EP0973084A2 - Integrated circuit with a voltage regulator - Google Patents

Integrated circuit with a voltage regulator Download PDF

Info

Publication number
EP0973084A2
EP0973084A2 EP99113089A EP99113089A EP0973084A2 EP 0973084 A2 EP0973084 A2 EP 0973084A2 EP 99113089 A EP99113089 A EP 99113089A EP 99113089 A EP99113089 A EP 99113089A EP 0973084 A2 EP0973084 A2 EP 0973084A2
Authority
EP
European Patent Office
Prior art keywords
voltage
voltage divider
voltage regulator
integrated circuit
divider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99113089A
Other languages
German (de)
French (fr)
Other versions
EP0973084A3 (en
EP0973084B1 (en
Inventor
Christian Sichert
Rainer Bartenschlager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qimonda AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0973084A2 publication Critical patent/EP0973084A2/en
Publication of EP0973084A3 publication Critical patent/EP0973084A3/en
Application granted granted Critical
Publication of EP0973084B1 publication Critical patent/EP0973084B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/468Regulating voltage or current wherein the variable actually regulated by the final control device is dc characterised by reference voltage circuitry, e.g. soft start, remote shutdown
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit

Definitions

  • the invention relates to an integrated circuit with a Voltage regulator for generating an internal supply voltage, one input for supplying an actual value and one Input for supplying a reference voltage as a setpoint has, the actual value by means of a first voltage divider is generated from the internal supply voltage and where the sensitivity of the voltage regulator from the resistance value at least one resistance element of the first Voltage divider depends.
  • a corresponding voltage regulator is from U. Tietze, Ch. Schenk: Semiconductor circuit technology, 10th edition, Berlin 1993 described in section 18.3.3.
  • the operational amplifier is a Switching transistor connected downstream of the output of the controller provides the voltage to be regulated, which comes from a higher Voltage is derived.
  • the voltage divider ratio of the determine the first voltage divider and the value of the reference voltage the value of the regulated output voltage. On the arranged between the regulated output voltage and ground first voltage divider flows a leakage current, the more so is greater, the smaller the total resistance of the voltage divider is.
  • the sensitivity of the voltage regulator is reduced. This sensitivity depends on the RC constant, which is determined by the Voltage divider and the associated input capacitance of the operational amplifier is determined.
  • the invention has for its object an integrated Specify circuit of the type described at the beginning sufficient sensitivity of the voltage regulator is guaranteed and on the other hand, the leakage current that occurs is reduced.
  • the first voltage divider is a second one Voltage divider connected in parallel, the same voltage divider ratio as the first voltage divider has and which can be activated by at least one switching element and can be deactivated.
  • both voltage dividers have the same voltage divider ratio have, results both with activated and If the second voltage divider is deactivated, the same value as output voltage of the voltage regulator to be regulated, because that resulting voltage divider ratio is always constant. However, the resistance value is different in both cases, so that with the unchanged input capacity of the voltage regulator each have different RC constants result and thus the sensitivity (control speed) of the voltage regulator is changed. Is the second Voltage divider deactivated and only the first voltage divider effective, results from the relatively higher resistance value both a lower sensitivity of the voltage regulator as well as a lower leakage current that over the voltage divider flows.
  • the second voltage divider activated, the total resistance results from the Parallel connection of the respective resistance elements and will therefore in any case less than in the previously described case, so that the sensitivity of the voltage regulator due to the reduced RC constant is increased, but at the same time the leakage current increases across the resulting voltage divider.
  • At least one switching element that is used for activation or deactivation the second voltage divider is used via an operating mode signal to control that in a normal mode the integrated circuit turns the switching element on and the switching element in an energy-saving mode locks.
  • an energy saving mode one integrated circuit an operating mode in which Current consumption significantly reduced compared to a normal operating mode is. This is achieved, for example, in that only certain basic functions are maintained while other functions can be switched off. Because of the low Current consumption in the energy saving mode is the one to be regulated Output voltage of the voltage regulator, which is used for supply the integrated circuit or parts thereof, exposed to a much lower load than in the Normal operating mode. Therefore, changes in load are also in the energy saving mode is extremely low. For this reason the voltage regulator does not have to be in the energy saving mode have the same sensitivity as in normal mode. Therefore, it is unproblematic in the energy saving mode higher resistance values of the first voltage divider to accept.
  • the advantage to be achieved by the invention is the greater, the greater the difference between the resistance values of the first and second voltage dividers. Then results namely the biggest difference in the amount of each leakage current flowing through the resulting voltage divider.
  • the voltage regulator can be an operational amplifier, for example his.
  • the invention is applicable to all others Voltage regulators applicable where the control sensitivity depends on a voltage divider ratio.
  • FIG. 1 shows an embodiment.
  • the integrated circuit shown in FIG. 1 has an operational amplifier OP, which is fed by an external voltage V Ext .
  • a reference voltage V Ref is supplied as a setpoint to a solitary input of the operational amplifier OP.
  • the output of the operational amplifier is connected to the control terminal of a switching transistor T in the form of a p-channel transistor.
  • the switching transistor T connects the external supply voltage V Ext via its main current path to the first electrode of a buffer capacitor C, the second electrode of which is connected to ground.
  • An internal supply voltage V Int to be regulated is generated at the first electrode of the capacitor C by switching the switching transistor T. In order to close the control loop, the internal supply voltage V Int is fed back to an actual value input of the operational amplifier OP.
  • a circuit node A which is arranged between the third R3 and the fourth R4 resistance element, is connected to the actual value input of the operational amplifier OP.
  • the circuit shown in FIG. 1 has a second voltage divider, which is connected in parallel with the first voltage divider and has a first resistance element R1 and a second resistance element R2.
  • the second voltage divider has a first switching element S1 in the form of a p-channel transistor between the internal supply voltage V Int and the first resistance element R1 and a second switching element S2 in the form of an n-channel transistor between the second resistance element R2 and ground.
  • the control connections of these two switching elements S1, S2 are connected directly or via an inverter I to an operating mode signal EN.
  • the operating mode signal EN it is possible to switch the two switching elements S1, S2 on simultaneously or to block them. In this way, the second voltage divider is activated in a normal operating mode of the integrated circuit or the second voltage divider is deactivated in an energy-saving mode.
  • the voltage divider ratio of the first voltage divider R3, R4 matches the voltage divider ratio of the second voltage divider R1, R2. Therefore, in the normal operating mode in which the second voltage divider R1, R2 is activated, the same resulting voltage divider ratio results as in the energy-saving operating mode in which only the first voltage divider is effective. Thus, the internal supply voltage V Int to be regulated is regulated to the same value in both cases. However, the resistance values of the resistance elements of the first voltage divider R3, R4 are much larger than those of the second voltage divider R1, R2. This results in a much lower leakage current through the first voltage divider in the energy-saving mode than in the normal mode through the resulting voltage divider, which is formed by the parallel connection of the first and the second voltage divider.
  • the sensitivity of the voltage regulator in the energy-saving mode is lower than in the normal mode, since the sensitivity and thus the control speed of the voltage regulator largely depends on the RC constant, which is formed by the resistance value of the respective voltage divider and the input capacitance of the actual value input of the operational amplifier OP.
  • the input capacitance C P of the operational amplifier OP is shown in FIG. 1 for the sake of illustration.
  • the RC constant is formed by the product of the resistance value of the parallel connection of the third resistance element R3 and the fourth resistance element R4 and the input capacitance CP.
  • the normal operating mode it is formed by the product of the parallel connection of the resistance values of the first R1, the second R2, the third R3 and the fourth R4 resistance element and the input capacitance CP.
  • the resistance elements R1, R2, R3, R4 can be formed, for example, by field effect transistors.
  • the buffer capacitance C which serves to buffer the internal supply voltage V Int , can be formed, for example, by the input capacitances of circuit units supplied by the internal supply voltage. If these values are too low, an additional buffer capacity can be provided.

Abstract

Die integrierte Schaltung weist einen Spannungsregler (OP) zum Erzeugen einer internen Versorgungsspannung (VInt) auf, der einen Eingang zum Zuführen eines Istwertes und einen Eingang zum Zuführen einer Referenzspannung (VRef) als Sollwert aufweist. Der Istwert wird mittels eines ersten Spannungsteilers (R3, R4) aus der internen Versorgungsspannung (VInt) erzeugt. Die Empfindlichkeit des Spannungsreglers (OP) hängt vom Widerstandswert wenigstens eines Widerstandselementes (R3) des ersten Spannungsteilers ab. Dem ersten Spannungsteiler (R3, R4) ist ein zweiter Spannungsteiler (R1, R2) parallel geschaltet, der das gleiche Spannungsteilerverhältnis wie der erste Spannungsteiler aufweist und der durch wenigstens ein Schaltelement (S1, S2) aktivierbar und deaktivierbar ist. <IMAGE>The integrated circuit has a voltage regulator (OP) for generating an internal supply voltage (VInt), which has an input for supplying an actual value and an input for supplying a reference voltage (VRef) as a setpoint. The actual value is generated from the internal supply voltage (VInt) by means of a first voltage divider (R3, R4). The sensitivity of the voltage regulator (OP) depends on the resistance value of at least one resistance element (R3) of the first voltage divider. A second voltage divider (R1, R2) is connected in parallel to the first voltage divider (R3, R4) and has the same voltage divider ratio as the first voltage divider and which can be activated and deactivated by at least one switching element (S1, S2). <IMAGE>

Description

Die Erfindung betrifft eine integrierte Schaltung mit einem Spannungsregler zum Erzeugen einer internen Versorgungsspannung, der einen Eingang zum Zuführen eines Istwertes und einen Eingang zum Zuführen einer Referenzspannung als Sollwert aufweist, wobei der Istwert mittels eines ersten Spannungsteilers aus der internen Versorgungsspannung erzeugt wird und wobei die Empfindlichkeit des Spannungsreglers vom Widerstandswert wenigstens eines Widerstandselementes des ersten Spannungsteilers abhängt.The invention relates to an integrated circuit with a Voltage regulator for generating an internal supply voltage, one input for supplying an actual value and one Input for supplying a reference voltage as a setpoint has, the actual value by means of a first voltage divider is generated from the internal supply voltage and where the sensitivity of the voltage regulator from the resistance value at least one resistance element of the first Voltage divider depends.

Ein entsprechender Spannungsregler ist aus U. Tietze, Ch. Schenk: Halbleiterschaltungstechnik, 10. Auflage, Berlin 1993 in Kapitel 18.3.3 beschrieben. Als Spannungsregler, dem der Ist- und der Sollwert zugeführt werden, kommt ein Operationsverstärker zum Einsatz. Dem Operationsverstärker ist ein Schalttransistor nachgeschaltet, der am Ausgang des Reglers die zu regelnde Spannung bereitstellt, die aus einer höheren Spannung abgeleitet wird. Das Spannungsteilerverhältnis des ersten Spannungsteilers und der Wert der Referenzspannung bestimmen den Wert der geregelten Ausgangsspannung. Über den zwischen der geregelten Ausgangsspannung und Masse angeordneten ersten Spannungsteiler fließt ein Verluststrom, der um so größer ist, je kleiner der Gesamtwiderstand des Spannungsteilers ist. Vergrößert man jedoch den ohmschen Widerstand der Widerstandselemente des Spannungsteilers, wird die Empfindlichkeit des Spannungsreglers vermindert. Diese Empfindlichkeit hängt nämlich von der RC-Konstante ab, die durch den Spannungsteiler und die damit verbundene Eingangskapazität des Operationsverstärkers bestimmt wird.A corresponding voltage regulator is from U. Tietze, Ch. Schenk: Semiconductor circuit technology, 10th edition, Berlin 1993 described in section 18.3.3. As a voltage regulator to which the An operational amplifier comes as the actual value and the setpoint are supplied for use. The operational amplifier is a Switching transistor connected downstream of the output of the controller provides the voltage to be regulated, which comes from a higher Voltage is derived. The voltage divider ratio of the determine the first voltage divider and the value of the reference voltage the value of the regulated output voltage. On the arranged between the regulated output voltage and ground first voltage divider flows a leakage current, the more so is greater, the smaller the total resistance of the voltage divider is. However, if one increases the ohmic resistance of the Resistance elements of the voltage divider, the sensitivity of the voltage regulator is reduced. This sensitivity depends on the RC constant, which is determined by the Voltage divider and the associated input capacitance of the operational amplifier is determined.

Der Erfindung liegt die Aufgabe zugrunde, eine integrierte Schaltung der eingangs geschilderten Art anzugeben, bei der eine ausreichende Empfindlichkeit des Spannungsreglers gewährleistet ist und bei der andererseits der auftretende Verluststrom reduziert ist.The invention has for its object an integrated Specify circuit of the type described at the beginning sufficient sensitivity of the voltage regulator is guaranteed and on the other hand, the leakage current that occurs is reduced.

Diese Aufgabe wird mit einer integrierten Schaltung gemäß Anspruch 1 gelöst. Vorteilhafte Aus- und Weiterbildungen der Erfindung sind Gegenstand abhängiger Ansprüche.This object is achieved with an integrated circuit 1 solved. Advantageous training and further education of Invention are the subject of dependent claims.

Erfindungsgemäß ist dem ersten Spannungsteiler ein zweiter Spannungsteiler parallel geschaltet, der das gleiche Spannungsteilerverhältnis wie der erste Spannungsteiler aufweist und der durch wenigstens ein Schaltelement aktivierbar und deaktivierbar ist.According to the invention, the first voltage divider is a second one Voltage divider connected in parallel, the same voltage divider ratio as the first voltage divider has and which can be activated by at least one switching element and can be deactivated.

Da beide Spannungsteiler das gleiche Spannungsteilerverhältnis aufweisen, ergibt sich sowohl bei aktiviertem als auch bei deaktiviertem zweiten Spannungsteiler derselbe Wert der zu regelnden Ausgangsspannung des Spannungsreglers, denn das resultierende Spannungsteilerverhältnis ist immer konstant. Allerdings ist der Widerstandswert in beiden Fällen unterschiedlich, so daß sich mit der unveränderten Eingangskapazität des Spannungsreglers jeweils unterschiedliche RC-Konstanten ergeben und somit die Empfindlichkeit (Regelgeschwindigkeit) des Spannungsreglers verändert wird. Ist der zweite Spannungsteiler deaktiviert und nur der erste Spannungsteiler wirksam, ergibt sich aufgrund des relativ höheren Widerstandswertes sowohl eine geringere Empfindlichkeit des Spannungsreglers als auch ein geringerer Verluststrom, der über den Spannungsteiler fließt. Ist dagegen der zweite Spannungsteiler aktiviert, ergibt sich der Gesamtwiderstand aus der Parallelschaltung der jeweiligen Widerstandselemente und wird daher in jedem Fall geringer als im zuvor geschilderten Fall, so daß die Empfindlichkeit des Spannungsreglers aufgrund der verminderten RC-Konstante erhöht wird, gleichzeitig aber auch der Verluststrom über den resultierenden Spannungsteiler zunimmt. Somit ergibt sich vorteilhafterweise die Möglichkeit, durch Aktivierung bzw. Deaktivierung des zweiten Spannungsteilers die integrierte Schaltung in zwei verschiedenen Betriebsarten mit unterschiedlichen Empfindlichkeiten des Spannungsreglers und unterschiedlich hohen Verlustströmen zu betreiben.Because both voltage dividers have the same voltage divider ratio have, results both with activated and If the second voltage divider is deactivated, the same value as output voltage of the voltage regulator to be regulated, because that resulting voltage divider ratio is always constant. However, the resistance value is different in both cases, so that with the unchanged input capacity of the voltage regulator each have different RC constants result and thus the sensitivity (control speed) of the voltage regulator is changed. Is the second Voltage divider deactivated and only the first voltage divider effective, results from the relatively higher resistance value both a lower sensitivity of the voltage regulator as well as a lower leakage current that over the voltage divider flows. In contrast, is the second voltage divider activated, the total resistance results from the Parallel connection of the respective resistance elements and will therefore in any case less than in the previously described case, so that the sensitivity of the voltage regulator due to the reduced RC constant is increased, but at the same time the leakage current increases across the resulting voltage divider. This advantageously results in the possibility of by activating or deactivating the second voltage divider the integrated circuit in two different operating modes with different sensitivities of the voltage regulator and operate different leakage currents.

Nach einer Weiterbildung der Erfindung ist es vorgesehen, das wenigstens eine Schaltelement, das zur Aktivierung bzw. Deaktivierung des zweiten Spannungsteilers dient, über ein Betriebsartsignal zu steuern, das in einer Normalbetriebsart der integrierten Schaltung das Schaltelement leitend schaltet und das in einer Energiesparbetriebsart das Schaltelement sperrt.According to a development of the invention, it is provided that at least one switching element that is used for activation or deactivation the second voltage divider is used via an operating mode signal to control that in a normal mode the integrated circuit turns the switching element on and the switching element in an energy-saving mode locks.

Generell versteht man unter einer Energiesparbetriebsart einer integrierten Schaltung eine Betriebsart, in der deren Stromaufnahme deutlich gegenüber einer Normalbetriebsart reduziert ist. Dies wird beispielsweise dadurch erreicht, daß nur bestimmt Grundfunktionen aufrechterhalten werden, während andere Funktionen abgeschaltet werden. Durch die geringe Stromaufnahme in der Energiesparbetriebsart wird die zu regelnde Ausgangsspannung des Spannungsreglers, die zur Versorgung der integrierten Schaltung bzw. Teile derselben dient, einer wesentlich geringeren Belastung ausgesetzt als in der Normalbetriebsart. Daher sind auch Belastungsänderungen in der Energiesparbetriebsart äußerst gering. Aus diesem Grund muß der Spannungsregler in der Energiesparbetriebsart nicht dieselbe Empfindlichkeit aufweisen wie in der Normalbetriebsart. Daher ist es unproblematisch, in der Energiesparbetriebsart höhere Widerstandswerte des ersten Spannungsteilers in Kauf zu nehmen. Diese höheren Widerstandswerte bewirken, daß in der Energiesparbetriebsart auch der durch den Spannungsregler verursachte Verluststrom bedeutend geringer ist als in der Normalbetriebsart. Umgekehrt weist der Spannungsregler in der Normalbetriebsart durch Aktivierung des zweiten Spannungsteilers die für die dort auftretenden höheren Strombelastungen der geregelten internen Versorgungsspannung undden stärkeren Belastungswechseln notwendige höhere Empfindlichkeit auf, die sich in einer höheren Regelgeschwindigkeit äußert.Generally one understands an energy saving mode one integrated circuit an operating mode in which Current consumption significantly reduced compared to a normal operating mode is. This is achieved, for example, in that only certain basic functions are maintained while other functions can be switched off. Because of the low Current consumption in the energy saving mode is the one to be regulated Output voltage of the voltage regulator, which is used for supply the integrated circuit or parts thereof, exposed to a much lower load than in the Normal operating mode. Therefore, changes in load are also in the energy saving mode is extremely low. For this reason the voltage regulator does not have to be in the energy saving mode have the same sensitivity as in normal mode. Therefore, it is unproblematic in the energy saving mode higher resistance values of the first voltage divider to accept. These higher resistance values cause that in the energy saving mode also by the voltage regulator leakage current caused is significantly lower than in normal mode. Conversely, the voltage regulator in normal mode by activating the second one Voltage divider for the higher current loads occurring there the regulated internal supply voltage and stronger changes in stress necessitate higher sensitivity on that in a higher control speed expresses.

Der durch die Erfindung zu erzielende Vorteil ist um so größer, je größer der Unterschied zwischen den Widerstandswerten des ersten und des zweiten Spannungsteilers ist. Dann ergibt sich nämlich der größte Unterschied in der Höhe des jeweils durch den resultierenden Spannungsteiler fließenden Verluststroms.The advantage to be achieved by the invention is the greater, the greater the difference between the resistance values of the first and second voltage dividers. Then results namely the biggest difference in the amount of each leakage current flowing through the resulting voltage divider.

Der Spannungsregler kann beispielsweise ein Operationsverstärker sein. Die Erfindung ist jedoch auch auf alle anderen Spannungsregler anwendbar, bei denen die Regelempfindlichkeit von einem Spannungsteilerverhältnis abhängt.The voltage regulator can be an operational amplifier, for example his. However, the invention is applicable to all others Voltage regulators applicable where the control sensitivity depends on a voltage divider ratio.

Die Erfindung wird im folgenden anhand der einzigen Figur 1 näher erläutert, die ein Ausführungsbeispiel zeigt.The invention is illustrated below with reference to the single FIG. 1 explained in more detail, which shows an embodiment.

Die in Figur 1 dargestellte integrierte Schaltung weist einen Operationsverstärker OP auf, der von einer externen Spannung VExt gespeist wird. Einem Soliwerteingang des Operationsverstärkers OP wird eine Referenzspannung VRef als Sollwert zugeführt. Der Ausgang des Operationsverstärkers ist mit dem Steueranschluß eines Schalttransistors T in Form eines p-Kanal-Transistors verbunden. Der Schalttransistor T verbindet über seinen Hauptstrompfad die externe Versorgungsspannung VExt mit der ersten Elektrode eines Pufferkondensators C, dessen zweite Elektrode mit Masse verbunden ist. An der ersten Elektrode des Kondensators C wird durch Schalten des Schalttransistors T eine zu regelnde interne Versorgungsspannung VInt erzeugt. Um den Regelkreis zu schließen, ist die interne Versorgungsspannung VInt auf einen Istwerteingang des Operarionsverstärkers OP rückgekoppelt. Dies geschieht mittels eines zwischen der internen Versorgungsspannung VInt und Masse angeordneten ersten Spannungsteilers aus einem dritten Widerstandselement R3 und einem vierten Widerstandselement R4. Ein Schaltungsknoten A, der zwischen dem dritten R3 und dem vierten R4 Widerstandselement angeordnet ist, ist mit dem Istwerteingang des Operationsverstärkers OP verbunden.The integrated circuit shown in FIG. 1 has an operational amplifier OP, which is fed by an external voltage V Ext . A reference voltage V Ref is supplied as a setpoint to a solitary input of the operational amplifier OP. The output of the operational amplifier is connected to the control terminal of a switching transistor T in the form of a p-channel transistor. The switching transistor T connects the external supply voltage V Ext via its main current path to the first electrode of a buffer capacitor C, the second electrode of which is connected to ground. An internal supply voltage V Int to be regulated is generated at the first electrode of the capacitor C by switching the switching transistor T. In order to close the control loop, the internal supply voltage V Int is fed back to an actual value input of the operational amplifier OP. This is done by means of a first voltage divider, arranged between the internal supply voltage V Int and ground, comprising a third resistance element R3 and a fourth resistance element R4. A circuit node A, which is arranged between the third R3 and the fourth R4 resistance element, is connected to the actual value input of the operational amplifier OP.

Weiterhin weist die in Figur 1 gezeigte Schaltung einen zweiten Spannungsteiler auf, der dem ersten Spannungsteiler parallel geschaltet ist und ein erstes Widerstandselement R1 und ein zweites Widerstandselement R2 aufweist. Der zweite Spannungsteiler weist zwischen der internen Versorgungsspannung VInt und dem ersten Widerstandselement R1 ein erstes Schaltelement S1 in Form eines p-Kanal-Transistors und zwischen dem zweiten Widerstandselement R2 und Masse ein zweites Schaltelement S2 in Form eines n-Kanal-Transistors auf. Die Steueranschlüsse dieser beiden Schaltelemente S1, S2 sind direkt bzw. über einen Inverter I mit einem Betriebsartsignal EN verbunden. Mittels des Betriebsartsignals EN ist es möglich, die beiden Schaltelemente S1, S2 gleichzeitig leitend zu schalten oder zu sperren. Auf diese Weise erfolgt eine Aktivierung des zweiten Spannungsteilers in einer Normalbetriebsart der integrierten Schaltung bzw. eine Deaktivierung des zweiten Spannungsteilers in einer Energiesparbetriebsart.Furthermore, the circuit shown in FIG. 1 has a second voltage divider, which is connected in parallel with the first voltage divider and has a first resistance element R1 and a second resistance element R2. The second voltage divider has a first switching element S1 in the form of a p-channel transistor between the internal supply voltage V Int and the first resistance element R1 and a second switching element S2 in the form of an n-channel transistor between the second resistance element R2 and ground. The control connections of these two switching elements S1, S2 are connected directly or via an inverter I to an operating mode signal EN. By means of the operating mode signal EN it is possible to switch the two switching elements S1, S2 on simultaneously or to block them. In this way, the second voltage divider is activated in a normal operating mode of the integrated circuit or the second voltage divider is deactivated in an energy-saving mode.

Das Spannungsteilerverhältnis des ersten Spannungsteilers R3, R4 stimmt mit dem Spannungsteilerverhältnis des zweiten Spannungsteilers R1, R2 überein. Daher ergibt sich in der Normalbetriebsart, in der der zweite Spannungsteiler R1, R2 aktiviert ist, dasselbe resultierende Spannungsteilerverhältnis wie in der Energiesparbetriebsart, in der nur der erste Spannungsteiler wirksam ist. Somit wird in beiden Fällen die zu regelnde interne Versorgungsspannung VInt auf denselben Wert geregelt. Allerdings sind die Widerstandswerte der Widerstandselemente des ersten Spannungsteilers R3, R4 sehr viel größer als diejenigen des zweiten Spannungsteilers R1, R2. Somit ergibt sich in der Energiesparbetriebsart ein wesentlich geringerer Verluststrom durch den ersten Spannungsteiler als in der Normalbetriebsart durch den resultierenden Spannungsteiler, der durch die Parallelschaltung des ersten und des zweiten Spannungsteilers gebildet wird. The voltage divider ratio of the first voltage divider R3, R4 matches the voltage divider ratio of the second voltage divider R1, R2. Therefore, in the normal operating mode in which the second voltage divider R1, R2 is activated, the same resulting voltage divider ratio results as in the energy-saving operating mode in which only the first voltage divider is effective. Thus, the internal supply voltage V Int to be regulated is regulated to the same value in both cases. However, the resistance values of the resistance elements of the first voltage divider R3, R4 are much larger than those of the second voltage divider R1, R2. This results in a much lower leakage current through the first voltage divider in the energy-saving mode than in the normal mode through the resulting voltage divider, which is formed by the parallel connection of the first and the second voltage divider.

Gleichzeitig ist die Empfindlichkeit des Spannungsreglers in der Energiesparbetriebsart geringer als in der Normalbetriebsart, da die Empfindlichkeit und damit die Regelgeschwindigkeit des Spannungsreglers maßgeblich von der RC-Konstanten abhängt, die durch den Widerstandswert des jeweiligen Spannungsteilers und die Eingangskapazität des Istwerteingangs des Operationsverstärkers OP gebildet wird. Die Eingangskapazität CP des Operationsverstärkers OP ist in Figur 1 aus Gründen der Illustration eingezeichnet. In der Energiesparbetriebsart wird die RC-Konstante durch das Produkt des Widerstandswertes der Parallelschaltung des dritten Widerstandselementes R3 und des vierten Widerstandselementes R4 und der Eingangskapazität CP gebildet. In der Normalbetriebsart wird sie durch das Produkt aus der Parallelschaltung der Widerstandswerte des ersten R1, des zweiten R2, des dritten R3 und des vierten R4 Widerstandselementes und der Eingangskapazität CP gebildet.At the same time, the sensitivity of the voltage regulator in the energy-saving mode is lower than in the normal mode, since the sensitivity and thus the control speed of the voltage regulator largely depends on the RC constant, which is formed by the resistance value of the respective voltage divider and the input capacitance of the actual value input of the operational amplifier OP. The input capacitance C P of the operational amplifier OP is shown in FIG. 1 for the sake of illustration. In the energy-saving mode, the RC constant is formed by the product of the resistance value of the parallel connection of the third resistance element R3 and the fourth resistance element R4 and the input capacitance CP. In the normal operating mode, it is formed by the product of the parallel connection of the resistance values of the first R1, the second R2, the third R3 and the fourth R4 resistance element and the input capacitance CP.

Die Widerstandselemente R1, R2, R3, R4 können beispielsweise durch Feldeffekttransistoren gebildet sein. Die Pufferkapazität C, die zur Pufferung der internen Versorgungsspannung VInt dient, kann beispielsweise durch die Eingangskapazitäten von durch die interne Versorgungsspannung versorgten Schaltungseinheiten gebildet sein. Sollten diese zu geringe Werte aufweisen, kann eine zusätzliche Pufferkapazität vorgesehen sein.The resistance elements R1, R2, R3, R4 can be formed, for example, by field effect transistors. The buffer capacitance C, which serves to buffer the internal supply voltage V Int , can be formed, for example, by the input capacitances of circuit units supplied by the internal supply voltage. If these values are too low, an additional buffer capacity can be provided.

Claims (4)

Integrierte Schaltung mit einem Spannungsregler (OP) zum Erzeugen einer internen Versorgungsspannung (VInt), der einen Eingang zum Zuführen eines Istwertes und einen Eingang zum Zuführen einer Referenzspannung (VRef) als Sollwert aufweist, bei der der Istwert mittels eines ersten Spannungsteilers (R3, R4) aus der internen Versorgungsspannung (VInt) erzeugt wird, die Empfindlichkeit des Spannungsreglers (OP) vom Widerstandswert wenigstens eines Widerstandselementes (R3) des ersten Spannungsteilers abhängt und dem ersten Spannungsteiler (R3, R4) ein zweiter Spannungsteiler (R1, R2) parallel geschaltet ist, der das gleiche Spannungsteilerverhältnis wie der erste Spannungsteiler aufweist und der durch wenigstens ein Schaltelement (S1, S2) aktivierbar und deaktivierbar ist. Integrated circuit with a voltage regulator (OP) for generating an internal supply voltage (VInt), which has an input for supplying an actual value and an input for supplying a reference voltage (VRef) as setpoint, in which the actual value is generated from the internal supply voltage (VInt) by means of a first voltage divider (R3, R4), the sensitivity of the voltage regulator (OP) depends on the resistance value of at least one resistance element (R3) of the first voltage divider and the first voltage divider (R3, R4) is connected in parallel with a second voltage divider (R1, R2) which has the same voltage divider ratio as the first voltage divider and which can be activated and deactivated by at least one switching element (S1, S2). Schaltung nach Anspruch 1,
bei der das wenigstens eine Schaltelement (S1, S2) über ein Betriebsartsignal (EN) gesteuert ist, das in einer Normalbetriebsart der integrierten Schaltung das wenigstens eine Schaltelement leitend schaltet und das in einer Energiesparbetriebsart das Schaltelement sperrt.
Circuit according to claim 1,
in which the at least one switching element (S1, S2) is controlled via an operating mode signal (EN) which switches the at least one switching element to conductive in a normal operating mode of the integrated circuit and which blocks the switching element in an energy-saving operating mode.
Schaltung nach einem der vorstehenden Ansprüche,
deren erster Spannungsteiler (R3, R4) wesentlich hochohmiger ist als der zweite Spannungsteiler (R1, R2).
Circuit according to one of the preceding claims,
whose first voltage divider (R3, R4) is significantly higher impedance than the second voltage divider (R1, R2).
Schaltung nach einem der vorstehenden Ansprüche,
deren Spannungsregler (OP) einen Operationsverstärker enthält, dem der Istwert und der Sollwert zugeführt werden.
Circuit according to one of the preceding claims,
whose voltage regulator (OP) contains an operational amplifier to which the actual value and the setpoint are fed.
EP99113089A 1998-07-17 1999-07-06 Integrated circuit with a voltage regulator Expired - Lifetime EP0973084B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19832309 1998-07-17
DE19832309A DE19832309C1 (en) 1998-07-17 1998-07-17 Integrated circuit with voltage regulator

Publications (3)

Publication Number Publication Date
EP0973084A2 true EP0973084A2 (en) 2000-01-19
EP0973084A3 EP0973084A3 (en) 2000-04-05
EP0973084B1 EP0973084B1 (en) 2009-06-24

Family

ID=7874492

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99113089A Expired - Lifetime EP0973084B1 (en) 1998-07-17 1999-07-06 Integrated circuit with a voltage regulator

Country Status (4)

Country Link
US (1) US6133779A (en)
EP (1) EP0973084B1 (en)
DE (2) DE19832309C1 (en)
TW (1) TWM251161U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429724C (en) * 2004-01-10 2008-10-29 因芬尼昂技术股份公司 Semiconductor memory circuit and method for operating the same in a standby mode

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2789190B1 (en) * 1999-01-28 2001-06-01 St Microelectronics Sa POWER SUPPLY REGULATED AT A HIGH RATE OF NOISE REJECTION OF A SUPPLY VOLTAGE
US6300810B1 (en) * 1999-02-05 2001-10-09 United Microelectronics, Corp. Voltage down converter with switched hysteresis
KR100351931B1 (en) * 2000-05-30 2002-09-12 삼성전자 주식회사 Voltage Detecting Circuit For Semiconductor Memory Device
US6351137B1 (en) * 2000-08-15 2002-02-26 Pulsecore, Inc. Impedance emulator
US6479974B2 (en) 2000-12-28 2002-11-12 International Business Machines Corporation Stacked voltage rails for low-voltage DC distribution
DE10354534A1 (en) * 2003-11-12 2005-07-14 Atmel Germany Gmbh Circuit arrangement for voltage detection
DE10360030A1 (en) * 2003-12-19 2005-07-21 Infineon Technologies Ag Semiconductor memory with numerous memory cells addressable by word and bit lines, with at least two current generators, first generating preset current ono selected bit lines and/or preset word line with memory in active working mode
KR100586545B1 (en) * 2004-02-04 2006-06-07 주식회사 하이닉스반도체 Power Supply Circuit for Oscilator of Semi-conductor Memory Device and Voltage Pumping Device by that
US6956429B1 (en) * 2004-02-09 2005-10-18 Fairchild Semiconductor Corporation Low dropout regulator using gate modulated diode
KR100596977B1 (en) * 2004-08-20 2006-07-05 삼성전자주식회사 Reference voltage circuit using both external reference voltage source and internal refrence voltage source and reference voltage generating method using the same
US9256239B2 (en) 2011-03-17 2016-02-09 Watlow Electric Manufacturing Company Voltage controlling circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3105198A1 (en) * 1981-02-13 1982-09-09 Philips Patentverwaltung Gmbh, 2000 Hamburg Circuit arrangement for accurate setting of an electrical voltage
JPS60238915A (en) * 1984-05-11 1985-11-27 Ikegami Tsushinki Co Ltd Constant-current generating circuit
JPH0659413A (en) * 1992-06-29 1994-03-04 Eastman Kodak Co Formation of color photograph element and picture
US5467009A (en) * 1994-05-16 1995-11-14 Analog Devices, Inc. Voltage regulator with multiple fixed plus user-selected outputs
EP0846996A1 (en) * 1996-12-05 1998-06-10 STMicroelectronics S.r.l. Power transistor control circuit for a voltage regulator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3516556B2 (en) * 1996-08-02 2004-04-05 沖電気工業株式会社 Internal power supply circuit
US6066979A (en) * 1996-09-23 2000-05-23 Eldec Corporation Solid-state high voltage linear regulator circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3105198A1 (en) * 1981-02-13 1982-09-09 Philips Patentverwaltung Gmbh, 2000 Hamburg Circuit arrangement for accurate setting of an electrical voltage
JPS60238915A (en) * 1984-05-11 1985-11-27 Ikegami Tsushinki Co Ltd Constant-current generating circuit
JPH0659413A (en) * 1992-06-29 1994-03-04 Eastman Kodak Co Formation of color photograph element and picture
US5467009A (en) * 1994-05-16 1995-11-14 Analog Devices, Inc. Voltage regulator with multiple fixed plus user-selected outputs
EP0846996A1 (en) * 1996-12-05 1998-06-10 STMicroelectronics S.r.l. Power transistor control circuit for a voltage regulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 106 (P-449), 22. April 1986 (1986-04-22) & JP 60 238915 A (IKEGAMI TSUUSHINKI KK), 27. November 1985 (1985-11-27) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 07, 31. März 1998 (1998-03-31) & JP 06 059413 A (EASTMAN KODAK CO), 4. März 1994 (1994-03-04) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429724C (en) * 2004-01-10 2008-10-29 因芬尼昂技术股份公司 Semiconductor memory circuit and method for operating the same in a standby mode

Also Published As

Publication number Publication date
EP0973084A3 (en) 2000-04-05
US6133779A (en) 2000-10-17
TWM251161U (en) 2004-11-21
EP0973084B1 (en) 2009-06-24
DE59915043D1 (en) 2009-08-06
DE19832309C1 (en) 1999-10-14

Similar Documents

Publication Publication Date Title
DE69814250T2 (en) Voltage regulation with load pole stabilization
DE60225124T2 (en) Control device with low loss voltage, with a large load range and fast inner control loop
DE4315738C2 (en) Current limiting circuit and constant voltage source for this
DE69530905T2 (en) Circuit and method for voltage regulation
DE4226047C2 (en) Circuit for generating an internal voltage supply with a control circuit for carrying out a load test (&#34;burn-in test&#34;)
DE4124427C2 (en) Circuit for generating an internal temperature-stabilized supply voltage
DE10110273C2 (en) Voltage generator with standby mode
DE4037206C2 (en) Supply voltage control circuit with the possibility of test-burn-in of an internal circuit
DE112018006436B4 (en) Dual loop LDO adaptive voltage regulator and voltage regulation method
DE60017049T2 (en) Linear regulator with low series voltage drop
DE102004032697A1 (en) Power supply controller with a highly reliable overcurrent detection circuit
DE19832309C1 (en) Integrated circuit with voltage regulator
CH623442B5 (en)
DE19681425B3 (en) Circuit and method for controlling a voltage
DE2240971A1 (en) GATE CONTROL
DE102008053536B4 (en) Circuit, use and method of operating a circuit
DE4041823A1 (en) TWO-WIRE DETECTOR WITH REGULATED VOLTAGE
DE2250625A1 (en) CURRENT REGULATOR
EP0749059A2 (en) Telecommunication terminal with voltage regulator
DE3136300A1 (en) &#34;DRIVING CIRCUIT FOR AN OSCILLATOR WITH LOW POWER CONSUMPTION&#34;
DE3024014C2 (en) AC / DC voltage converter in the form of an integrated circuit
EP0489259A2 (en) Capacity-frequency converter
EP0904576B1 (en) Power supply circuit
DE10049994A1 (en) Supply voltage monitoring and/or regulating circuit compares at least one of two supply voltages with permissible range for controlling electronic shunt circuit
DE69820220T2 (en) PRELIMINARY CIRCUIT HIGH IMPEDANCE FOR AC SIGNAL AMPLIFIERS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IE IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7G 05F 1/575 A, 7G 05F 1/46 B

17P Request for examination filed

Effective date: 20000818

17Q First examination report despatched

Effective date: 20001030

AKX Designation fees paid

Free format text: DE FR GB IE IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IE IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 59915043

Country of ref document: DE

Date of ref document: 20090806

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: QIMONDA AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090924

26N No opposition filed

Effective date: 20100325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090624

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59915043

Country of ref document: DE

Owner name: POLARIS INNOVATIONS LTD., IE

Free format text: FORMER OWNER: INFINEON TECHNOLOGIES AG, 85579 NEUBIBERG, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: INFINEON TECHNOLOGIES AG, DE

Effective date: 20160212

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160613

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160628

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59915043

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731