EP0972650A1 - Tintenstrahlempfangende Aufzeichnungsmedien - Google Patents
Tintenstrahlempfangende Aufzeichnungsmedien Download PDFInfo
- Publication number
- EP0972650A1 EP0972650A1 EP99113728A EP99113728A EP0972650A1 EP 0972650 A1 EP0972650 A1 EP 0972650A1 EP 99113728 A EP99113728 A EP 99113728A EP 99113728 A EP99113728 A EP 99113728A EP 0972650 A1 EP0972650 A1 EP 0972650A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ink jet
- jet recording
- recording medium
- medium according
- ink
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/502—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
- B41M5/508—Supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5218—Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5236—Macromolecular coatings characterised by the use of natural gums, of proteins, e.g. gelatins, or of macromolecular carbohydrates, e.g. cellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5254—Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5263—Macromolecular coatings characterised by the use of polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- B41M5/5281—Polyurethanes or polyureas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/529—Macromolecular coatings characterised by the use of fluorine- or silicon-containing organic compounds
Definitions
- the invention pertains to an ink jet ink receptive recording medium prepared by applying an ink jet receptive coating composition to a surface of a suitable base substrate.
- Ink jet ink receptive coating layers used in the preparation of ink jet ink receptive recording media have to meet a number of performance requirements. These requirements include dry time, color density, resolution, tack, color fidelity and lightfastness, as well as cost.
- U.S. Patent 4, 555,437 describes a hydroxyethyl cellulose coating
- U.S. Patent 4,575,465 describes a hydroxypropyl cellulose coaling.
- Alumina has been used as a filler or pigment for ink jet recording media.
- U.S. Patent 4,780,356 discloses a two-layer coating that contains silica or alumina with a particle size of 0.1 ⁇ m - 50 ⁇ m
- U.S. Patent 5,104,730 discloses a coating that contains pseudo-boehmite and polyvinyl alcohol
- U.S. Patent 5,264,275 discusses a two-layer coating that contains pseudo-boehmite and polyvinyl alcohol/polyvinyl pyrrolidone.
- the present invention provides an ink jet ink receptive coating composition that can be used in preparing ink jet recording media, which, upon printing, possess the improved combination of properties of (i) good black ink optical density, (ii) low pigment ink cracking, and (iii) good dry time.
- the present invention also provides for an inventive ink jet ink receptive recording media, which is prepared by applying one of the instant inventive ink jet ink receptive coating compositions to a surface of a suitable base substrate.
- ink jet ink receptive coating composition that is useful in preparing ink jet recording media, wherein the coating composition - when appropriately applied to a suitable base substrate and subsequently printed upon in an ink jet printing process - provides ink jet recording media that offer the improved properties mentioned above.
- a cellulose ether is used in the inventive coating compositions, it is preferably methylcellulose or a hydroxyalkyl methylcellulose. It is also preferable that the cellulose ether used in the inventive coating compositions possesses a hydroxyalkyl content of 0% to about 32% and a methoxy content of about 16% to about 32%, when tested according to ASTM D-3876 and ASTM D-2363. Furthermore, it is preferable for the cellulose ether to be present in the inventive coating compositions at a level of from about 50% to about 95% on a weight/weight basis, based on the amount of solids in the coating composition.
- an aluminum oxide particulate when used in the inventive coating composition, it preferably should possess the chemical formula Al 2 O 3 . It should also preferably possess an average dispersed particle size of about 10 nm to about 200 nm, more preferably about 30 nm to about 170 nm. Further, an aluminum oxide particulate falling within the acidic to neutral pH range is preferred, with one falling in the pH range of from about pH 3 (acidic) to about pH 7 (neutral) being most preferred.
- the good ink jet printing performance that is associated with the ink jet recording medium of the present invention results from the fact that they comprise a suitable substrate having on a surface thereof an ink jet recording layer that is made from one of the inventive ink jet ink receptive coating compositions.
- design parameters are important to achieving the present invention. These design parameters include:
- the inventive ink jet ink receptive recording media are prepared with ink jet coating compositions containing at least (i) a cellulose ether and (ii) an aluminum oxide particulate.
- ink jet ink receptive coating compositions of this invention preferably contain about 50% to about 95% of the cellulose ether therein, on a weight/weight basis, based on the amount of solids in the coating compositions.
- cellulose ethers that are useful in the present invention are methylcellulose and hydroxyalkyl methylcelluloses, such a hydroxyethyl methylcellulose, hydroxypropyl methylcellulose and hydroxybutyl methylcellulose.
- the cellulose ether should have a hydroxyalkyl content of 0% to about 32% and a methoxyl content of about 16% to about 32%.
- the present inventors in order to achieve optimal performance, utilize a form of aluminum oxide particulate that is stable, has a small particle size in order to prevent haze, and, preferably, has an acidic to neutral pH value in order to prevent dark fade of the printed ink jet recording product.
- the present inventors have discovered that aluminum oxide particulates having the chemical formula Al 2 O 3 and an average dispersed particle size of about 10 nanometers to about 200 nanometers are preferred and such particulates have an average dispersed particle size of about 30 nanometers to about 170 nanometers are most preferred.
- the pH of the present inventors' aluminum oxide particulates falls within the acidic to neutral pH range, and is more preferably from about pH 3 (acidic) up to about pH 7 (neutral).
- the ink jet ink receptive coating compositions comprise about 0.01 to about 15% by weight of particulates therein (not including the aforementioned alumina particulates), based on the weight of the dry coating.
- particulates include inorganic particulates, such as silica, kaolin, glass beads, calcium carbonate, titanium oxide, barium sulfate, aluminum silicate, zirconium oxide and tin oxide and organic particulate such as polyolefins, polystyrene, polyurethane, starch, poly(methyl methacrylate) and polytetrafluoroethylene.
- additives may also be employed in the ink jet ink receptive coating compositions of this invention.
- These additives can include surface active agents which control the wetting or spreading action of coating solutions, antistatic agents, suspending agents and acidic compounds to control pH of the coating.
- Other additives may also be used, if so desired.
- the ink jet ink receptive coating compositions of this invention can be applied to a surface of a variety of different base substrates (e.g., transparent plastics, translucent plastics, matte plastics, opaque plastics or papers), to prepare one of the inventive ink jet recording media.
- Suitable polymeric materials for use as the base substrate include polyester, cellulose, esters, polystyrene, polypropylene, poly(vinyl acetate), polycarbonate, and the like.
- Poly(ethylene terephthalate) film is a particularly preferred base substrate.
- clay coated or polyolefin coated papers are particularly preferred as base substrate papers.
- the thickness of the base substrate is not particularly restricted but should generally be in the range of from about 1 to about 10 mils, preferably from about 3.0 to about 5.0 mils.
- the base substrate may be pretreated to enhance adhesion of the ink receptive coating thereto.
- the thickness of the inventive coating is not particularly restricted, but should generally be in the range from about 2 grams per square meter to about 30 grams per square meter, on a surface of the base substrate.
- a surface of the base substrate that does not bear the ink jet ink receptive coating may have a backing material placed thereon in order to reduce electrostatic charge and to reduce sheet-to-sheet friction and sticking and reduce curl, if so desired.
- the backing material may either be a polymeric coating, a polymer film or paper.
- any number of coating methods may be employed to coat the ink jet ink receptive coating composition onto the surface of the base substrate.
- roller coating, blade coating, wire-bar coating, dip coating, extrusion coating, air knife coating, curtain coating, slide coating, doctor coating or gravure coating may be used and are well known in the art.
- a coating composition is prepared according to the following formulation:
- the coating is applied to a polyester film (ICI Films) using a No. 24 Meyer rod, and the coating is dried at about 130°C for about 2 minutes.
- a coating composition is prepared according to the following formulation:
- the coating is applied to a polyester film (ICI Films) using a No. 50 Meyer rod, and is dried at about 130°C for about 2 minutes.
- a coating composition is prepared according to the following formulation:
- the coating is applied to a polyester film (ICI Films) using a No. 70 Meyer rod, and is dried at about 130°C for about 2 minutes.
- a coating composition is prepared according to the following formulation:
- the coating is applied to a polyester film (ICI Films) using a No. 50 Meyer rod, and the coating is dried at about 130°C for about 2 minutes.
- a coating composition is prepared according to the following formulation:
- Methylcellulose sodium salt 4.1 parts Alumina Sol 3.7 parts Water 92.2 parts Crosslinked poly(methyl methacrylate) 0.01 parts
- the coating is applied to a polyester film (ICI Films) using a No. 50 Meyer rod, and is dried at about 130°C for about 2 minutes.
- a coating composition is prepared according to the following formulation:
- the coating is applied to a polyester film (ICI Films) using a No. 50 Meyer rod, and is dried at about 130°C for about 2 minutes.
- a coating composition is prepared according to the following formulation:
- the coating is applied to a polyester film (ICI Films) using a No. 50 Meyer rod, and is dried at about 130°C for about 2 minutes.
- a coating composition is prepared according to the following formulation:
- the coating is applied to a polyester film (ICI Films) using a No. 24 Meyer rod, and is dried at about 130°C for about 2 minutes.
- a coating composition is prepared according to the following formulation:
- the coating is applied to a polyester film (ICI Films) using a No. 24 Meyer rod, and is dried at about 130°C for about 2 minutes.
- Each of the prepared ink jet recording media of Examples I-III and Comparative Examples C-I to C-V are evaluated to determine whether they offer the following improved combination of properties of (i) a good level of black ink optical density, (ii) a low level of pigment ink cracking, and (iii) a good dry time, when printed in an ink jet printing process.
- the prepared ink jet recording media are evaluated by printing on the ink jet recording surface thereof a test plot with a Hewlett Packard DESKJET 660C printer using HP 51629A and HP 51649A ink cartridges.
- the black ink is pigment based in the evaluation.
- the black ink optical density of each test sample is measured with a MACBETH TD 904 densitometer (Macbeth Process Measurements) using the beige filter setting. A measurement is taken at three different locations along a solid black image stripe. The average of the three measurements is the black ink optical density.
- Each Example and Comparative Example is imaged with a test print.
- the Examples are given a numerical rating by comparing the Examples to standard prints that exhibit each level of ink cracking.
- each Example is measured by first printing each example with the test plot. The Example is then placed on top of a 20 lb. ream of XEROX 4200 paper. This is time zero (t 0 ). Thereafter, at thirty second intervals, a sheet of white bond paper is placed onto the surface of the Example, and then another 20 lb. ream of XEROX 4200 paper is placed on top of the white bond paper. After five seconds, the top ream of paper and white bond paper is removed from on top of the Example. The Example is dry when no transfer of ink between the print and the white bond paper occurs, which is termed the dry time (t dry ).
- Examples I to III all exhibited improved black ink optical density, a low level of pigment ink cracking, and a good dry time as compared to the Comparative Examples C-I to C-V.
- the pigmented black ink optical density is inversely proportional to ink cracking, with pigment ink cracking decreasing the black ink optical density.
- ink cracking is rated below 3, ink cracking is clearly visible to the eye, and the ink jet recording media are not suitable for many commercial applications.
- the improved dry time of the examples allows a higher through put of the media in ink jet printing devices.
Landscapes
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11417598A | 1998-07-13 | 1998-07-13 | |
US114175 | 1998-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0972650A1 true EP0972650A1 (de) | 2000-01-19 |
Family
ID=22353755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99113728A Withdrawn EP0972650A1 (de) | 1998-07-13 | 1999-07-13 | Tintenstrahlempfangende Aufzeichnungsmedien |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP0972650A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002002347A1 (en) * | 2000-07-03 | 2002-01-10 | Degussa Ag | Aqueous nanoparticle ceramic agglomerate dispersion for forming ink-absorbing layer of ink-jet recording medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988006532A1 (en) * | 1987-02-24 | 1988-09-07 | Am International, Inc. | Recording transparency and method |
JPH0948173A (ja) * | 1995-08-04 | 1997-02-18 | Nichiban Co Ltd | インクジェット記録用シート |
WO1997022467A1 (en) * | 1995-12-15 | 1997-06-26 | Ppg Industries, Inc. | Printing sheet |
EP0835762A1 (de) * | 1996-10-11 | 1998-04-15 | Arkwright Inc. | Zusammensetzung für tintenaufnehmende Beschichtung |
-
1999
- 1999-07-13 EP EP99113728A patent/EP0972650A1/de not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988006532A1 (en) * | 1987-02-24 | 1988-09-07 | Am International, Inc. | Recording transparency and method |
JPH0948173A (ja) * | 1995-08-04 | 1997-02-18 | Nichiban Co Ltd | インクジェット記録用シート |
WO1997022467A1 (en) * | 1995-12-15 | 1997-06-26 | Ppg Industries, Inc. | Printing sheet |
EP0835762A1 (de) * | 1996-10-11 | 1998-04-15 | Arkwright Inc. | Zusammensetzung für tintenaufnehmende Beschichtung |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 199, no. 706 30 June 1997 (1997-06-30) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002002347A1 (en) * | 2000-07-03 | 2002-01-10 | Degussa Ag | Aqueous nanoparticle ceramic agglomerate dispersion for forming ink-absorbing layer of ink-jet recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0835762A1 (de) | Zusammensetzung für tintenaufnehmende Beschichtung | |
US5700582A (en) | Polymer matrix coating for ink jet media | |
EP0696516B1 (de) | Tintenstrahlaufzeichnungsmaterial mit erweiterter Verwendungsmöglichkeit | |
KR100341291B1 (ko) | 잉크 제트 프린터용 기록 시트 | |
GB2129333A (en) | Recording medium | |
JPH0641226B2 (ja) | カラーインクジェット記録方法 | |
AU738300B2 (en) | A fast drying ink jet recording medium having a humidity barrier layer | |
WO2011049583A1 (en) | Glossy medium for inkjet printing | |
EP0709221B1 (de) | Glänzdes Tintenstrahlempfangspapier | |
US6528146B2 (en) | Recording medium and image formation employing the same | |
EP0763433B1 (de) | Flüssigkeitsorptionsfähige Beschichtung für Tintenstrahlaufzeichnungsmaterialien | |
JPH09175010A (ja) | インクジェット記録シート | |
US6127037A (en) | Ink jet recording medium | |
EP0972650A1 (de) | Tintenstrahlempfangende Aufzeichnungsmedien | |
US6432519B1 (en) | Ink jet recording sheet | |
US6238804B1 (en) | Ink jet recording medium having a coating containing cellulose ethers and optical brighteners | |
EP0888902A1 (de) | Tintenstrahlaufzeichnugsmittel | |
EP2734379B1 (de) | Druckmedium | |
JPH10315614A (ja) | 記録用シート | |
JPH03275378A (ja) | 印刷用シート | |
JPH03143678A (ja) | 記録用材料 | |
WO2003039864A1 (en) | Ink-jet printable composite media having a holographic pattern on their imaging surfaces | |
JP2003175669A (ja) | インクジェット記録要素および印刷方法 | |
JPH1044590A (ja) | インクジェット記録シート | |
JP2001180106A (ja) | インクジェット記録用シート及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AKX | Designation fees paid | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20000720 |