EP0968236A1 - Heisssiegelklebstoff - Google Patents

Heisssiegelklebstoff

Info

Publication number
EP0968236A1
EP0968236A1 EP98913605A EP98913605A EP0968236A1 EP 0968236 A1 EP0968236 A1 EP 0968236A1 EP 98913605 A EP98913605 A EP 98913605A EP 98913605 A EP98913605 A EP 98913605A EP 0968236 A1 EP0968236 A1 EP 0968236A1
Authority
EP
European Patent Office
Prior art keywords
copolymer
shell
heat seal
methylolacrylamide
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98913605A
Other languages
English (en)
French (fr)
Inventor
Heinz-Peter Klein
Reinhold Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Clariant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant GmbH filed Critical Clariant GmbH
Publication of EP0968236A1 publication Critical patent/EP0968236A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof

Definitions

  • the invention relates to aqueous plastic dispersions which contain latex particles with a soft core material and a hard shell material, and to their production and their use for sealable coatings.
  • Plastic dispersions for sealable coatings also known as heat-sealing lacquers or adhesives
  • a heat seal adhesive is defined as an adhesive that is applied to surfaces as a dispersion adhesive, adhesive varnish or hot melt adhesive, dries before bonding and then with Opposite side is bonded by strong pressure with simultaneous brief exposure to heat (for example in a high-frequency field or in a hot press).
  • EP-A 0 574 803 describes the use of an aqueous dispersion based on two copolymers with different glass transition temperatures, which differ by at least 5 ° C., as a heat seal lacquer with good blocking resistance and also described heat sealability.
  • the dispersions disclosed have high acid contents in the range from 12 to 20% by weight, based on the total mass of both copolymers. It is known that highly hydrophilic coatings do not have good wet adhesion properties.
  • DE-A 44 39 459 describes polymer dispersions which, because of the incorporation of so-called adhesive monomers with an amino, ureido or N-heterocyclic group, are suitable for the production of heat-sealable adhesive layers.
  • this object is achieved in that amino groups, ureido groups and N-heterocycle group-free plastic dispersions are built up from latex particles with a soft core material and a hard shell material, the glass transition temperature of the core material being less than 20 ° C. and the glass transition temperature of the shell material being greater than 30 ° C is, and used for the production of the shell material as comonomers N-methylol (meth) acrylamide and / or their alkyl ethers.
  • the invention relates to a heat seal adhesive containing latex particles with a core of a homo- or copolymer with a Glass transition temperature less than 20 ° C and a shell made of a copolymer with a glass transition temperature greater than 30 ° C, characterized in that the copolymer of the shell contains monomer units from the group N-methylolacrylamide, N-methylolmethacrylamide and their (C 1 -C 4 ) alkyl ethers , wherein the latex particles contain no monomer units with amino or ureido groups or N-heterocyclic groups.
  • the core / shell structure described in this patent application is intended to include, regardless of the morphology of the latex particles to be detected, all copolymers which are prepared by radical aqueous emulsion polymerization in two successive stages, the core being defined in the first stage and the shell in the second stage is produced.
  • the latex particles themselves preferably consist of 5 to 95% by weight, in particular 5 to 60% by weight, homopolymer or copolymer of the core, and preferably 95 to 5% by weight, in particular 95 to 40% by weight, of copolymer the shell, based in each case on the total mass of the latex particles.
  • ⁇ , ⁇ -monoethylenically unsaturated free-radically polymerizable monomers preferably esters of 3 to 6 carbon atoms containing ⁇ , ⁇ -monoethylenically unsaturated mono- and dicarboxylic acids, for example acrylic acid, methacrylic acid
  • acrylonitrile and methacrylonitrile as well as vinyl aromatics , for example styrene, ⁇ -methylstyrene and chlorostyrene.
  • Monomers which have an increased solubility in water, in particular ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids with preferably 3 to 6 carbon atoms, for example acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid and fumaric acid, and also vinylsulfonic acid, acrylamidopropanesulfonic acid and their water-soluble salts, are in core and Shell material at most contained in modifying amounts. This is usually less than 10% by weight, preferably 0.1 to 5% by weight, based on the total amount of the core and shell material.
  • Crosslinking comonomers with two or more copolymerizable carbon double bonds in the molecule for example vinyl (meth) acrylate, allyl (meth) acrylate, diol acrylates such as ethylene glycol diacrylate, butanediol-1, 3-diacrylate, butanediol-1, 4-diacrylate, hexanediol-1, 6-diacrylate, methylenebis (meth) acrylamide and diallyl esters of fumaric, maleic and itaconic acid can be used in small amounts, usually 0 to 5.0% by weight, based on the total amount of the core and shell material.
  • vinyl (meth) acrylate allyl (meth) acrylate
  • diol acrylates such as ethylene glycol diacrylate, butanediol-1, 3-diacrylate, butanediol-1, 4-diacrylate, hexanediol-1, 6-diacrylate,
  • epoxy-functional compounds for example glycidyl methacrylate and hydroxy-functional monoesters of dihydric alcohols and ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids, for example hydroxyethyl, hydroxypropyl and hydroxybutyl (meth) acrylate.
  • the shell material contains as comonomers N-methylol (meth) acrylamide and / or their (C 1 -C 4 ) alkyl ethers, for example N-methylolacrylamide, N-methylol methacrylamide, N- (iso-butoxymethyl) acrylamide and N- (isobutoxymethyl ) methacrylamide, preferably in amounts of 0.01 to 10.0% by weight, in particular 0.01 to 7.0% by weight, based on the total mass of the shell material.
  • N-methylol (meth) acrylamide and / or their (C 1 -C 4 ) alkyl ethers for example N-methylolacrylamide, N-methylol methacrylamide, N- (iso-butoxymethyl) acrylamide and N- (isobutoxymethyl ) methacrylamide, preferably in amounts of 0.01 to 10.0% by weight, in particular 0.01 to 7.0% by weight, based on the total mass of the shell material.
  • the core and shell material are preferably made up of two or more monomer units of the monomers listed below: methyl methacrylate, ethyl acrylate, n-butyl acrylate, tert-butyl methacrylate, 2-ethylhexyl acrylate, styrene, acrylonitrile, acrylic acid, methacrylic acid, Hydroxyethyl methacrylate, hydroxypropyl methacrylate, N-methylolacrylamide and N- (iso-butoxymethyl) acrylamide.
  • N-methylolacrylamide and N- (iso-butoxymethyl) acrylamide are preferably used exclusively to build up the shell material.
  • such monomer mixtures are used which give the respectively predetermined glass transition temperature for the core or shell material.
  • the respective monomer composition for a given glass transition temperature can be calculated using the equation according to Fox (T. G. Fox, Bull. Am. Phys. Soc. (Ser. II) 1, 123 (1956)).
  • the solids content of the plastic dispersions according to the invention is usually between 30 and 60% by weight, preferably 40 and 55% by weight.
  • the invention also relates to a process for producing a heat-seal adhesive by free-radically initiated polymerization of ethylenically unsaturated monomers in a first stage to form a polymer phase with a glass transition temperature below 20 ° C.
  • the plastic dispersions are prepared by the aqueous emulsion polymerization method in the presence of dispersants and free-radical polymerization initiators.
  • the monomer or the monomer mixture of the first stage can be metered into the polymerization vessel in the form of an aqueous monomer emulsion in whole or in part or entirely in the course of the first polymerization stage in anhydrous form or in the form of an aqueous emulsion.
  • the monomer or the monomer mixture second stage are copolymerized analogously to the possibilities already described in the first stage.
  • N-methylol (meth) acrylamides or their (C r C 4 ) -alkyl ethers to be copolymerized according to the invention in the second stage can be mixed into the monomer or monomer mixture or in the corresponding monomer emulsion, added to the polymerization vessel or added separately and in parallel to the monomer or are metered into the monomer mixture or the corresponding monomer emulsion.
  • both polymerization stages one works preferably at temperatures between 20 and 95 ° C, in particular 50 to 85 ° C.
  • the polymerization is started in both stages by conventional free-radical initiators which are able to initiate free-radical emulsion polymerization.
  • These can be initiators such as alkali or ammonium peroxydisulfates, azobisisobutyronitrile, 4,4-azobiscyanvaleric acid or their alkali salts, tert-butyl perpivalate, tert-butyl per-ethyl hexanoate or redox systems.
  • reducing agents for example sodium pyrosulfite, sodium hydrogen sulfite, sodium dithionite or the sodium salt of hydroxymethanesulfinic acid or ascorbic acid, optionally in combination with heavy metal salts, for example Fe (II ) Sulfate.
  • Suitable dispersants are the emulsifiers and protective colloids usually used in the implementation of free-radical aqueous emulsion polymerizations.
  • Anionic, cationic and nonionic types are suitable as emulsifiers, the anionic and nonionic types being particularly preferred.
  • the anionic emulsifiers can be the alkali or ammonium salts of alkyl, aryl or alkylarylsulfonates, sulfates, phosphates, phosphonates or compounds with other anionic end groups, which also include oligo or polyethylene oxide units between the hydrocarbon radical and the anionic group of these emulsifiers.
  • Typical examples are sodium lauryl sulfate, sodium undecyl glycol ether sulfate, Sodium octylphenol glycol ether sulfate, sodium dodecylbenzenesulfonate, sodium umlauryl diglycol sulfate, ammonium tri-tert-butylphenol penta- or octaglycol sulfate and alkali metal salts of mono- and dialkylated diphenyloxide disulfonic acids, which are often used as technical mixtures D® (Chemical) Dow.
  • Suitable nonionic emulsifiers are, for example, alkyl polyglycol ethers such as ethoxylation products of lauryl, oleyl or stearyl alcohol or of mixtures such as coconut fatty alcohol, alkylphenol polyglycol ethers such as ethoxylation products of octyl or nonylphenol, diisopropylphenol, triisopropylphenol or of di- or tri-tert, butyl or ethoxylated products proven by polypropylene oxide.
  • alkyl polyglycol ethers such as ethoxylation products of lauryl, oleyl or stearyl alcohol or of mixtures such as coconut fatty alcohol
  • alkylphenol polyglycol ethers such as ethoxylation products of octyl or nonylphenol, diisopropylphenol, triisopropylphenol or of di- or tri-tert, butyl or ethoxylated products proven by poly
  • the dispersions should contain the customarily used amounts of up to 3% by weight, preferably up to 2% by weight, of ionic emulsifiers or up to 6% by weight, preferably up to 4 % By weight of nonionic emulsifiers do not significantly exceed, so that the water resistance of the polymer films is not adversely affected.
  • Protective colloids that may be used are natural substances such as gum arabic, starch, alginates or modified natural substances such as methyl, ethyl, hydroxyalkyl or carboxymethyl cellulose or synthetic substances such as polyvinyl alcohol, polyvinylpyrrolidone or mixtures of such substances. Modified cellulose derivatives and synthetic protective colloids can preferably be used. However, the use of these protective colloids is possible only to a limited extent when using the monomer systems described, as is known to the person skilled in the art. The amounts which can be used are often small, for example 0.001 to 2% by weight. The tolerability and the type of addition must be checked on a case-by-case basis.
  • the invention also relates to the use of the heat seal adhesive in sealable coatings, in particular on metal and plastic. Examples
  • a mixture of 280 g of water, 4.0 g of sodium lauryl sulfate and 30 g of monomer emulsion 1 was placed in a reaction vessel and heated to 80 ° C. within 30 minutes with stirring. After reaching 80 ° C., 0.8 g of ammonium peroxydisulfate, dissolved in 5.0 g of water, was added. After a further 15 minutes, the remaining amount of monomer emulsion 1 and in parallel the initiator solution 1 were metered in continuously at a temperature of 80 ° C. ⁇ 2 ° C. over a period of 2 hours. After completion of the feed streams 1, the temperature at 80 ⁇ 2 ° C C was maintained for an additional 30 minutes.
  • the metering of monomer emulsion 2 was then started. In parallel, the initiator solution 2 and the comonomer solution were dosed. The dosing time was 2 hours for all three feeds. The polymerization mixture was then stirred for a further hour at 80 ° C. ⁇ 2 ° C. and then cooled to room temperature. The dispersion was adjusted to a pH of 6.5 ⁇ 0.5 with 12.5% aqueous ammonia solution.
  • the monomer emulsions 1 and 2 were prepared by adding the respective monomer mixture to the corresponding solution of water and emulsifier with vigorous stirring (high-speed stirrer).
  • Monomer emulsion 1 Monomer emulsion 2:
  • Initiator solution 1 Initiator solution 2:
  • Dispersion KD2 was synthesized analogously to the specification of dispersion KD1. Changes regarding the type and quantity of raw material are listed below for the KD 2 dispersion.
  • Monomer emulsion 1 Monomer emulsion 2:
  • Initiator solution 1 Initiator solution 2:
  • the dispersion VD1 was synthesized analogously to the instructions for dispersion KD1, but the dosage of the comonomer solution in stage 2 was dispensed with.
  • a mixture of 428.6 g of water, 4.0 g of sodium lauryl sulfate and 30 g of the monomer emulsion 1 was placed in a reaction vessel and heated to 80 ° C. within 30 minutes with stirring. After reaching 80 ° C., 0.8 g of ammonium peroxydisulfate, dissolved in 5.0 g of water, was added. After a further 15 minutes, the remaining amount of monomer emulsion 1 and in parallel the initiator solution 1 were metered in continuously at a temperature of 80 ° C. ⁇ 2 ° C. over a period of 2 hours. When feeds 1 had ended, the temperature was kept at 80 ° C. ⁇ 2 ° C. for a further 30 minutes.
  • the metering of monomer emulsion 2 was then started. In parallel, the initiator solution 2 was dosed. The dosing time was 2 hours for both feeds. The polymerization mixture was then left at 80 ° C. for a further hour Stirred 2 ° C and then cooled to room temperature. The dispersion was adjusted to a pH of 6.5 ⁇ 0.5 with 12.5% strength aqueous ammonia solution.
  • the monomer emulsions 1 and 2 were prepared by adding the respective monomer mixture to the corresponding solution of water and emulsifier with vigorous stirring (high-speed stirrer).
  • Monomer emulsion 1 Monomer emulsion 2:
  • Initiator solution 1 Initiator solution 2:
  • a mixture of 433.8 g of water, 4.0 g of sodium lauryl sulfate and 30 g of the monomer emulsion 1 was placed in a reaction vessel and heated to 80 ° C. within 30 minutes with stirring. After reaching 80 ° C., 0.8 g of ammonium peroxydisulfate, dissolved in 5.0 g of water, was added. After a further 15 minutes, the remaining amount of monomer emulsion 1 and, in parallel, the initiator solution 1 at a temperature of 80 ° C ⁇ 2 ° C was continuously over a Dosed for a period of 2 hours. When feeds 1 had ended, the temperature was kept at 80 ° C. ⁇ 2 ° C. for a further 30 minutes.
  • the metering of monomer emulsion 2 was then started. In parallel, the initiator solution 2 was dosed. The dosing time was 2 hours for both feeds. The polymerization mixture was then stirred for a further hour at 80 ° C. ⁇ 2 ° C. and then cooled to room temperature. The dispersion was adjusted to a pH of 6.5 ⁇ 0.5 with 12.5% strength aqueous ammonia solution.
  • the monomer emulsions 1 and 2 were prepared by adding the respective monomer mixture to the corresponding solution of water and emulsifier with vigorous stirring (high-speed stirrer).
  • Monomer emulsion 1 Monomer emulsion 2:
  • Initiator solution 1 Initiator solution 2:
  • a 50 ⁇ m thick wet film of the dispersion to be tested was applied to the matt side of a 40 ⁇ m thick aluminum foil (household foil quality) applied.
  • the wet film was then immediately dried in a forced air oven at 200 ° C for one minute. After cooling to room temperature, the coated aluminum foil was subjected to water storage for 30 minutes. After removing the film from the water bath, the coated side of the film was carefully dried with a soft absorbent paper.
  • two strips of transparent pressure-sensitive adhesive tape (Scotch Magic Tape 810, 19 mm wide, item no. 11257, manufacturer: 3M) were glued across and applied intensively. Then one adhesive strip was slowly removed from the heat seal coating and the other was removed quickly by hand.
  • the adhesion fracture behavior was assessed by determining the detached surface of the coating on the aluminum foil as a measure of the quality of the wet adhesion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Heißsiegelklebstoff, enthaltend Latexteilchen mit einem Kern aus einem Homo- oder Copolymerisat mit einer Glasübergangstemperatur kleiner 20 °C und einer Schale aus einem Copolymerisat mit einer Glasübergangstemperatur größer 30 °C, dadurch gekennzeichnet, daß das Copolymerisat der Schale Monomereinheiten aus der Gruppe N-Methylolacrylamid, N-Methylolmethacrylamid und deren (C1-C4)-Alkylether enthält, wobei die Latexteilchen keine Monomereinheiten mit Amino- oder Ureidogruppen oder N-heterocyclischen Gruppen enthalten; ein Verfahren zu seiner Herstellung sowie seine Verwendung.

Description

Heißsiegelklebstoff
Die Erfindung betrifft wäßrige Kunststoffdispersionen, die Latexpartikel mit einem weichen Kernmaterial und einem harten Schalenmaterial enthalten, sowie deren Herstellung und deren Verwendunα für siegelbare Beschichtungen.
Bei Kunststoffdispersionen für siegelbare Beschichtungen, auch Heißsiegellacke oder -klebstoffe genannt, handelt es sich um Polymerisate, die sich beispielsweise für Etikettierung, Nahtsiegelung, Flächenkaschierung verschiedener Substrate sowie zum Verschluß von Beuteln und Bechern für Lebensmittel und Fertigspeisen sowie für Displayverpackungen eignen. Im Römpp Chemie Lexikon (Band 3, Seite 1755 bis 1756, (1990), Thieme Verlag) ist ein Heißsiegelklebstoff definiert als Klebstoff, der als Dispersions-Kleber, Klebelack bzw. Schmelzklebstoff auf Flächen aufgetragen wird, vor der Verklebung abtrocknet und dann mit der Gegenseite durch starken Druck unter gleichzeitiger kurzer Hitzeeinwirkung (beispielsweise im Hochfrequenzfeld oder in der Heißpresse) verklebt wird.
Aufgrund der unterschiedlichen Arbeitsgänge beim Heißsiegelprozeß ergeben sich zum Teil gegenläufige Anforderungen. Wichtige Kriterien für Heißsiegellacke sind einerseits eine ausreichende Blockfestigkeit unter Lagerbedingungen (bis zu 50°C), da die beschichteten Substrate häufig gestapelt oder gerollt werden müssen. Demgegenüber ist andererseits eine nicht zu hohe Siegeltemperatur erwünscht, da insbesondere Kunststoffsubstrate, beispielsweise PVC, in ihrer Temperaturbeständigkeit limitiert sind. Eine hohe Siegelnahtfestigkeit ist ebenfalls erforderlich. Neben diesen Eigenschaften ist als weiteres wichtiges Anforderungskriterium die Naßhaftung auf unterschiedlichen Substraten, beispielsweise auf Metall und Kunststoff, zu nennen.
In der EP-A 0 574 803 wird die Verwendung einer wäßrigen Dispersion, basierend auf zwei Copolymerisaten mit unterschiedlichen Glasübergangstemperaturen, die sich um mindestens 5°C unterscheiden, als Heißsiegellack mit guter Blockfestigkeit und auch Heißsiegelbarkeit beschrieben. Die offenbarten Dispersionen weisen hohe Säuregehalte im Bereich von 12 bis 20 Gew.-%, bezogen auf die Gesamtmasse beider Copolymerisate, auf. Bekanntermaßen besitzen stark hydrophile Beschichtungen keine guten Naßhaftungseigenschaften.
Aus der EP-A 0 376 096 ist bekannt, daß sich Beschichtungen mit hohen Blockfestigkeiten auf Basis wäßriger Kunststoffdispersionen, die Latexteilchen mit einem harten Kernmaterial und einem weichen Schalenmaterial enthalten, erzielen lassen. Die Verwendung dieser Kunststoffdispersionen als heißsiegelbare Klebeschichten ist erwähnt, jedoch sind keine Angaben hinsichtlich anwendungstechnisch relevanter Eigenschaften, wie Siegeltemperatur, Siegelnahtfestigkeit und Naßhaftung aufgeführt.
In der DE-A 44 39 459 sind Polymerdispersionen beschrieben, die aufgrund des Einbaus sogenannter Haftmonomere mit einer Amino-, Ureido- oder N-heterocyclischen Gruppe zur Herstellung heißsiegelbarer Klebschichten geeignet sind.
Aufgabe der vorliegenden Erfindung war es daher, wäßrige Kunststoffdispersionen zur Verfügung zu stellen, die unter Einsatz kostengünstiger Monomere neben hoher Blockfestigkeit und guter Heißsiegelbarkeit eine gute Naßhaftung auf unterschiedlichen Substraten besitzen.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß Aminogruppen-, Ureidogruppen- und N-Heterocyclengruppen-freie Kunststoffdispersionen aus Latexpartikeln mit einem weichen Kernmaterial und einem harten Schalenmaterial aufgebaut werden, wobei die Glasübergangstemperatur des Kernmaterials kleiner 20°C und die Glasübergangstemperatur des Schalenmaterials größer 30°C beträgt, und für die Herstellung des Schalenmaterial als Comonomere N-Methylol(meth)acrylamid und/oder deren Alkylether eingesetzt werden.
Gegenstand der Erfindung ist ein Heißsiegelklebstoff, enthaltend Latexteilchen mit einem Kern aus einem Homo- oder Copolymerisat mit einer Glasübergangstemperatur kleiner 20°C und einer Schale aus einem Copolymerisat mit einer Glasübergangstemperatur größer 30°C, dadurch gekennzeichnet, daß das Copolymerisat der Schale Monomereinheiten aus der Gruppe N-Methylolacrylamid, N-Methylolmethacrylamid und deren (C1-C4)-Alkylether enthält, wobei die Latexteilchen keine Monomereinheiten mit Amino- oder Ureidogruppen oder N-heterocyclischen Gruppen enthalten.
Der in dieser Patentanmeldung beschriebene Kem/Schale-Aufbau soll unabhängig von der nachzuweisenden Morphologie der Latexpartikel alle Copolymerisate umfassen, die durch radikalische wäßrige Emulsionspolymerisation in zwei zeitlich aufeinanderfolgenden Stufen hergestellt werden, wobei definitionsgemäß in der ersten Stufe der Kern und in der zweiten Stufe die Schale erzeugt wird.
Die Latexteilchen selbst bestehen vorzugsweise aus 5 bis 95 Gew.-%, insbesondere 5 bis 60 Gew.-%, Homo- oder Copolymerisat des Kerns, und vorzugsweise 95 bis 5 Gew.-%, insbesondere 95 bis 40 Gew.-%, Copolymerisat der Schale, jeweils bezogen auf die Gesamtmasse der Latexteilchen.
Zum Aufbau der Homo- bzw. Copolymerisate des Kerns und der Schale kommen insbesondere α,ß-monoethylenisch ungesättigte radikalisch polymerisierbare Monomere in Betracht, vorzugsweise Ester von 3 bis 6 Kohlenstoffatomen aufweisenden α,ß-monoethylenisch ungesättigten Mono- und Dicarbonsäuren, beispielsweise Acrylsäure, Methacrylsäure, Crotonsäure, Maleinsäure, Fumarsäure und Itaconsäure mit vorzugsweise 1 bis 12, insbesondere 1 bis 8, Kohlenstoffatomen aufweisenden, aliphatischen Alkoholen, Vinylester von vorzugsweise 2 bis 18 Kohlenstoffatome aufweisenden aliphatischen Monocarbonsäuren, beispielsweise Vinylacetat, Vinylpropionat, Vinyl-n-butyrat, Vinyllaurat und Vinylstearat, Vinylester der Versatic®-Säure (α-verzweigte (Cg-C, ^-Monocarbonsäuren) (VeoVa®9, 10 und 11 , Shell B.V.), Nitrile von α,ß-monoethylenisch ungesättigten Carbonsäuren, beispielsweise Acrylnitril und Methacrylnitril, sowie Vinylaromaten, beispielsweise Styrol, α-Methylstyrol und Chlorstyrol. Monomere, die eine erhöhte Wasserlöslichkeit aufweisen, insbesondere α,ß-monoethylenisch ungesättigte Carbonsäuren mit vorzugsweise 3 bis 6 Kohlenstoffatomen, beispielsweise Acrylsäure, Methacrylsäure, Crotonsäure, Itaconsäure, Maleinsäure und Fumarsäure, sowie Vinylsulfonsäure, Acrylamidopropansulfonsäure und deren wasserlösliche Salze, sind in Kern- und Schalenmaterial allenfalls in modifizierenden Mengen enthalten. Üblicherweise sind das weniger als 10 Gew.-%, vorzugsweise 0,1 bis 5 Gew.-%, bezogen auf die Gesamtmenge des Kern- und Schalenmaterials.
Vernetzende Comonomere mit zwei oder mehr copolymerisierbaren Kohlenstoff- Doppelbindungen im Molekül, beispielsweise Vinyl(meth)acrylat, Allyl(meth)acrylat, Diolacrylate wie Ethylenglykoldiacrylat, Butandiol-1 ,3-diacrylat, Butandiol-1 ,4- diacrylat, Hexandiol-1 ,6-diacrylat, Methylenbis(meth)acrylamid, sowie Diallylester von Fumar-, Malein- und Itaconsäure können in geringen Mengen, üblicherweise 0 bis 5,0 Gew.-%, bezogen auf die Gesamtmenge des Kern- und Schalenmaterials, eingesetzt werden.
Als weitere Comonomere kommen Epoxy-funktionelle Verbindungen, beispielsweise Glycidylmethacrylat sowie Hydroxy-funktionelle Monoester aus zweiwertigen Alkoholen und α,ß-monoethylenisch ungesättigten Carbonsäuren, beispielsweise Hydroxyethyl-, Hydroxypropyl- und Hydroxybutyl(meth)acrylat in Betracht.
Das Schalenmaterial enthält als Comonomere N-Methylol(meth)acrylamid und/oder deren (C1-C4)-Alkylether, beispielsweise N-Methylolacrylamid, N-Methylolmethacrylamid, N-(iso-Butoxymethyl)acrylamid und N-(iso- Butoxymethyl)methacrylamid, vorzugsweise in Mengen von 0,01 bis 10,0 Gew.-%, insbesondere 0,01 bis 7,0 Gew.-%, bezogen auf die Gesamtmasse des Schalenmaterials.
Kern- und Schalenmaterial sind vorzugsweise aus zwei oder mehreren Monomereinheiten der nachfolgend aufgeführten Monomeren aufgebaut: Methylmethacrylat, Ethylacrylat, n-Butylacrylat, tert.-Butylmethacrylat, 2-Ethylhexylacrylat, Styrol, Acrylnitril, Acrylsäure, Methacrylsäure, Hydroxyethylmethacrylat, Hydroxypropylmethacrylat, N-Methylolacrylamid und N-(iso-Butoxymethyl)acrylamid. Dabei werden N-Methylolacrylamid und N-(iso-Butoxymethyl)acrylamid vorzugsweise ausschließlich zum Aufbau des Schalenmaterials eingesetzt.
Erfindungsgemäß werden solche Monomer-Mischungen verwendet, die die jeweils vorgegebene Glasübergangstemperatur für das Kern- bzw. Schalenmaterial ergeben. In guter Näherung läßt sich die jeweilige Monomerenzusammensetzung für eine vorgegebene Glasübergangstemperatur mittels der Gleichung nach Fox (T. G. Fox, Bull. Am. Phys. Soc. (Ser. II) 1 , 123 (1956)) berechnen.
Der Feststoffgehalt der erfindungsgemäßen Kunststoffdispersionen liegt üblicherweise zwischen 30 und 60 Gew.-%, vorzugsweise 40 und 55 Gew.-%.
Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung eines Heißsiegelklebstoffs durch radikalisch initiierte Polymerisation von ethylenisch ungesättigten Monomeren in einer ersten Stufe zu einer Polymerphase mit einer Glasübergangstemperatur kleiner 20 °C und anschließende radikalisch initiierte Polymerisation von ethylenisch ungesättigten Monomeren in einer zweiten Stufe zu einer Polymerphase mit einer Glasübergangstemperatur größer 30 °C, dadurch gekennzeichnet, daß in keiner der Polymerisationsstufen ungesättigte Monomere mit Amino- oder Ureidogruppen oder N-heterocyclischen Gruppen eingesetzt werden und daß in der zweiten Polymerisationsstufe ungesättigte Monomere aus der Gruppe N-Methylolacrylamid, N-Methylolmethacrylamid und deren (C1-C4)- Alkylether eingesetzt werden.
Die Herstellung der Kunststoffdispersionen erfolgt nach der Methode der wäßrigen Emulsionspolymerisation in Anwesenheit von Dispergiermitteln und radikalischen Polymerisationsinitiatoren. Das Monomer bzw. die Monomerenmischung der ersten Stufe kann in Form einer wäßrigen Monomeremulsion ins Polymerisationsgefäß vollständig oder teilweise oder ganz im Verlauf der ersten Polymerisationsstufe in wasserfreier Form oder in Form einer wäßrigen Emulsion zudosiert werden. Nach Beendigung der ersten Stufe kann das Monomer bzw. die Monomerenmischung der zweiten Stufe analog den bereits bei der ersten Stufe beschriebenen Möglichkeiten copolymerisiert werden. Die erfindungsgemäß in der zweiten Stufe zu copolymerisierenden N-Methylol(meth)acrylamide bzw. deren (CrC4)-Alkylether können in das Monomer bzw. Monomerenmischung bzw. in die entsprechende Monomeremulsion eingemischt ins Polymerisationsgefäß gegeben oder separat und parallel zum Monomer bzw. der Monomerenmischung bzw. der entsprechenden Monomerenemulsion zudosiert werden. In beiden Polymerisationsstufen arbeitet man vorzugsweise bei Temperaturen zwischen 20 und 95 °C, insbesondere 50 bis 85 °C.
Die Polymerisation wird in beiden Stufen durch übliche radikalische Initiatoren, die in der Lage sind, eine radikalische Emulsionspolymerisation auszulösen, gestartet. Es kann sich dabei um Initiatoren wie Alkali- oder Ammoniumperoxydisulfate, Azobisisobutyronitril, 4,4-Azobiscyanvaleriansäure oder deren Alkalisalze, tert.- Butylperpivalat, tert.-Butylper-ethylhexanoat oder auch Redoxsysteme handeln. Im Falle der Redoxsysteme können zusammen mit den peroxidischen Initiatoren, beispielsweise Wasserstoffperoxid, tert.-Butylhydroperoxid oder den bereits genannten Perestern, Reduktionsmittel, beispielsweise Natriumpyrosulfit, Natriumhydrogensulfit, Natriumdithionit oder das Natriumsalz der Hydroxymethansulfinsäure oder Ascorbinsäure, gegebenenfalls in Kombination mit Schwermetallsalzen, beispielsweise Fe(ll)-Sulfat, verwendet werden.
Als Dispergiermittel kommen die üblicherweise bei der Durchführung von radikalischen wäßrigen Emulsionspolymerisationen eingesetzten Emulgatoren und Schutzkolloide in Betracht. Als Emulgatoren eignen sich anionische, kationische und nichtionische Typen, wobei insbesondere die anionischen und nichtionischen bevorzugt sind.
Bei den anionischen Emulgatoren kann es sich um die Alkali- oder Ammoniumsalze von Alkyl-, Aryl- oder Alkylarylsulfonaten, -Sulfaten, -phosphaten, -phosphonaten oder Verbindungen mit anderen anionischen Endgruppen handeln, wobei sich auch Oligo- oder Polyethylenoxid-Einheiten zwischen dem Kohlenwasserstoffrest und der anionischen Gruppe dieser Emulgatoren befinden können. Typische Beispiele sind Natriumlaurylsulfat, Natriumundecylglykolethersulfat, Natriumoctylphenolglykolethersulfat, Natriumdodecylbenzolsulfonat, Nat umlauryldiglykolsulfat, Ammonium-tri-tert.-butylphenolpenta- oder octaglykolsulfat und Alkalisalze von mono- und dialkylierten Diphenyloxid- disulfonsäuren, die häufig als technische Gemische verwendet werden, wie beispielsweise Dowfax® 2A1 (The Dow Chemical Company).
Als geeignete nichtionische Emulgatoren haben sich beispielsweise Alkylpolyglykolether wie Ethoxylierungsprodukte von Lauryl-, Oleyl- oder Stearylalkohol oder von Gemischen wie Kokosfettalkohol, Alkylphenolpolyglykolether wie Ethoxylierungsprodukte von Octyl- oder Nonylphenol, Diisopropylphenol, Triisopropylphenol oder von Di- oder Tri-tert.- butylphenol, oder Ethoxylierungsprodukte von Polypropylenoxid erwiesen.
Die Dispersionen sollen, bezogen auf den Gehalt an Polymerisat, die üblicherweise verwendeten Mengen von bis zu 3 Gew.-%, vorzugsweise bis zu 2 Gew.-%, an ionischen Emulgatoren bzw. bis zu 6 Gew.-%, vorzugsweise bis zu 4 Gew.-%, an nichtionischen Emulgatoren nicht wesentlich überschreiten, damit die Wasserbeständigkeit der Polymerfilme nicht negativ beinflußt wird.
Als Schutzkolloide kommen gegebenenfalls Naturstoffe wie Gummiarabicum, Stärke, Alginate oder modifizierte Naturstoffe wie Methyl-, Ethyl-, Hydroxyalkyl- oder Carboxymethylcellulose oder synthetische Substanzen, wie Polyvinylalkohol, Polyvinylpyrrolidon oder Gemische aus derartigen Stoffen in Betracht. Bevorzugt können modifizierte Cellulose-Derivate und synthetische Schutzkolloide verwendet werden. Der Einsatz dieser Schutzkolloide ist jedoch bei Verwendung der beschriebenen Monomersysteme, wie dem Fachmann bekannt ist, nur beschränkt möglich. Die verwendbaren Mengen sind häufig gering, beispielsweise 0,001 bis 2 Gew.-%. Die Verträglichkeit sowie die Art der Zugabe muß von Fall zu Fall geprüft werden.
Gegenstand der Erfindung ist auch die Verwendung des Heißsiegelklebstoffs in siegelbaren Beschichtungen, insbesondere auf Metall und Kunststoff. Beispiele
Die in den folgenden Beispielen aufgeführten Teile und Prozente beziehen sich auf das Gewicht, soweit nicht anders vermerkt.
Herstellung erfindungsgemäßer wäßriger Kunststoffdispersionen KD1 und KD2 sowie von Vergleichsdispersionen VD1 , VD2 und VD3.
Kunststoffdispersion KD1 :
In einem Reaktionsgefäß wurde ein Gemisch aus 280 g Wasser, 4,0 g Natriumlaurylsulfat und 30 g der Monomeremulsion 1 vorgelegt und unter Rühren innerhalb von 30 Minuten auf 80 °C erhitzt. Nach Erreichen von 80 °C wurden 0,8 g Ammoniumperoxydisulfat, gelöst in 5,0 g Wasser, zugegeben. Nach weiteren 15 Minuten wurde die restliche Menge an Monomeremulsion 1 und parallel dazu die Initiatorlösung 1 bei einer Temperatur von 80 °C ± 2 °C kontinuierlich über einen Zeitraum von 2 Stunden dosiert. Nach Beendigung der Zuläufe 1 wurde die Temperatur bei 80 °C ± 2 CC für weitere 30 Minuten gehalten. Anschließend wurde mit der Dosierung der Monomeremulsion 2 begonnen. Parallel dazu wurden die Initiatorlösung 2 und die Comonomerlösung dosiert. Die Dosierdauer betrug für alle drei Zuläufe 2 Stunden. Danach wurde das Polymerisationsgemisch noch eine weitere Stunde bei 80 °C ± 2 °C gerührt und anschließend auf Raumtemperatur abgekühlt. Die Dispersion wurde mit 12,5 %-iger wäßriger Ammoniaklösung auf einen pH-Wert von 6,5 ± 0,5 eingestellt.
Die Herstellung der Monomeremulsionen 1 und 2 erfolgte durch Zugabe des jeweiligen Monomerengemisches in die entsprechende Lösung aus Wasser und Emulgator unter starkem Rühren (Schnellrührer). Monomeremulsion 1 : Monomeremulsion 2:
121 ,7 g Methylmethacrylat 115,7 g Styrol 261 ,1 g 2-Ethylhexylacrylat 73,1 g 2-Ethylhexylacrylat 255,0 g Wasser 124,4 g Methylmethacrylat 2,2 g Natriumlaurylsulfat 25,0 g Methacrylsäure
175,0 g Wasser
2,0 g Natriumlaurylsulfat
Comonomerlösung:
120,0 g Wasser
55,0 g N-Methylolacrylamid (48 %ig)
Initiatorlösung 1 : Initiatorlösung 2:
1 ,2 g Ammoniumperoxydisulfat 0,9 g Ammoniumperoxydisulfat 100,0 g Wasser 100,0 g Wasser
Kunststoffdispersion KD2:
Die Synthese der Dispersion KD2 erfolgte analog zu der Vorschrift von Dispersion KD1. Veränderungen hinsichtlich Rohstoffart und -menge sind nachfolgend für die Dispersion KD 2 aufgeführt.
Monomeremulsion 1 : Monomeremulsion 2:
70,8 g Methylmethacrylat 100.0 g Styrol 135,2 g 2-Ethylhexylacrylat 85,2 g 2-Ethylhexylacrylat 12,8 g 2-Hydroxyethylmethacrylat 302.1 g Methylmethacrylat 255,0 g Wasser 30,2 g Methacrylsäure 1 ,4 g Natriumlaurylsulfat 175,0 g Wasser
3,0 g Natriumlaurylsulfat Comonomerlösung:
120,0 g Wasser
65,0 g N-Methylolacrylamid (48 %ig)
Initiatorlösung 1 : Initiatorlösung 2:
0,8 g Ammoniumperoxydisulfat 1 ,35 g Ammoniumperoxydisulfat 100,0 g Wasser 100,0 g Wasser
Vergleichsdispersion VD1 :
Vergleichsdispersion VD1 (ohne Verwendung von N-Methylol(meth)acrylamid und/oder deren (C1-C4)-Alkylether während der 2. Polymerisationsstufe):
Die Synthese der Dispersion VD1 erfolgte analog zu der Vorschrift von Dispersion KD1 , jedoch wurde auf die Dosierung der Comonomerlösung in Stufe 2 verzichtet.
Vergleichsdispersion VD2:
Verwendung von Ethylenhamstoffethylmethacrylat anstatt von N-Methylolacrylamid
In einem Reaktionsgefäß wurde ein Gemisch aus 428,6 g Wasser, 4,0 g Natriumlaurylsulfat und 30 g der Monomeremulsion 1 vorgelegt und unter Rühren innerhalb von 30 Minuten auf 80°C erhitzt. Nach Erreichen von 80°C wurden 0,8 g Ammoniumperoxydisulfat, gelöst in 5,0 g Wasser, zugegeben. Nach weiteren 15 Minuten wurde die restliche Menge an Monomeremulsion 1 und parallel dazu die Initiatorlösung 1 bei einer Temperatur von 80°C ± 2°C kontinuierlich über einen Zeitraum von 2 Stunden dosiert. Nach Beendigung der Zuläufe 1 wurde die Temperatur bei 80°C ± 2°C für weitere 30 Minuten gehalten. Anschließend wurde mit der Dosierung der Monomeremulsion 2 begonnen. Parallel dazu wurde die Initiatorlösung 2 dosiert. Die Dosierdauer betrug für beide Zuläufe 2 Stunden. Danach wurde das Polymerisationsgemisch noch eine weitere Stunde bei 80°C ± 2°C gerührt und anschließend auf Raumtemperatur abgekühlt. Die Dispersion wurde mit 12,5 %iger wäßriger Ammoniaklösung auf einen pH-Wert von 6,5 ± 0,5 eingestellt.
Die Herstellung der Monomerenemulsion 1 und 2 erfolgte durch Zugabe des jeweiligen Monomerengemisches in die entsprechende Lösung aus Wasser und Emulgator unter starkem Rühren (Schnellrührer).
Monomeremulsion 1 : Monomeremulsion 2:
121 ,7 g Methylmethacrylat 115,7 g Styrol 261,1 g 2-Ethylhexylacrylat 73,1 g 2-Ethylhexylacrylat 255,0 g Wasser 124,4 g Methylmethacrylat 2,2 g Natriumlaurylsulfat 26,4 g Ethylenhamstoffethylmethacrylat
25,0 g Methacrylsäure
175,0 g Wasser
2,0 g Natriumlaurylsulfat
Initiatorlösung 1 : Initiatorlösung 2:
1 ,2 g Ammoniumperoxydisulfat 0,9 g Ammoniumperoxydisulfat 100,0 g Wasser 100,0 g Wasser
Vergleichsdispersion VD3:
Verwendung von Ethylenharnstoffethylmethacrylat anstatt von N-Methylolacrylamid
In einem Reaktionsgefäß wurde ein Gemisch aus 433,8 g Wasser, 4,0 g Natriumlaurylsulfat und 30 g der Monomeremulsion 1 vorgelegt und unter Rühren innerhalb von 30 Minuten auf 80°C erhitzt. Nach Erreichen von 80°C wurden 0,8 g Ammoniumperoxydisulfat, gelöst in 5,0 g Wasser, zugegeben. Nach weiteren 15 Minuten wurde die restliche Menge an Monomeremulsion 1 und parallel dazu die Initiatorlösung 1 bei einer Temperatur von 80°C ± 2°C kontinuierlich über einen Zeitraum von 2 Stunden dosiert. Nach Beendigung der Zuläufe 1 wurde die Temperatur bei 80°C ± 2°C für weitere 30 Minuten gehalten. Anschließend wurde mit der Dosierung der Monomeremulsion 2 begonnen. Parallel dazu wurde die Initiatorlösung 2 dosiert. Die Dosierdauer betrug für beide Zuläufe 2 Stunden. Danach wurde das Polymerisationsgemisch noch eine weitere Stunde bei 80°C ± 2°C gerührt und anschließend auf Raumtemperatur abgekühlt. Die Dispersion wurde mit 12,5%iger wäßriger Ammoniaklösung auf einen pH-Wert von 6,5 ± 0,5 eingestellt.
Die Herstellung der Monomeremulsion 1 und 2 erfolgte durch Zugabe des jeweiligen Monomerengemisches in die entsprechende Lösung aus Wasser und Emulgator unter starkem Rühren (Schnellrührer).
Monomeremulsion 1 : Monomeremulsion 2:
70,8 g Methylmethacrylat 100.0 g Styrol 135,2 g 2-Ethylhexylacrylat 85,2 g 2-Ethylhexylacrylat 12,8 g 2-Hydroxyethylmethacrylat 302.1 g Methylmethacrylat 255,0 g Wasser 31 ,2 g Ethylenhamstoffethylmethacrylat 1 ,4 g Natriumlaurylsulfat 25,0 g Methacrylsäure
175,0 g Wasser
3,0 g Natriumlaurylsulfat
Initiatorlösung 1 : Initiatorlösung 2:
0,8 g Ammoniumperoxydisulfat 1 ,35 g Ammoniumperoxydisulfat 100,0 g Wasser 100,0 g Wasser
Prüfung der Naßhaftungseigenschaften:
Mit einer Rakel wurde ein 50 μm dicker Naßfilm der zu prüfenden Dispersion auf die matte Seite einer 40 μm dicken Aluminiumfolie (Haushaltsfolienqualität) aufgetragen. Anschließend wurde der nasse Film sofort in einem Umluftofen bei 200 °C für eine Minute getrocknet. Nach Abkühlen auf Raumtemperatur wurde die beschichtete Aluminiumfolie einer 30 minütigen Wasserlagerung unterzogen. Die beschichtete Folienseite wurde nach Entnahme der Folie aus dem Wasserbad vorsichtig mit einem weichen saugfähigen Papier getrocknet. Unmittelbar danach wurden quer zur Beschichtung zwei Streifen eines transparenten Haftklebebands (Scotch Magic Tape 810, 19 mm breit, Art.-Nr. 11257, Hersteller: 3M) aufgeklebt und intensiv angedrückt. Anschließend wurde ein Klebestreifen langsam und der andere schnell mit der Hand von der Heißsiegelbeschichtung abgezogen. Beurteilt wurde das Adhäsionsbruchverhalten, indem die enthaftete Fläche der Beschichtung auf der Aluminiumfolie als Maß für die Güte der Naßhaftung ermittelt wurde.

Claims

Patentansprüche:
1. Heißsiegelklebstoff, enthaltend Latexteilchen mit einem Kern aus einem Homo- oder Copolymerisat mit einer Glasübergangstemperatur kleiner 20 °C und einer Schale aus einem Copolymerisat mit einer Glasübergangstemperatur größer 30 CC, dadurch gekennzeichnet, daß das Copolymerisat der Schale Monomereinheiten aus der Gruppe N-Methylolacrylamid, N-Methylolmethacrylamid und deren (C1-C4)-Alkylether enthält, wobei die Latexteilchen keine Monomereinheiten mit Amino- oder Ureidogruppen oder N-heterocyclischen Gruppen enthalten.
2. Heißsiegelklebstoff nach Anspruch 1 , dadurch gekennzeichnet, daß die Latexteilchen aus 5 bis 60 Gew.-% Homo- oder Copolymerisat des Kerns und 95 bis 40 Gew.-% Copolymerisat der Schale, jeweils bezogen auf die Gesamtmasse der Latexteilchen, bestehen.
3. Heißsiegelklebstoff nach Anspruch 1 , dadurch gekennzeichnet, daß Kern und Schale Monomereinheiten aus der Gruppe der Ester der α,ß-ethylenisch ungesättigten (C3-C6)-Mono- und Dicarbonsäuren mit aliphatischen (C1-C12)- Alkoholen, Nitrile der α,ß-ethylenisch ungesättigten (C3-C6)-Mono- und Dicarbonsäuren, Vinylether von aliphatischen (C2-C18)-Monocarbonsäuren und Vinylaromaten enthalten.
4. Heißsiegelklebstoff nach Anspruch 1 , dadurch gekennzeichnet, daß das Copolymerisat der Schale 0,01 bis 10 Gew.-%, bezogen auf die Gesamtmasse der Schale, Monomereinheiten aus der Gruppe N-Methylolacrylamid, N-Methylolmethacrylamid und deren (C C4)-Alkylether enthält.
5. Heißsiegelklebstoff nach Anspruch 1 , dadurch gekennzeichnet, daß die Latexteilchen aus zwei oder mehreren Monomereinheiten aus der Gruppe Methylmethacrylat, Ethylacrylat, n-Butylacrylat, tert.-Butylmethacrylat, 2-Ethylhexylacrylat, Styrol, Acrylnitril, Acrylsäure, Methacrylsäure, Hydroxyethylmethacrylat, Hydroxypropylmethacrylat, N-Methylolacrylamid und N-(iso-Butoxymethyl)acrylamid aufgebaut sind.
6. Verfahren zur Herstellung eines Heißsiegelklebstoffs durch radikalisch initiierte Polymerisation von ethylenisch ungesättigten Monomeren in einer ersten Stufe zu einer Polymerphase mit einer Glasübergangstemperatur kleiner 20 °C und anschließende radikalisch initiierte Polymerisation von ethylenisch ungesättigten Monomeren in einer zweiten Stufe zu einer Polymerphase mit einer Glasübergangstemperatur größer 30 °C, dadurch gekennzeichnet, daß in keiner der beiden Polymerisationsstufen ungesättigte Monomere mit Amino- oder Ureidogruppen oder N-heterocyclischen Gruppen eingesetzt werden und daß in der zweiten Polymerisationsstufe ungesättigte Monomere aus der Gruppe N-Methylolacrylamid, N-Methylolmethacrylamid und deren (C1-C4)-Alkylether eingesetzt werden.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Monomeren aus der Gruppe N-Methylolacrylamid, N-Methylolmethacrylamid und deren (C C )- Alkylether im Gemisch mit den übrigen Monomeren der zweiten Polymerisationsstufe zudosiert werden.
8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Monomeren aus der Gruppe N-Methylolacrylamid, N-Methylolmethacrylamid und deren (C1-C4)- Alkylether separat und parallel zu den übrigen Monomeren der zweiten Polymerisationsstufe zudosiert werden.
9. Verwendung des Heißsiegelklebstoffs gemäß Anspruch 1 in siegelbaren Beschichtungen.
10. Verwendung nach Anspruch 9 in Beschichtungen auf Metall und Kunststoff.
EP98913605A 1997-03-12 1998-02-27 Heisssiegelklebstoff Withdrawn EP0968236A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19710109A DE19710109A1 (de) 1997-03-12 1997-03-12 Heißsiegelklebstoff
DE19710109 1997-03-12
PCT/EP1998/001116 WO1998040423A1 (de) 1997-03-12 1998-02-27 Heisssiegelklebstoff

Publications (1)

Publication Number Publication Date
EP0968236A1 true EP0968236A1 (de) 2000-01-05

Family

ID=7823054

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98913605A Withdrawn EP0968236A1 (de) 1997-03-12 1998-02-27 Heisssiegelklebstoff

Country Status (5)

Country Link
EP (1) EP0968236A1 (de)
JP (1) JP2001514688A (de)
DE (1) DE19710109A1 (de)
WO (1) WO1998040423A1 (de)
ZA (1) ZA982048B (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849441A1 (de) * 1998-10-27 2000-05-04 Clariant Gmbh Sulfoalkylgruppenhaltige hydrophob modifizierte Celluloseether, Verfahren zu deren Herstellung sowie deren Verwndung als Schutzkolloide bei Polymerisationen
EP2072542B1 (de) * 2007-12-20 2014-05-07 Rohm and Haas Company Kern-Schale-Polymere und die Verwendung in organischen Mitteln davon.
CN108047385B (zh) * 2017-12-14 2020-07-24 中国科学院深圳先进技术研究院 一种反应型压敏树脂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714105A (en) * 1969-11-05 1973-01-30 Borden Inc Adhesive latexes of vinyl acetate/ethylene/n-methylolacrylamide terpolymers
US5403894A (en) * 1991-07-11 1995-04-04 Rohm And Haas Company A redispersible core-shell polymer powder
EP0654454A1 (de) * 1993-11-22 1995-05-24 Rohm And Haas Company Kern/Schale Polymerisat-Pulver
US5776651A (en) * 1996-01-31 1998-07-07 Minnesota Mining & Manufacturing Company Laminable proofing elements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9840423A1 *

Also Published As

Publication number Publication date
JP2001514688A (ja) 2001-09-11
DE19710109A1 (de) 1998-09-17
WO1998040423A1 (de) 1998-09-17
ZA982048B (en) 1998-09-14

Similar Documents

Publication Publication Date Title
DE60115260T2 (de) Niedermolekulare polymerzusätze enthaltende klebstoffe
DE2718716C2 (de)
EP0574803B1 (de) Verwendung von wässrigen Dispersionen als Heisssiegelkleber
DE69737546T2 (de) Wässrige druckempfindliche Klebstoffzusammensetzungen von Copolymeren von Vinylestern höherer Carbonsäuren
EP2274349B1 (de) Wässrige polymerdispersionen für haftklebstoffe
EP2697323B1 (de) Haftklebstoffdispersion enthaltend durch stufenpolymerisation hergestellte polymere mit ureidogruppen oder mit ureido-analogen gruppen
DE60131992T2 (de) Pfropfcopolymere enthaltende klebstoffe
EP2619239B1 (de) Mehrstufige herstellung wässriger haftklebstoffdispersionen für die herstellung von selbstklebenden artikeln
EP0920464B1 (de) Herstellung hochkonzentrierter haftklebstoffdispersionen und deren verwendung
EP0625557A1 (de) Geruchsarmer Dispersionshaftklebstoff
WO1998006763A1 (de) Haftklebstoffe mit geringen mengen styrol
EP3577165A1 (de) Einkomponenten-haftklebstoffzusammensetzung mit auf reversibler vernetzung durch metallsalze beruhenden gelgehalt
EP0917546B1 (de) Haftklebstoffe auf basis mehrstufig aufgebauter polymerisate
DE3200765A1 (de) Cellulosederivat enthaltende waessrige dispersion, verfahren zur herstellung von emulsionen und waessrige ueberzugszusammensetzung
WO2012139941A1 (de) Haftklebstoffdispersion enthaltend polymere mit ureidogruppen oder ureido-analogen gruppen und mit glycidylgruppen
EP2084240B1 (de) Haftklebstoff, enthaltend ein c10 alkylacrylat
WO2011054719A1 (de) Haftklebstoffpolymer aus n-butylacrylat, ethylacrylat, vinylacetat und säuremonomer
EP1979430B1 (de) Auto-adhäsiver klebstoff
EP1316597B1 (de) Glycidyl(meth)acrylat enthaltende Klebstoff
WO2011003864A1 (de) Kaltsiegelbare, durch emulsionspolymerisation in gegenwart von ethylen/(meth)acrylsäure copolymer hergestellte polymerdispersion
WO1998040423A1 (de) Heisssiegelklebstoff
EP0798357B1 (de) Verwendung von wässrigen Dispersionen als Heisssiegellack
EP1813660A1 (de) Auto-adhäsiver Klebstoff
WO2011051206A1 (de) Haftklebstoff, enthaltend eine durch stufenpolymerisation hergestellte polymermischung
DE10128512A1 (de) Polymerdispersionen für Haftklebstoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 19991012

17Q First examination report despatched

Effective date: 20000727

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20011222