühlfluidzuführung 22, 22a verbunden ist. Der Einlaß 15 einer jeweiligen Kühlkammer 20 erstreckt sich entlang einer Einlaßachse 24, die im wesentlichen senkrecht auf der Außenwand 3 steht. Hierdurch ist bei Einströmen des Kühlfluides 6 in die Kühlkammer 20 eine zusätzliche Prallkühlung der Außenwand 3 erreichbar. Weiterhin weist jede Kühlkammer 20 einen Auslaß 16 auf, der eine strömungstechnische Verbindung zwischen der Kühlkammer 20 und einer zugeordneten Kühlfluidabführung 23, 23a herstellt. Die Kühlkammern 20 sind jeweils von dem Kühlfluid 6 in Richtung oder entgegen der Strömungsrichtung des Heißgases 18 durchströmbar. In Strömungsrichtung 12 des Kühlfluides 6 sind in jeder Kühikammer 20 eine Mehrzahl einander nachgeordneter Wärmeübertragungselemente 7 angeordnet. Weitere in den Kühlkammern entlang der Achse 19 angeordnete Wärmeübertragungselemente 7 sind nicht dargestellt. Diese können gegenüber den dargestellten Wärmeübertragungselementen 7 in Strömungsrichtung 12 versetzt sein, wodurch eine hohe Wärmeübertragung in den Kühlkammern 20 erreichbar ist. Die Zusatzkühlfluid-Zuführung 25 in dem Anströmbereich 8 weist eine Mehrzahl von Auslässen 16 auf, durch die Kühlfluid 6a an die Außenoberfläche 14 der Turbinenschaufel 1 gelangt. Hierdurch ist eine zusätzliche Filmkühlung der Turbinenschaufel 1 durch das Kühlfluid 6a gewährleistet. Die Zusatzfluid-Zuführung 25a des Abströmbereiches 9 weist ebenfalls einen Auslaß 16a zur Ausströmung von Kühlfluid 6a auf, wobei zwischen den Außenwänden der Saugseite 11 und der Druckseite 10 Wärmeübertragungselemente 7 angeordnet sind.
- Das Kühlfluid 6, insbesondere Kühlluft oder Wasserdampf, strömt an dem nicht dargestellten ersten Ende in die Turbinenschaufel 1 ein und durchströmt die Turbinenschaufel 1 bis zu dem zweiten, ebenfalls nicht dargestellten Ende. Von dem Kühlfluid 6 wird jeweils ein Teilstrom in jede axial übereinander angeordnete Kühlkammer 20 abgeführt. Jeder Teilstrom durchströmt die Kühlkammer 20 und nimmt über einen Wärmeaustausch mit der Außenwand 3 sowie den Wärmeübertragungselementen 7 Wärme auf, wodurch die Außenwand 3 gekühlt wird. Nach Durchströmen der Kühlkammer 20 tritt jeder Teilstrom in eine Kühlfluid-Abführung 23, 23a ein. Der in den Kühlfluidabführungen 23, 23a wieder vereinigte Kühlfluidstrom gelangt durch das nicht dargestellte erste Ende wieder aus der Turbinenschaufel 1 heraus. Das Kühlfluid 6 kann somit zur Kühlung einer weiteren Komponente der Gasturbine wiederverwendet werden. Beispielsweise kann eine erste Reihe von Turbinenleitschaufeln, welche dem Heißgas bei einer höchsten Temperatur ausgesetzt werden, mit extern gekühlter Kühlluft durchströmt und die darin erwärmte Kühlluft der der ersten Leitschaufelreihe unmittelbar nachgeschalteten ersten Turbinenlaufschaufelreihe zugeführt werden. Über die Zusatzkühlfluidzuführung 25, 25a kann das gleiche Kühlfluid 6 oder ein anderes Kühlfluid 6a dem Anströmbereich 8 und/oder dem Abströmbereich 9 zugeführt werden. Dieses Kühlfluid 6a gelangt über die Auslässe 16a in die Strömung des Heißgases 18 hinein und ermöglicht somit eine Filmkühlung des Anströmbereichs 8 bzw. des Abströmbereiches 9.
- In Figur 2 ist analog zu Figur 1 eine Turbinenschaufel 1 mit einem geschlossenen Kühlkreislauf für ein Kühlfluid 6 dargestellt. Die Turbinenschaufel 1 gemäß Figur 2 ist ähnlich der Turbinenschaufel 1 gemäß Figur 1 aufgebaut. Bei der Turbinenschaufel gemäß Figur 2 erstrecken sich allerdings die Kühlkammern 20 sowohl bis in den Anströmbereich 8 als auch in den Abströmbereich 9 hinein, so daß auch diese Bereiche 8, 9 über das Kühlfluid 6 in einem geschlossenen Kühlkreislauf kühlbar sind. Die Erläuterungen betreffend die Führung des Kühlfluides, die Kühlkammern 20, die Kühlfluidabführung 23, 23a und die Kühlfluidzuführung 22, 22a zu Figur 1 gelten entsprechend auch für die Turbinenschaufel 1 gemäß Figur 2. Die Bedeutung der Bezugszeichen in Figur 2 entspricht der Bedeutung der Bezugszeichen aus Figur 1.
- Die Erfindung zeichnet sich dadurch aus, daß die Außenwand einer Turbinenschaufel an der Saugseite und der Druckseite durch einen geschlossenen Kühlkreislauf kühlbar ist. Über Kühlfluidzuführungen werden Kühlkammern mit Kühlfluid, insbesondere Kühlluft oder Wasserdampf, versorgt. Das die Kühlkammern durchströmende Kühlfluid gelangt über in der Turbinenschaufel vorgesehene Kühlfluidabführungen wieder aus dieser hinaus, ohne in die Strömung eines die Turbinenschaufel umströmenden heißen Aktionsfluides zu gelangen. Zusätzlich können Anströmbereich und Abströmbereich der Turbinenschaufel mit einem offenen Kühlsystem gekühlt werden, wobei ein anderes Kühlfluid als in dem geschlossenen Kühlkreis verwendet werden kann.
Claims (14)
- Turbinenschaufel (1), die einen Anströmbereich (8), einen Abströmbereich (9) und dazwischen sich gegenüberliegend eine Druckseite (10) und eine Saugseite (11) sowie eine mit einer von einem Aktionsfluid (18) umströmbaren Wandstruktur (2) aufweist, wobei die Wandstruktur (2) eine Außenwand (3) umfaßt, die einen Innenraum (21) zur Führung von Kühlfluid (6) umgibt
dadurch gekennzeichnet, daß
zumindest eine an die Außenwand (3) wärmetechnisch gekoppelte Kühlkammer (20) mit einem Einlaß (15) und einem Auslaß (16) für Kühlfluid (6) sowie in dem Innenraum (21) zumindest eine Kühlfluidzuführung (22) und eine Kühlfluidabführung (23) vorgesehen sind, welche Kühlfluidzuführung (22) über den Einlaß (15) und welche Kühlfluidabführung (23) über den Auslaß (16) direkt stromungstechnisch mit der Kühlkammer (20) verbunden sind. - Turbinenschaufel (1) nach Anspruch 1, die sich entlang einer Hauptachse (19) erstreckt,
dadurch gekennzeichnet, daß der Auslaß (16) und der Einlaß (15) so angeordnet sind, daß in der Kühlkammer (20) eine Strömung von Kühlfluid (6) im wesentlichen senkrecht zur Hauptachse (19) ausbildbar ist. - Turbinenschaufel (1) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß an der Druckseite (10) und/oder der Saugseite (11) ein Mehrzahl von Kühlkammern (20) vorgesehen sind. - Turbinenschaufel (1) nach Anspruch 3,
dadurch gekennzeichnet, daß zumindest zwei Kühlfluidzuführungen (22, 22G) sowie zwei Kühlfluidabführungen (23, 23a), die jeweils untereinander strömungstechnisch parallel sind, vorgesehen sind. - Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Außenwand (3) zumindest bereichweise eine mittlere Wandstärke kleiner 2,5 mm, insbesondere von etwa 1 mm, aufweist.
- Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
in der Kühlkammer (20) von dem Kühlfluid (6) in einer Hauptströmungsrichtung (12) umströmbare Wärmeübertragungselemente (7) hintereinander angeordnet sind, die wärmetechnisch mit der Außenwand (3) verbunden sind. - Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Außenwand (3), die Innenwand (4) und die Kühlkammer (20) sowie gegebenenfalls Wärmeübertragungselemente (7) durch Gießen, insbeosnder in einem Arbeitsschritt, hergestellt sind.
- Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Einlaß (15) entlang einer Einlaßachse (24) gerichtet ist, die gegenüber der Außenwand (3) geneigt ist, insbesondere um einen Winkel von etwa 90°.
- Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine dem Anströmbereich (8) oder dem Abströmbereich (9) zugeordnete Zusatzkühlfluidzuführung (25,25a) vorgesehen ist, welche durch zumindest einen Auslaß (16a) an der Außenoberfläche (26) der Außenwand (3) mündet.
- Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche, welche eine Laufschaufel oder eine Leitschaufel für eine Gasturbine ist.
- Verwendung einer Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche in einer Gasturbinenanlage.
- Verfahren zur Kühlung einer Turbinenschaufel (1), die eine Wandstruktur (2) aufweist, welche von einem heißen Aktionsfluid (18) umströmt wird, wobei die Wandstruktur (2) eine Außenwand (3) umfaßt, die einen Innenraum (21) umgibt,
dadurch gekennzeichnet, daß ein erstes Kühlfluid durch eine Kühlfluidzuführung (22) in den Innenraum (21) hinein geführt wird, von dort direkt in eine wärmetechnisch an
die Außenwand (3) gekoppelte Kühlkammer (20) strömt und durch eine Kühlfluidabführung (23) in dem Innenraum (21) strömt und von dort aus der Turbinenschaufel (1) wieder herausströmt. - Verfahren nach Anspruch 12,
dadurch gekennzeichnet, daß in einem Anströmbereich (8) und/oder in einem Abströmbereich (9) der Turbinenschaufel (1) ein zweites Kühlfluid (6a) geführt wird, welches in einem offenem Kreislauf durch die Außenwand (3) in das Aktionsfluid (18) aus der Turbinenschaufel (1) ausströmt. - Verfahren nach Anspruch 13,
dadurch gekennzeichnet, daß das erste Kühlfluid (6) Kühlluft oder Wasserdampf und das zweite Kühlfluid (6a) Kühlluft ist.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19714285 | 1997-04-07 | ||
DE19714285 | 1997-04-07 | ||
PCT/DE1998/000874 WO1998045577A1 (de) | 1997-04-07 | 1998-03-24 | Verfahren zur kühlung einer turbinenschaufel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0973998A1 EP0973998A1 (de) | 2000-01-26 |
EP0973998B1 true EP0973998B1 (de) | 2001-09-19 |
Family
ID=7825674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98924039A Expired - Lifetime EP0973998B1 (de) | 1997-04-07 | 1998-03-24 | Verfahren zur kühlung einer turbinenschaufel |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0973998B1 (de) |
JP (1) | JP4170400B2 (de) |
KR (1) | KR20010006106A (de) |
DE (1) | DE59801529D1 (de) |
WO (1) | WO1998045577A1 (de) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5931638A (en) * | 1997-08-07 | 1999-08-03 | United Technologies Corporation | Turbomachinery airfoil with optimized heat transfer |
DE19738065A1 (de) * | 1997-09-01 | 1999-03-04 | Asea Brown Boveri | Turbinenschaufel einer Gasturbine |
US6506013B1 (en) * | 2000-04-28 | 2003-01-14 | General Electric Company | Film cooling for a closed loop cooled airfoil |
US6435814B1 (en) * | 2000-05-16 | 2002-08-20 | General Electric Company | Film cooling air pocket in a closed loop cooled airfoil |
GB0114503D0 (en) * | 2001-06-14 | 2001-08-08 | Rolls Royce Plc | Air cooled aerofoil |
FR2829174B1 (fr) * | 2001-08-28 | 2006-01-20 | Snecma Moteurs | Perfectionnement apportes aux circuits de refroidissement pour aube de turbine a gaz |
FR2858352B1 (fr) * | 2003-08-01 | 2006-01-20 | Snecma Moteurs | Circuit de refroidissement pour aube de turbine |
US9115590B2 (en) * | 2012-09-26 | 2015-08-25 | United Technologies Corporation | Gas turbine engine airfoil cooling circuit |
CN106471212A (zh) * | 2014-06-17 | 2017-03-01 | 西门子能源公司 | 具有前缘冲击冷却系统和近壁冲击系统的涡轮机翼型件冷却系统 |
EP3034792B1 (de) * | 2014-12-18 | 2019-02-27 | Rolls-Royce plc | Tragflächenschaufel oder -leitschaufel |
US10801344B2 (en) | 2017-12-18 | 2020-10-13 | Raytheon Technologies Corporation | Double wall turbine gas turbine engine vane with discrete opposing skin core cooling configuration |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3191908A (en) * | 1961-05-02 | 1965-06-29 | Rolls Royce | Blades for fluid flow machines |
DE1601613A1 (de) * | 1967-08-03 | 1970-12-17 | Motoren Turbinen Union | Turbinenschaufel,insbesondere Turbinenleitschaufel fuer Gasturbinentriebwerke |
IT1153370B (it) * | 1981-12-09 | 1987-01-14 | Westinghouse Electric Corp | Elemento a profilo aerodinamico per palette di turbina a combustione, raffreddato tra il longherone e l'involucro, utilizzante cavita' multiple del longherone |
JPS58197402A (ja) * | 1982-05-14 | 1983-11-17 | Hitachi Ltd | ガスタ−ビン翼 |
US5405242A (en) | 1990-07-09 | 1995-04-11 | United Technologies Corporation | Cooled vane |
US5295530A (en) * | 1992-02-18 | 1994-03-22 | General Motors Corporation | Single-cast, high-temperature, thin wall structures and methods of making the same |
-
1998
- 1998-03-24 KR KR1019997009184A patent/KR20010006106A/ko not_active Application Discontinuation
- 1998-03-24 DE DE59801529T patent/DE59801529D1/de not_active Expired - Lifetime
- 1998-03-24 JP JP54222798A patent/JP4170400B2/ja not_active Expired - Fee Related
- 1998-03-24 WO PCT/DE1998/000874 patent/WO1998045577A1/de not_active Application Discontinuation
- 1998-03-24 EP EP98924039A patent/EP0973998B1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE59801529D1 (de) | 2001-10-25 |
EP0973998A1 (de) | 2000-01-26 |
WO1998045577A1 (de) | 1998-10-15 |
KR20010006106A (ko) | 2001-01-26 |
JP2001521599A (ja) | 2001-11-06 |
JP4170400B2 (ja) | 2008-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009003318B4 (de) | Turbinenschaufelspitzenmantel | |
DE3248162C2 (de) | Kühlbare Schaufel | |
DE69503616T2 (de) | Doppelte kühlluftversorgung des deckbandes einer turbinenleitschaufel | |
EP1320661B1 (de) | Gasturbinenschaufel | |
EP1789654B1 (de) | Strömungsmaschinenschaufel mit fluidisch gekühltem deckband | |
EP1907670B1 (de) | Gekühlte turbinenschaufel für eine gasturbine und verwendung einer solchen turbinenschaufel | |
DE60015862T2 (de) | Kühlung der Anströmkante einer Turbinenschaufel | |
DE102009003327B4 (de) | Turbinenlaufschaufel-Spitzendeckband | |
EP2828484B1 (de) | Turbinenschaufel | |
EP1283326B1 (de) | Kühlung einer Turbinenschaufel | |
EP1614859B1 (de) | Filmgekühlte Turbinenschaufel | |
DE60122050T2 (de) | Turbinenleitschaufel mit Einsatz mit Bereichen zur Prallkühlung und Konvektionskühlung | |
EP0973998B1 (de) | Verfahren zur kühlung einer turbinenschaufel | |
DE3248163A1 (de) | Kuehlbare schaufel | |
DE60030030T2 (de) | Kühlkreislauf für dampf- und luftgekühlte Turbinenleitschaufeln | |
EP1709298A1 (de) | Gekühlte schaufel für eine gasturbine | |
EP0964981B1 (de) | Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage | |
DE102016112282A1 (de) | Kühlstruktur für eine stationäre Schaufel | |
WO2001009553A1 (de) | Prallkühlvorrichtung | |
EP1006263B1 (de) | Schaufelkühlung | |
WO2005019621A1 (de) | Diffusor zwischen verdichter und brennkammer einer gasturbine angeordnet | |
EP0954680B1 (de) | Turbinenschaufel sowie verwendung in einer gasturbinenanlage | |
DE1601563B2 (de) | Luftgekühlte Laufschaufel | |
DE69821312T2 (de) | Gekühlte Statorschaufel für Gasturbinen | |
EP1331361B1 (de) | Gegossene Turbinenleitschaufel mit Hakensockel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19991005 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI NL SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20010309 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20010919 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20010919 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59801529 Country of ref document: DE Date of ref document: 20011025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20011219 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020130 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020331 |
|
EN | Fr: translation not filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111001 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150513 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160310 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160329 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59801529 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170324 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161001 |