EP0968315A1 - Al-Mg-Si ALLOY WITH GOOD EXTRUSION PROPERTIES - Google Patents

Al-Mg-Si ALLOY WITH GOOD EXTRUSION PROPERTIES

Info

Publication number
EP0968315A1
EP0968315A1 EP98912599A EP98912599A EP0968315A1 EP 0968315 A1 EP0968315 A1 EP 0968315A1 EP 98912599 A EP98912599 A EP 98912599A EP 98912599 A EP98912599 A EP 98912599A EP 0968315 A1 EP0968315 A1 EP 0968315A1
Authority
EP
European Patent Office
Prior art keywords
extrusion
alloy
alloys
max
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98912599A
Other languages
German (de)
French (fr)
Other versions
EP0968315B1 (en
Inventor
Nicholas Charles Parson
Jeffrey David Hankin
Kevin Paul Hicklin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Alcan International Ltd Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26147353&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0968315(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alcan International Ltd Canada filed Critical Alcan International Ltd Canada
Priority to EP98912599A priority Critical patent/EP0968315B1/en
Publication of EP0968315A1 publication Critical patent/EP0968315A1/en
Application granted granted Critical
Publication of EP0968315B1 publication Critical patent/EP0968315B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • This invention concerns AIMgSi alloys of the 6000 series of the Aluminum Association Register.
  • the compositions are low magnesium containing AIMgSi alloys with appropriate silicon and copper additions to meet the strength requirements of AA6063T5 and T6.
  • AA6063 accounts for approximately 80% of all aluminium extruded products. At this bottom end of the extrusion market, there is a need for extrusions which meet the T5 or T6 strength requirements but which can be manufactured at the highest possible rates of extrusion.
  • AIMgSi Alloys having the composition in wt%: Mg 0.25 - 0.40; Si 0.60 - 0.90; Fe up to 0.35; Mn up to 0.35 preferably 0.10 - 0.25. But these are not general purpose extrusion alloys. By virtue of the high Si content they have high tensile strength generally in excess of 250 MPa and they preferably contain Mn to improve extrusion surface quality.
  • This invention concerns general purpose extrusion alloys having the minimum alloying additions required to meet the strength requirements of AA 6063T5 (peak aged tensile strength of at least about 152 MPa) and T6 (peak aged tensile strength of at least about 207 MPa).
  • the lower breakthrough pressure associated with the lower Mg content also means that for a given extrusion press, the initial billet temperature can be reduced until the pressure required matches the press capacity. This has the effect of further reducing the temperature of the product as it exits the die which gives further productivity benefits.
  • the invention provides an alloy of composition in wt%
  • the invention also provides extrusion ingots of the alloy as defined; and extrusions (i.e. extruded sections) made from such ingots.
  • extrusions i.e. extruded sections
  • Figure 1 is a graph showing Mg and Si concentrations of certain dilute 6000 alloys.
  • Figure 2 is a graph of tensile strength against Si content for alloys of different composition.
  • Figure 3 is a graph showing T5 and T6 limits for various dilute 6000 alloys.
  • Figure 4 is a graph showing elongation at break for alloys of different composition.
  • Figure 5 is a bar chart showing relative mean extrusion breakthrough pressure for alloys of different composition.
  • Figure 6 is a graph showing extrusion breakthrough load at 450°C for alloys of different composition.
  • Figure 7 is a graph showing extrusion breakthrough load at 425°C for alloys of different composition.
  • Figures 8 and 9 are graphs of tensile strength against Si content of two different alloys showing the effects of different ageing practices.
  • Figure 10 is a graph showing the effect of silicon content on ⁇ - ⁇ transformation.
  • Figure 1 1 is a graph showing the effect of silicon content on AIFeSi intermetallic size.
  • Figure 12 is a graph showing the effect of silicon content on AIFeSi spheroidisation.
  • Figure 13 is a graph showing the effect of Si and Mn levels on ⁇ - ⁇ transformation.
  • Figure 14 is a graph showing the effect of Mg and Si content on roughness of extrusions according to the invention at an extrusion temperature of 450°C.
  • Figure 15 is a graph showing the effect of alloy composition on tensile strength.
  • the boxes marked A and B designate the broad and narrow compositions of alloys according to the invention as defined above. Also shown for comparison is the bottom end of a box for AA6060, a general purpose extrusion alloy; and the left hand side of a box for the high strength alloy described in WO 95/06759. Lines marked T5 and T6 represent the compositions required to produce extrusions capable of passing these tests. The positions of these lines are somewhat variable depending on ingot pretreatment conditions, rate of cooling the extrusions and extrusion ageing conditions.
  • the Mg content of the invention alloy is set at 0.20 - 0.34 preferably 0.20 - 0.30%. If the Mg content is too low, it is difficult to achieve the required strength in the aged extrusions. Extrusion pressure increases with Mg content, and becomes unacceptable at high Mg contents.
  • the Si content is set at 0.35 - 0.60 preferably 0.40 - 0.59. If the Si content is too low, the alloy strength is adversely affected, while if the Si content is too high, extrudability may be reduced. Formability has also been reported to be impaired at high Si levels, but it has been found that this effect is not important within the composition range of the invention.
  • a function of the Si is to strengthen the alloy without adversely affecting extrudability, high temperature flow stress or anodising and corrosion characteristics.
  • Fe in the alloy is normally unavoidable.
  • An upper concentration limit is set at 0.35, preferably 0.25%. It is likely to be preferred to use alloys containing at least 0.15% Fe, to prevent bright finish on anodising and because these alloys are less expensive than alloys containing lower Fe concentrations especially when made from remelted scrap.
  • Fe is present in the form of large plate- like ⁇ -AIFeSi particles.
  • the extrusion ingot is homogenised to convert ⁇ -AIFeSi to substantially (at least 80% and preferably more than 90%) the ⁇ -AIFeSi form.
  • Mn has a number of different effects. Although it has previously been included in extrusion alloys to improve toughness, it is generally not useful for this purpose for alloys of the present invention. At very high levels, Mn gives rise to problems with quench sensitivity due to increased levels of dispersoid formation. To avoid this, Mn levels are preferably kept below 0.15% particularly below 0.10%.
  • Mn has a hitherto unpublished technical effect.
  • silicon levels of about 0.50 wt% or greater lead to increased stability of the ⁇ -AIFeSi phase at homogenisation temperatures. This retards the transformation of the AIFeSi intermetallic from ⁇ to ⁇ during homogenisation. As a result, the break up of the intermetallics is retarded such that mean size of the intermetallic phases is increased and a degree of spheroidisation is reduced. This has detrimental effects on the extrudability of the material and causes poor surface finish.
  • the effects of the silicon level on ⁇ stability can be avoided by adding an appropriate level of manganese to the alloy which stabilises the ⁇ form of the AI(Fe,Mn)Si intermetallic. Thus a preferred minimum manganese content can be expressed:-
  • Wt% manganese at least 0.3 x wt% silicon - 0.12 Inclusion of manganese in these concentrations helps to: promote a ⁇ to ⁇ AIFeSi transformation during homogenisation such that at least an 80% and preferably at least 90% transformation is achieved under normal homogenising conditions; reduce the AIFeSi particle size (which is however also dependent on the diameter of the billet being homogenised); and increase the degree of AIFeSi spheroidisation, preferably to at least 0.5 or 0.51 (where 0 equals a rod and 1 equals a sphere).
  • Cu has the advantage of improving tensile strength without a comparable increase in extrusion breakthrough pressure; and a disadvantage of giving rise to corrosion problems.
  • Cu may be included in alloys of this invention at concentrations up to 0.25% preferably up to 0.20%, and particularly up to 0.10%.
  • the strength of extrusion alloys is sometimes expressed in terms of their Mg 2 Si content, which for excess Si alloys such as these may be calculated as Mg x1.57.
  • the Mg 2 Si content of alloys according to this invention is preferably 0.314 - 0.55 wt%, particularly 0.38 - 0.53 t%.
  • Si is present in an excess over that required to combine with all Mg as Mg 2 Si, and with all Fe and Mn as AI(Fe,Mn)Si. (The terms AIFeSi and AI(Fe,Mn)Si are conventionally used to denote intermetallics containing these elements but not necessarily in these proportions).
  • the excess Si is preferably 0.08 - 0.48 wt% particularly 0.12 - 0.40 wt%. Where this excess is too small, it will be difficult to achieve the required tensile strength properties. Where this excess is too large, alloy formability and extrusion surface quality may be adversely affected.
  • An extrusion ingot of the alloy of the invention may be made by any convenient casting technique, e.g. by a d.c. casting process, preferably by means of a short mould or hot-top d.c. process.
  • the Fe is preferably present as an insoluble secondary phase in the form of fine ⁇ -AIFeSi platelets, preferably not more than 15 ⁇ m in length or, if in the ⁇ form, free from script and coarse eutectic particles.
  • the as-cast extrusion ingot is homogenised, partly to bring the soluble secondary magnesium-silicon phases into suitable form, to dissolve the silicon and partly to convert ⁇ -AIFeSi particles into substantially ⁇ -AIFeSi particles, preferably below 15 ⁇ m long and with 90% below 6 ⁇ m long.
  • Homogenisation typically involves heating the ingot at more than 530°C e.g. 550 - 600°C for 30 minutes to 24 hours with higher temperatures requiring shorter hold times.
  • Cooling from homogenisation temperature should preferably be sufficiently fast to avoid the formation of coarse ⁇ -Mg 2 Si particles which would not redissolve during extrusion. It is preferred to cool the ingot at a rate of at least 150°C per hour from homogenisation temperature down to a temperature not greater than 425°C. The ingot may be held for a few hours at a temperature in the range 300 - 425°C, as described in EP 222 479, in order to encourage the formation of a rather fine precipitate ⁇ '-Mg 2 Si which has the effect of reducing extrusion breakthrough pressure and of redissolving during extrusion so as to permit development of maximum tensile strength in age hardened extrusions. The rate of cooling below 300°C is immaterial.
  • the homogenised extrusion ingot is then heated for extrusion.
  • the solutionising treatment described in EP 302 623 may be used.
  • the initial billet temperature can be chosen to match the pressure capacity of the extrusion press being used.
  • the emerging extrusion is cooled, either by water or forced air or more preferably in still air, and subjected to an ageing process in order to develop desired strength and toughness properties.
  • Ageing typically involves heating the extrusion to an elevated temperature in the range 150 - 200°C, and holding at that temperature for 1 - 48 hours, with higher temperatures requiring shorter hold times.
  • a preferred rate of heating is from 10 - 100°C particularly 10 - 70°C per hour; if the heating rate is too slow, low throughput results in increased costs; if the heating rate is too high, the mechanical properties developed are less than optimum.
  • An effect equivalent to slow heating can be achieved by a two-stage heating schedule, with a hold temperature typically in the range of 80 - 140°C, for a time sufficient to give an overall heating rate within the above range. Holding the extrusion for 24 hours or more at room temperature is also beneficial.
  • extrusions When aged to peak strength, extrusions are capable of meeting the requirements of T5 (tensile strength of 152 MPa) or preferably of T6 (tensile strength of about 207 MPa) with improved press productivity.
  • the reduced flow stress characteristics also make it possible to produce shapes such as high aspect ratio heat sinks that are difficult to produce in existing alloys.
  • the basic features of the alloys can also be applied for bright dip applications, with appropriate additions of copper or for matt etching applications with appropriate control of the iron content. Some of the more dilute versions of the alloys are suitable for applications where low strength is acceptable but where good formability is required.
  • compositions listed in Tables 1 and 2 were DC cast as 100 mm diameter ingots. These covered the following ranges of composition:
  • the range of alloys included a control alloy based on a commercially available alloy 6060 (Example 11) and 6063.
  • the billets were homogenised using a practice of 2 hrs at 585°C followed by cooling at 350°C/hr, which is a typical practice for Al- Mg-Si alloys.
  • the alloys were then extruded using a 750 tonne, 100 mm diameter extrusion press. Billets were induction heated using a number of different practices and then extruded into a 50 x 3 mm flat strip, equivalent to an extrusion ratio of 52:1.
  • the extrusion speeds used ranged from 12 to 40 m/min. Initially the billet was extruded using a billet temperature of 480°C at an exit speed of 40 m/min giving an exit temperature of at least 510°C. The strip was still air cooled at 2°C/sec. After 24 hours the alloys were aged using the following practices:
  • the minimum tensile strength requirement of AA6063T6 can be satisfied at magnesium levels of 0.29 and above with appropriate control of the silicon level.
  • the strength obtained from such alloys is equivalent to the properties obtained with the alloy 6060.
  • the 6063T5 minimum tensile strength requirement can be easily met with all but the lowest Mg and Si compositions tested. This includes all the new 0.25 wt% Mg alloys tested apart from the lowest silicon level.
  • Figure 1 showing alloy composition fields and strength contours have been reproduced as Figure 3, in which are shown the compositions and tensile strengths of the various alloys listed in Table 1. From this graph it is evident that alloys containing as little as 0.20 wt% Mg can be formulated with suitably high Si contents to pass the T5 specification.
  • Figure 4 is a graph of elongation at break for alloys of various compositions after ageing by practice 1. Elongation at break in a tensile test is one measure of formability. The following conclusions can be drawn from this figure:
  • the pressure requirements of the new alloy range have been compared with existing alloys AA6060 and AA6063 in the temperature range 400 to 475°C.
  • the alloys were extruded into a thin wall profile (1.3 mm thick l-section) at a reduction ration of 125:1.
  • Individual billets were extruded at 400, 425, 450, 475°C.
  • the experiments were carried out on a laboratory press as described previously. The press liner, die and tooling were preheated to the billet temperature in each case.
  • the AA6063 composition is included in Table 1.
  • Figure 5 summarises the results expressed as mean breakthrough pressure over the temperature range 400 - 475°C.
  • the alloys are ranked on the y-axis in terms of decreasing magnesium and silicon contents.
  • Figures 8 and 9 show the effect of ageing practice on the properties achievable. Further increases in strength are possible for all the compositions studied by reducing the heating rate to the ageing temperature to 20°C/hr (practice 3) or by using the two stage heat treatment (practice 4).
  • Figures 10 to 13 show the results of experiments performed by taking 178 mm diameter ingots of alloys according to the invention containing 0.25 - 0.50 wt% magnesium (the Mg content does not affect the results) and variable concentrations of silicon as shown; and subjecting the ingots to homogenisation under conventional conditions, typically 2 hours at 585°C.
  • Figure 10 shows the effect of increasing silicon levels on the percentage of ⁇ -AIFeSi remaining after homogenisation for ingots containing 0.03 wt% Mn. Above 0.5 wt% Si, the percent ⁇ -AIFeSi at the end of homogenisation is significantly reduced.
  • Figures 11 and 12 show the mean size and degree of spheroidisation for the same alloys. The increase in residual ⁇ -AIFeSi at higher Si levels corresponds to an increase in particle size and lack of spheroidisation.
  • a single further point shows that, by changing the Mn concentration from 0.03% to 0.09%, these detrimental effects on intermetalllic type, size and shape can be reversed.
  • Figure 13 shows the effect of incremental Mn additions on the level of ⁇ -AIFeSi remaining after standard homogenisation practice. Lines are shown for two Si levels of 0.50% and 0.60%.
  • a target often used for homogenisation of dilute 6060 alloys is to achieve 90% ⁇ -AIFeSi after homogenisation.
  • the amount of Mn required to achieve this increases with the bulk Si content.
  • a deliberate addition of Mn is not necessary to achieve this target, but the addition can still be useful in improving the extent of spheroidisation for a given homogenisation treatment.
  • Figure 14 is a graph showing the effect of Mg and Si content on roughness Ra of extrusions made from alloys shown in Table 1 at an extrusion temperature of 450°C.
  • the exit speed was 100 m/min
  • the extrusion ratio was 125:1
  • the section thickness was 1.3 mm. It can be seen that surface roughness begins to be a problem at Si levels above about 0.52 wt%.
  • Figure 15 is a chart showing the effect of alloy composition on tensile strength. Four ingots of each of nine different alloy compositions 17 to 25 as shown in Table 3 were extruded and aged and the UTS measured. The billet temperature was 450°C, the extrusion ratio was 125:1 and the quench rate was 3°C/s.
  • Table 4 below provides further data on the extrusion properties of those example alloys 17 to 25: the load required to achieve extrusion at 100 metres/minute; and the roughness of the resulted extruded section.
  • a comparison of example alloys 18, 19 and 20 shows that, at high Si levels, surface finish can be substantially improved by Mn addition.
  • a comparison of prior art alloys 21 and 25 with the others shows that the invention alloys require lower extrusion pressures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)

Abstract

An alloy of composition in wt.% (see table (I)) and incidental impurities up to 0.05 each 0.15 total, balance Al. The alloy can be extruded at high speed to provide extruded sections which meet T5 or T6 strength requirements.

Description

Al-Mg-Si ALLOY WITH GOOD EXTRUSION PROPERTIES
This invention concerns AIMgSi alloys of the 6000 series of the Aluminum Association Register. The compositions are low magnesium containing AIMgSi alloys with appropriate silicon and copper additions to meet the strength requirements of AA6063T5 and T6. AA6063 accounts for approximately 80% of all aluminium extruded products. At this bottom end of the extrusion market, there is a need for extrusions which meet the T5 or T6 strength requirements but which can be manufactured at the highest possible rates of extrusion.
This need was addressed in a paper by D Marchive in Light Metal Age, April 1983, pages 6-10. The author reported a trend towards reducing the content of Mg2Si and compensating for this by increasing the excess of Si, but that resulted in loss of formability. He reported new alloys in which the concentrations of Mg, Si, Cu, Mn and Cr were optimised to provide alloys which exhibited the required tensile properties but with superior extrudability, formability and toughness. The alloys had Mg contents in the range 0.35 to 0.60. There has been a prejudice in the industry against reducing the Mg content of 6000 series general purpose extrusion alloys below 0.35 wt%. Of the 63 6000 series alloys listed in the Aluminum Association Register, all the general purpose extrusion alloys require a Mg content of at least 0.35 wt%. WO 95/06759 describes high strength high extrudability
AIMgSi Alloys having the composition in wt%: Mg 0.25 - 0.40; Si 0.60 - 0.90; Fe up to 0.35; Mn up to 0.35 preferably 0.10 - 0.25. But these are not general purpose extrusion alloys. By virtue of the high Si content they have high tensile strength generally in excess of 250 MPa and they preferably contain Mn to improve extrusion surface quality. This invention concerns general purpose extrusion alloys having the minimum alloying additions required to meet the strength requirements of AA 6063T5 (peak aged tensile strength of at least about 152 MPa) and T6 (peak aged tensile strength of at least about 207 MPa). Decreasing the Mg content of such an alloy reduces the flow stress of the material at the temperatures used for extrusion, which in turn reduces the extrusion pressure and the work done in the process. Approximately 90% of the work of extrusion is converted to heat which results in temperature rise in the extruded product. With the dilute alloys described here, less heat is generated in the extrusion process as compared with conventional alloys, such that the product can be extruded at a higher speed before surface deterioration occurs. Usually the productivity of an aluminium extrusion is limited by the onset of various types of surface defect which is linked to the attainment of a critical temperature at the surface of the product.
The lower breakthrough pressure associated with the lower Mg content also means that for a given extrusion press, the initial billet temperature can be reduced until the pressure required matches the press capacity. This has the effect of further reducing the temperature of the product as it exits the die which gives further productivity benefits.
In one aspect the invention provides an alloy of composition in wt%
Broad Narrow
Mg 0.20 - 0.34 0.20 - 0.30
Si 0.35 - 0.60 0.40 - 0.59
Mn 0.15 max 0.03 - 0.10
Cu 0.25 max 0.20 max
Fe 0.35 max 0.25 max incidental impurities up to 0.05 each 0.15 total balance Al provided that when Mg is at least 0.30 and Cu is at least 0.05, then Fe is greater than 0.15.
The invention also provides extrusion ingots of the alloy as defined; and extrusions (i.e. extruded sections) made from such ingots. Reference is directed to the accompanying drawings in which:-
Figure 1 is a graph showing Mg and Si concentrations of certain dilute 6000 alloys.
Figure 2 is a graph of tensile strength against Si content for alloys of different composition.
Figure 3 is a graph showing T5 and T6 limits for various dilute 6000 alloys.
Figure 4 is a graph showing elongation at break for alloys of different composition. Figure 5 is a bar chart showing relative mean extrusion breakthrough pressure for alloys of different composition.
Figure 6 is a graph showing extrusion breakthrough load at 450°C for alloys of different composition.
Figure 7 is a graph showing extrusion breakthrough load at 425°C for alloys of different composition.
Figures 8 and 9 are graphs of tensile strength against Si content of two different alloys showing the effects of different ageing practices.
Figure 10 is a graph showing the effect of silicon content on α-β transformation.
Figure 1 1 is a graph showing the effect of silicon content on AIFeSi intermetallic size.
Figure 12 is a graph showing the effect of silicon content on AIFeSi spheroidisation. Figure 13 is a graph showing the effect of Si and Mn levels on α-β transformation.
Figure 14 is a graph showing the effect of Mg and Si content on roughness of extrusions according to the invention at an extrusion temperature of 450°C. Figure 15 is a graph showing the effect of alloy composition on tensile strength.
Referring to Figure 1 , the boxes marked A and B designate the broad and narrow compositions of alloys according to the invention as defined above. Also shown for comparison is the bottom end of a box for AA6060, a general purpose extrusion alloy; and the left hand side of a box for the high strength alloy described in WO 95/06759. Lines marked T5 and T6 represent the compositions required to produce extrusions capable of passing these tests. The positions of these lines are somewhat variable depending on ingot pretreatment conditions, rate of cooling the extrusions and extrusion ageing conditions.
The Mg content of the invention alloy is set at 0.20 - 0.34 preferably 0.20 - 0.30%. If the Mg content is too low, it is difficult to achieve the required strength in the aged extrusions. Extrusion pressure increases with Mg content, and becomes unacceptable at high Mg contents.
The Si content is set at 0.35 - 0.60 preferably 0.40 - 0.59. If the Si content is too low, the alloy strength is adversely affected, while if the Si content is too high, extrudability may be reduced. Formability has also been reported to be impaired at high Si levels, but it has been found that this effect is not important within the composition range of the invention. A function of the Si is to strengthen the alloy without adversely affecting extrudability, high temperature flow stress or anodising and corrosion characteristics.
The presence of Fe in the alloy is normally unavoidable. An upper concentration limit is set at 0.35, preferably 0.25%. It is likely to be preferred to use alloys containing at least 0.15% Fe, to prevent bright finish on anodising and because these alloys are less expensive than alloys containing lower Fe concentrations especially when made from remelted scrap. In the as-cast alloy ingots, Fe is present in the form of large plate- like β-AIFeSi particles. Preferably the extrusion ingot is homogenised to convert β-AIFeSi to substantially (at least 80% and preferably more than 90%) the α-AIFeSi form.
Mn has a number of different effects. Although it has previously been included in extrusion alloys to improve toughness, it is generally not useful for this purpose for alloys of the present invention. At very high levels, Mn gives rise to problems with quench sensitivity due to increased levels of dispersoid formation. To avoid this, Mn levels are preferably kept below 0.15% particularly below 0.10%.
The inventors have determined that, when included at a level of at least 0.02% preferably at least 0.03%, Mn has a hitherto unpublished technical effect. This is that silicon levels of about 0.50 wt% or greater lead to increased stability of the β-AIFeSi phase at homogenisation temperatures. This retards the transformation of the AIFeSi intermetallic from β to α during homogenisation. As a result, the break up of the intermetallics is retarded such that mean size of the intermetallic phases is increased and a degree of spheroidisation is reduced. This has detrimental effects on the extrudability of the material and causes poor surface finish. The effects of the silicon level on β stability can be avoided by adding an appropriate level of manganese to the alloy which stabilises the α form of the AI(Fe,Mn)Si intermetallic. Thus a preferred minimum manganese content can be expressed:-
Wt% manganese = at least 0.3 x wt% silicon - 0.12 Inclusion of manganese in these concentrations helps to: promote a β to α AIFeSi transformation during homogenisation such that at least an 80% and preferably at least 90% transformation is achieved under normal homogenising conditions; reduce the AIFeSi particle size (which is however also dependent on the diameter of the billet being homogenised); and increase the degree of AIFeSi spheroidisation, preferably to at least 0.5 or 0.51 (where 0 equals a rod and 1 equals a sphere).
Cu has the advantage of improving tensile strength without a comparable increase in extrusion breakthrough pressure; and a disadvantage of giving rise to corrosion problems. Particularly at low Si levels, Cu may be included in alloys of this invention at concentrations up to 0.25% preferably up to 0.20%, and particularly up to 0.10%.
The strength of extrusion alloys is sometimes expressed in terms of their Mg2Si content, which for excess Si alloys such as these may be calculated as Mg x1.57. The Mg2Si content of alloys according to this invention is preferably 0.314 - 0.55 wt%, particularly 0.38 - 0.53 t%. Si is present in an excess over that required to combine with all Mg as Mg2Si, and with all Fe and Mn as AI(Fe,Mn)Si. (The terms AIFeSi and AI(Fe,Mn)Si are conventionally used to denote intermetallics containing these elements but not necessarily in these proportions). Excess Si is calculated according to the following formula Excess Si = Si - Mg/1.73 - (Fe+Mn)/3.
In alloys of the present invention, the excess Si is preferably 0.08 - 0.48 wt% particularly 0.12 - 0.40 wt%. Where this excess is too small, it will be difficult to achieve the required tensile strength properties. Where this excess is too large, alloy formability and extrusion surface quality may be adversely affected.
An extrusion ingot of the alloy of the invention may be made by any convenient casting technique, e.g. by a d.c. casting process, preferably by means of a short mould or hot-top d.c. process. The Fe is preferably present as an insoluble secondary phase in the form of fine β-AIFeSi platelets, preferably not more than 15 μm in length or, if in the α form, free from script and coarse eutectic particles.
The as-cast extrusion ingot is homogenised, partly to bring the soluble secondary magnesium-silicon phases into suitable form, to dissolve the silicon and partly to convert β-AIFeSi particles into substantially α-AIFeSi particles, preferably below 15 μm long and with 90% below 6 μm long. Homogenisation typically involves heating the ingot at more than 530°C e.g. 550 - 600°C for 30 minutes to 24 hours with higher temperatures requiring shorter hold times.
Cooling from homogenisation temperature should preferably be sufficiently fast to avoid the formation of coarse β-Mg2Si particles which would not redissolve during extrusion. It is preferred to cool the ingot at a rate of at least 150°C per hour from homogenisation temperature down to a temperature not greater than 425°C. The ingot may be held for a few hours at a temperature in the range 300 - 425°C, as described in EP 222 479, in order to encourage the formation of a rather fine precipitate β'-Mg2Si which has the effect of reducing extrusion breakthrough pressure and of redissolving during extrusion so as to permit development of maximum tensile strength in age hardened extrusions. The rate of cooling below 300°C is immaterial. The homogenised extrusion ingot is then heated for extrusion. The solutionising treatment described in EP 302 623 may be used. As is conventional in the art, the initial billet temperature can be chosen to match the pressure capacity of the extrusion press being used. The emerging extrusion is cooled, either by water or forced air or more preferably in still air, and subjected to an ageing process in order to develop desired strength and toughness properties.
Ageing typically involves heating the extrusion to an elevated temperature in the range 150 - 200°C, and holding at that temperature for 1 - 48 hours, with higher temperatures requiring shorter hold times. As demonstrated in the experimental section below, the response of the extrusion to this ageing process depends significantly on the rate of heating. A preferred rate of heating is from 10 - 100°C particularly 10 - 70°C per hour; if the heating rate is too slow, low throughput results in increased costs; if the heating rate is too high, the mechanical properties developed are less than optimum. An effect equivalent to slow heating can be achieved by a two-stage heating schedule, with a hold temperature typically in the range of 80 - 140°C, for a time sufficient to give an overall heating rate within the above range. Holding the extrusion for 24 hours or more at room temperature is also beneficial.
When aged to peak strength, extrusions are capable of meeting the requirements of T5 (tensile strength of 152 MPa) or preferably of T6 (tensile strength of about 207 MPa) with improved press productivity. The reduced flow stress characteristics also make it possible to produce shapes such as high aspect ratio heat sinks that are difficult to produce in existing alloys. The basic features of the alloys can also be applied for bright dip applications, with appropriate additions of copper or for matt etching applications with appropriate control of the iron content. Some of the more dilute versions of the alloys are suitable for applications where low strength is acceptable but where good formability is required.
EXPERIMENTAL
The invention has been tested in the laboratory. A range of compositions listed in Tables 1 and 2 were DC cast as 100 mm diameter ingots. These covered the following ranges of composition:
Mg 0.23 - 0.48 wt%
Si 0.39 - 0.61 wt%
Cu 0.001 - 0.10 wt%
Fe 0.17 - 0.19 wt% Mn 0.028 - 0.03 wt% The range of alloys included a control alloy based on a commercially available alloy 6060 (Example 11) and 6063.
The billets were homogenised using a practice of 2 hrs at 585°C followed by cooling at 350°C/hr, which is a typical practice for Al- Mg-Si alloys. The alloys were then extruded using a 750 tonne, 100 mm diameter extrusion press. Billets were induction heated using a number of different practices and then extruded into a 50 x 3 mm flat strip, equivalent to an extrusion ratio of 52:1. The extrusion speeds used ranged from 12 to 40 m/min. Initially the billet was extruded using a billet temperature of 480°C at an exit speed of 40 m/min giving an exit temperature of at least 510°C. The strip was still air cooled at 2°C/sec. After 24 hours the alloys were aged using the following practices:
1. 100°C/hr heat up, soak for 5 hrs at 185°C.
2. 50°C/hr heat up, soak for 5 hrs at 185°C. 3. 20°C/hr heat up, soak for 5 hrs at 185°C.
4. 100°C/hr heat up, soak for 5 hrs at 120°C followed by100°C/hr heat up, soak for 5 hrs at 185°C. Figure 2 shows the tensile strengths obtained using the first heat treatment as a function of silicon and magnesium content. The requirements of the AA6063T5 and T6 specifications are shown. The following points can be drawn from this diagram, bearing in mind that the accepted alloy specification for most extruded applications is AA6063:
• The minimum tensile strength requirement of AA6063T6 can be satisfied at magnesium levels of 0.29 and above with appropriate control of the silicon level. The strength obtained from such alloys is equivalent to the properties obtained with the alloy 6060.
• The 6063T5 minimum tensile strength requirement can be easily met with all but the lowest Mg and Si compositions tested. This includes all the new 0.25 wt% Mg alloys tested apart from the lowest silicon level.
• The addition of 0.10 wt% copper to a 0.29 wt% Mg alloy resulted in a 10 MPa increase in tensile strength. This indicates that it should be possible to meet the 6063T6 requirement at 0.25 wt% Mg - 0.6 wt% Si by adding a similar level of copper.
Figure 1 showing alloy composition fields and strength contours have been reproduced as Figure 3, in which are shown the compositions and tensile strengths of the various alloys listed in Table 1. From this graph it is evident that alloys containing as little as 0.20 wt% Mg can be formulated with suitably high Si contents to pass the T5 specification.
Figure 4 is a graph of elongation at break for alloys of various compositions after ageing by practice 1. Elongation at break in a tensile test is one measure of formability. The following conclusions can be drawn from this figure:
• Elongation did not decrease with increased excess Si and at the lowest Mg level (0.25 wt%) elongation increased only slightly with increasing Si.
• The AA6060 control gave similar elongation values to the experimental alloys.
• All the values were in excess of the minimum requirements, which are 8%, of AA6063T5 and T6.
The pressure requirements of the new alloy range have been compared with existing alloys AA6060 and AA6063 in the temperature range 400 to 475°C. In this case the alloys were extruded into a thin wall profile (1.3 mm thick l-section) at a reduction ration of 125:1. Individual billets were extruded at 400, 425, 450, 475°C. The experiments were carried out on a laboratory press as described previously. The press liner, die and tooling were preheated to the billet temperature in each case. The AA6063 composition is included in Table 1. Figure 5 summarises the results expressed as mean breakthrough pressure over the temperature range 400 - 475°C. The alloys are ranked on the y-axis in terms of decreasing magnesium and silicon contents. There is a progressive decrease in pressure as the magnesium and silicon contents are reduced. All the alloys within the composition range covered by the invention offer useful pressure reductions as compared to conventional alloys AA 6060 and AA6063. As described above, these useful improvements in extrudability can be achieved whilst still satisfying the mechanical property requirements for these types of applications. Figures 6 and 7 give more detailed pressure data for a typical extrusion temperatures of 450 and 425°C. The benefits of the new alloy range, in terms of reduced extrusion pressure, appear to increase as lower billet temperatures are utilised.
The addition of 0.10 wt% Cu to the 0.30 wt% Mg containing alloy does raise the extrusion pressure such that it is equivalent to adding 0.05 wt% Mg. From Figure 2, it is also equivalent to an addition of 0.05 wt% Mg or 0.05 wt% Si in terms of mechanical properties and is still a useful way of controlling the mechanical properties.
The effect of ageing practice on the properties achievable is shown in Figures 8 and 9, (in which extrusion ingots were solutionised by the technique described in EP 302623A). Further increases in strength are possible for all the compositions studied by reducing the heating rate to the ageing temperature to 20°C/hr (practice 3) or by using the two stage heat treatment (practice 4). Figures 10 to 13 show the results of experiments performed by taking 178 mm diameter ingots of alloys according to the invention containing 0.25 - 0.50 wt% magnesium (the Mg content does not affect the results) and variable concentrations of silicon as shown; and subjecting the ingots to homogenisation under conventional conditions, typically 2 hours at 585°C. Figure 10 shows the effect of increasing silicon levels on the percentage of β-AIFeSi remaining after homogenisation for ingots containing 0.03 wt% Mn. Above 0.5 wt% Si, the percent α-AIFeSi at the end of homogenisation is significantly reduced. Figures 11 and 12 show the mean size and degree of spheroidisation for the same alloys. The increase in residual β-AIFeSi at higher Si levels corresponds to an increase in particle size and lack of spheroidisation. In each of Figures 10, 11 and 12, a single further point shows that, by changing the Mn concentration from 0.03% to 0.09%, these detrimental effects on intermetalllic type, size and shape can be reversed. Figure 13 shows the effect of incremental Mn additions on the level of β-AIFeSi remaining after standard homogenisation practice. Lines are shown for two Si levels of 0.50% and 0.60%. A target often used for homogenisation of dilute 6060 alloys is to achieve 90% α-AIFeSi after homogenisation. The amount of Mn required to achieve this increases with the bulk Si content. For alloys containing less than 0.50 wt.% Si, a deliberate addition of Mn is not necessary to achieve this target, but the addition can still be useful in improving the extent of spheroidisation for a given homogenisation treatment.
Figure 14 is a graph showing the effect of Mg and Si content on roughness Ra of extrusions made from alloys shown in Table 1 at an extrusion temperature of 450°C. The exit speed was 100 m/min, the extrusion ratio was 125:1 and the section thickness was 1.3 mm. It can be seen that surface roughness begins to be a problem at Si levels above about 0.52 wt%. Figure 15 is a chart showing the effect of alloy composition on tensile strength. Four ingots of each of nine different alloy compositions 17 to 25 as shown in Table 3 were extruded and aged and the UTS measured. The billet temperature was 450°C, the extrusion ratio was 125:1 and the quench rate was 3°C/s. Ageing was 5hr at 180°C with a 100°C/hr heating rate. The results show that an alloy content of 0.31 wt% Mg and 0.53 wt% Si is close to the lower limit for achieving 6063 T6 properties. A comparison of Example alloys 18, 19 and 20 shows that Mn addition does not have any significant effect on strength.
Table 4 below provides further data on the extrusion properties of those example alloys 17 to 25: the load required to achieve extrusion at 100 metres/minute; and the roughness of the resulted extruded section. A comparison of example alloys 18, 19 and 20 shows that, at high Si levels, surface finish can be substantially improved by Mn addition. A comparison of prior art alloys 21 and 25 with the others shows that the invention alloys require lower extrusion pressures.
Table 1
Table 2
Table 3
Table 4

Claims

1. An alloy of composition in wt%
Broad Narrow
Mg 0.20 - 0.34 0.20 - 0.30
Si 0.35 - 0.60 0.40 - 0.59
Mn 0.15 max 0.03 - 0.10 Cu 0.25 max 0.20 max
Fe 0.35 max 0.25 max incidental impurities up to 0.05 each 0.15 total balance Al provided that when Mg is at least 0.30 wt% and Cu is at least 0.05 wt%, then Fe is greater than 0.15 wt%.
2. An alloy as claimed in claim 1 , wherein the Mg2Si concentration is 0.35 - 0.55 wt% and the excess Si is 0.10 - 0.45 wt%.
3. An alloy as claimed in claim 1 or claim 2, wherein the wt% of Mn is at least (0.3xSi - 0.12).
4. An alloy as claimed in any one of claims 1 to 3, wherein the
Fe content is at least 0.15 wt%.
5. An alloy as claimed in any one of claims 1 to 4, wherein the Mn content is at least 0.02 wt%.
6. An extrusion ingot of the alloy as claimed in any one of claims 1 to 5, in which Fe is present substantially as ╬▒-AIFeSi.
7. An extrusion made from an ingot as claimed in claim 6.
8. An extrusion as claimed in claim 7, which has in the T6 temper an ultimate tensile strength of at least 207 MPa.
9. An extrusion as claimed in claim 8 which has been thermally aged, wherein the rate of heating for ageing was 10 - 100┬░C/hr.
10. A method of making an extrusion which method comprises providing an extrusion ingot of an alloy of composition in wt%
Broad Narrow
Mg 0.20 - 0.34 0.20 - 0.30 Si 0.35 - 0.60 0.40 - 0.59
Mn 0.15 max 0.03 - 0.10
Cu 0.25 max 0.20 max
Fe 0.35 max 0.25 max incidental impurities up to 0.05 each 0.15 total balance Al provided that when Mg is at least 0.30 wt% and Cu is at least
0.05 wt%, then Fe is greater than 0.15 wt%, homogenising the ingot to convert Fe to substantially an ╬▒-
AIFeSi form, cooling the homogenised ingot, and extruding the ingot.
11. A method as claimed in claim 10, wherein the homogenisation is effected at 550┬░C - 600┬░C for 30 minutes to 24 hours.
12. A method as claimed in claim 10 or claim 11 , wherein the homogenised ingot is cooled down to 425┬░C or less at a rate of at least
150┬░C per hour.
13. A method as claimed in any one of claims 10 to 12, wherein the extrusion is age hardened by heating at 10 - 100┬░C/hr to an ageing temperature of 150 - 200┬░C.
EP98912599A 1997-03-21 1998-03-20 Al-Mg-Si ALLOY WITH GOOD EXTRUSION PROPERTIES Revoked EP0968315B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98912599A EP0968315B1 (en) 1997-03-21 1998-03-20 Al-Mg-Si ALLOY WITH GOOD EXTRUSION PROPERTIES

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP97301911 1997-03-21
EP97301911 1997-03-21
PCT/GB1998/000849 WO1998042884A1 (en) 1997-03-21 1998-03-20 Al-Mg-Si ALLOY WITH GOOD EXTRUSION PROPERTIES
EP98912599A EP0968315B1 (en) 1997-03-21 1998-03-20 Al-Mg-Si ALLOY WITH GOOD EXTRUSION PROPERTIES

Publications (2)

Publication Number Publication Date
EP0968315A1 true EP0968315A1 (en) 2000-01-05
EP0968315B1 EP0968315B1 (en) 2001-11-14

Family

ID=26147353

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98912599A Revoked EP0968315B1 (en) 1997-03-21 1998-03-20 Al-Mg-Si ALLOY WITH GOOD EXTRUSION PROPERTIES

Country Status (2)

Country Link
EP (1) EP0968315B1 (en)
WO (1) WO1998042884A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10215188B4 (en) * 2002-04-05 2005-12-08 Carl Mahr Holding Gmbh Measuring guide device with linear guide
NO20034731D0 (en) 2003-10-22 2003-10-22 Norsk Hydro As aluminum Alloy
WO2011105584A1 (en) * 2010-02-26 2011-09-01 古河電気工業株式会社 Aluminum alloy conductor
WO2021254852A1 (en) 2020-06-15 2021-12-23 Dimitri Fotij Reliable high extrusion rate production method for high corrosion resistance powdercoated recycle friendly aluminum soft alloys

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1333327A (en) * 1971-05-25 1973-10-10 Alcan Res & Dev Aluminium alloys
JPH02200750A (en) * 1989-01-31 1990-08-09 Sumitomo Light Metal Ind Ltd Aluminum alloy stock excellent in electric conductivity and its production
GB9318041D0 (en) * 1993-08-31 1993-10-20 Alcan Int Ltd Extrudable a1-mg-si alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9842884A1 *

Also Published As

Publication number Publication date
WO1998042884A1 (en) 1998-10-01
EP0968315B1 (en) 2001-11-14

Similar Documents

Publication Publication Date Title
US5198045A (en) Low density high strength al-li alloy
JP3194742B2 (en) Improved lithium aluminum alloy system
EP0981653B1 (en) Method of improving fracture toughness in aluminum-lithium alloys
EP0247181B1 (en) Aluminum-lithium alloys and method of making the same
WO1998033947A9 (en) Method of improving fracture toughness in aluminum-lithium alloys
CA2279308C (en) Al-mg-si alloy with good extrusion properties
JPH09310141A (en) High strength al-zn-mg alloy extruded member for structural material excellent in extrudability and its production
US3990922A (en) Processing aluminum alloys
US4921548A (en) Aluminum-lithium alloys and method of making same
CA2266193C (en) Extrudable aluminum alloys
EP3763844A1 (en) Al-mg-si alloy exhibiting superior combination of strength and energy absorption
EP0968315B1 (en) Al-Mg-Si ALLOY WITH GOOD EXTRUSION PROPERTIES
WO2021003528A1 (en) Aluminium alloys
EP0716716B1 (en) EXTRUDABLE Al-Mg-Si ALLOYS
JPH0447019B2 (en)
EP0266741A1 (en) Aluminium-lithium alloys and method of producing these
WO1997039156A1 (en) Aluminium alloy and extrusion
JP2002241880A (en) Aluminum alloy extrusion profile material having excellent bending workability and production method therefor
CN118028665B (en) High-strength aluminum alloy section bar for solar photovoltaic frame and preparation method thereof
KR102566343B1 (en) 6xxx series aluminium alloy extruded material with excellent tensile properties and its manufacturing method
EP4299780A1 (en) 6xxx alloy with high recycled material content
JPS63277744A (en) Can end part made of aluminum alloy and its production
JPH06145869A (en) Aluminum alloy sheet for high speed forming and its production
JPH06145870A (en) Aluminum alloy sheet for high speed forming and its production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000831

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011114

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011114

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011114

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011114

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011114

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011114

REF Corresponds to:

Ref document number: 208835

Country of ref document: AT

Date of ref document: 20011115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69802504

Country of ref document: DE

Date of ref document: 20011220

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020214

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020214

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020320

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020320

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2167877

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: NORSK HYDRO A.S.

Effective date: 20020807

Opponent name: PECHINEY

Effective date: 20020726

NLR1 Nl: opposition has been filed with the epo

Opponent name: NORSK HYDRO A.S.

Opponent name: PECHINEY

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030304

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030305

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030312

Year of fee payment: 6

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030331

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030408

Year of fee payment: 6

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20030408

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20030408

NLR2 Nl: decision of opposition

Effective date: 20030408