EP0953990A1 - Fil électrique et son procédé de fabrication - Google Patents

Fil électrique et son procédé de fabrication Download PDF

Info

Publication number
EP0953990A1
EP0953990A1 EP99400754A EP99400754A EP0953990A1 EP 0953990 A1 EP0953990 A1 EP 0953990A1 EP 99400754 A EP99400754 A EP 99400754A EP 99400754 A EP99400754 A EP 99400754A EP 0953990 A1 EP0953990 A1 EP 0953990A1
Authority
EP
European Patent Office
Prior art keywords
fibers
wire
ptfe
cable according
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99400754A
Other languages
German (de)
English (en)
Inventor
Jean-Pierre Ferlier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP0953990A1 publication Critical patent/EP0953990A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds

Definitions

  • the invention relates to an insulated conducting wire, especially for aeronautical and / or space applications. She also relates to an insulator for such a wire and to its method Manufacturing.
  • the insulation must have determined mechanical resistance properties. These properties are cut resistance, resistance to abrasion by scraping and abrasion resistance wire by wire.
  • Cut resistance is measured by force minimum that it is necessary to exercise, at a temperature determined, on an insulator, using a cutting tool standardized, to reach the driver.
  • the resistance to abrasion by scraping is measured at using a needle with a diameter of approximately 0.5 mm which is applied on the insulation perpendicular to the wire axis with, according to standards, a force of 500g to 1Kg and that we move in one direction and in the other part of the wire.
  • the result is expressed by the minimum number of cycles, i.e. back and forth from the needle, at the end of which the conductor is exposed.
  • Wire-to-wire abrasion resistance is measured at using a test which consists in rubbing a first wire stretched against a second stretched wire, the first wire moving transversely to the second. Again, the result is expressed by the minimum number of cycles (back and forth) after which the two conductors are laid bare.
  • the insulator has a minimum sensitivity to the propagation of the electric arc.
  • polyimide is a very expensive material, at least around four times more than PTFE.
  • the polyimide price is even higher if it has properties hydrolysis resistance.
  • the invention makes it possible to produce an electric wire or cable for aeronautical and / or space use with insulation with comparable mechanical strength qualities to those of known insulators but of a price significantly less high and with good resistance properties propagation of the electric arc.
  • the wire or cable according to the invention comprises an insulator resistant to the propagation of the electric arc around a conductor, characterized in that the insulation is waterproof and includes a matrix, or base, of PTFE polymer and fibers mechanical reinforcement, continuous and of great length.
  • the fibers will be chosen to ensure the mechanical resistance required for the conductor insulation, i.e. cut resistance and resistance to abrasion (by scraping and thread by thread). They are continuous (no cut).
  • These fibers can be chosen from the group comprising: meta aramid or para-aramid fibers, polyamide-imide fibers, carbon fibers, fibers polyimides, PTFE fibers. Glass fibers can also be used if low resistance of the insulation to abrasion by scraping is sufficient. We can use either one fiber type, a combination of several types of fibers.
  • the risk of propagation electric arc is practically eliminated. In the case where the fibers are polyimide, this risk is, anyway, considerably reduced due to the decrease in the quantity polyimide.
  • the yarn according to the invention is less expensive than a conventional thread.
  • the reinforcing fibers have often a much lower cost than polyimide or PTFE.
  • the price per kilogram of a polyamide-imide fiber is about four times less than the price at kilogram of PTFE.
  • the insulation is preferably produced in the form of very long tape (typically several thousand meters) wrapped around the conductor.
  • the insulation is extruded in great length (typically several thousand meters) around the conductor wire, and therefore it is in the form of a large extrudate length.
  • the fibers are advantageously in the longitudinal direction of the ribbon.
  • the recovery rate between turns of the ribbon is example between 10 and 70%, preferably between 10 and 50%.
  • Reinforced tape has characteristics sufficient sealing, insulation and mechanical strength to be used alone on the conductor. Sealing is measured for example under atmospheric pressure by the possibility that the cable formed from the insulation around a core not to leave penetrate a fluid such as water radially, the ends said cable being emerged and the rest of the cable being submerged, at least for a few hours, for example some twelve hours. Thus tightness is measured for example by the test of tensile strength according to standard NF C 93523 or any standard equivalent (which corresponds to a 12-hour immersion), or well by the tensile test according to the ASTM standard D 3032 or even ASTM D 149.
  • the external PTFE tape has for example a thickness between 50 and 100 ⁇ m and a recovery rate between turns between 20 and 70%.
  • the conductor is 20 gauge, that is to say has a cross section of 0.6 mm 2
  • the ribbon, with a matrix or base of PTFE reinforced with fibers has a thickness of 50 ⁇ m.
  • Known conductive wires of gauge 20 usually comprise four layers of polyimide insulating tape with a thickness of approximately 30 ⁇ m.
  • the wire according to the invention will be significantly heavier than the conventional wire, especially since the density of the sintered PTFE (which is 2.2) is greater than the density ( 1.5 to 1.8) of the polyimide. Under these conditions, to limit the weight of the conductive wire fitted with insulating tape according to the invention, it would be advantageous to provide a recovery rate between turns of the tape which is relatively low, for example of the order of 10 to 20%.
  • Fibers can be used unbound with others, or can be used in an organized form such as nonwoven tape.
  • the fibers are embedded in the PTFE matrix.
  • the fibers are encrusted on the surface of the matrix, or base, of PTFE.
  • the conductor is for example made of copper or an alloy of copper or aluminum alloy and is advantageously covered of tin, silver or nickel.
  • the ribbon thus formed has a cut resistance and a resistance to scraping abrasion as high as possible and preferably comparable to the similar properties of known polyimide tapes.
  • the abrasion wire to wire is typically of the order of 6 million cycles
  • scraping abrasion is typically of the order of 100 cycles for a force of 0.8 kg
  • resistance to cutting, at room temperature, i.e. 20 ° C ⁇ 5 ° C, with a needle 0.5 mm in diameter, is around 10 kgs.
  • fibers having a high modulus of elasticity in traction generally of 2 at 80 N / Tex (where Tex is the weight of the fiber in g / km).
  • fibers of polyamide-imide such as Kermel fibers from the company Rhodia.
  • a fiber of this type is usually made up of a set of 200 to 300 fibers each having a diameter of around 5 or 10 ⁇ m.
  • aramids such as those known under the brand Nomex or para-aramid fibers known under the brands Kevlar and Twaron of the Dupont de Nemours and Akzo companies.
  • a aramid is an aromatic polyamide.
  • the tape 10 comprises a matrix 12 of PTFE in which polyamide-imide fibers 14 1 , 14 2 , 14 3 , etc. are embedded. These fibers are unrelated to each other. However, they extend over a very long length in the longitudinal direction - represented by the arrow F - of the ribbon 10.
  • the thickness of the ribbon is approximately 50 ⁇ m and its width on the order of 350 mm during its manufacture. After manufacture, the ribbon is cut longitudinally into ribbons of widths of approximately 4 to 15 mm each.
  • FIG. 2 differs from that described in relation to FIG. 1 by the fact that polyamide-imide fibers 14 1 , 14 2 , 14 3 , etc. are used. in the form of a nonwoven ribbon, that is to say that said fibers are organized according to parallel weft threads 14 1 , 14 2 , 14 3 and are assembled by transverse warp threads 16 1 (a single warp thread has been shown in Figure 2).
  • the distance between two neighboring warp son is significantly greater than the distance between two neighboring weft son 14 1 , 14 2 .
  • FIG. 3 a section of a wire 20 having a central conductor 22 composed of a plurality of strands 21 1 , 21 2 etc., on which is applied a tape 10 with a recovery rate of the order 20% from one turn to another.
  • the recovery rate is the ratio between, of a share, the width 1 of overlap of two turns 26 and 28 ( Figure 6) of the ribbon wound on the conductor and, on the other hand, the total width L of the ribbon. In this way, along the wire we will have either a single thickness of the ribbon or a double thickness, the double thickness appearing only on approximately 20% of the length. In general, the recovery rate will be between 10 and 50%. However, it is in our interest to minimize this recovery rate so as to limit the weight of the wire and its outside diameter.
  • the ribbon 10 is covered by another ribbon 30 in PTFE of conventional type with a thickness between 30 and 100 ⁇ m.
  • This ribbon 30 is wound in the opposite direction of the ribbon 10, and with a recovery rate between 20 and 70%.
  • the fibers of an aqueous dispersion of PTFE Prior to the corresponding manufacturing stages in FIGS. 4 and 4a, a surface treatment of the fibers so as to improve the bond, or adhesion, between these and the PTFE matrix.
  • the fibers of an aqueous dispersion of PTFE is in the form of fine particles each of which has dimensions of the order of 0.1 ⁇ m.
  • the treatment by Corona effect consists in making circulate a fiber between two electrodes between which creates an electric arc.
  • the plasma of the electric arc performs a surface treatment of the fiber which helps its adhesion subsequent to the PTFE in which it will be embedded or on which it will be encrusted.
  • the fibers and PTFE are introduced into a PTFE extruder operating according to a process known as "pultrusion".
  • Unsintered PTFE powder is mixed with a lubricant such as a hydrocarbon, this mixture forming a whole pasty called "preform”.
  • the pultrusion device comprises, first of all, a guide device 32 into which the fibers are introduced longitudinally at the same time as the pasty mixture.
  • the fibers are pulled and the mixture pasty is pushed under high pressure and at a temperature of the order of 40 ° C, in a flat die 34 which reduces the cross section of the assembly to reach a ribbon thickness of the order of 60 ⁇ m.
  • the ribbon undergoes at the station cooking 36 cooking at a lower or equal temperature at 250 ° C intended to evaporate the lubricant.
  • the effort of traction at the exit of station 32 or 34 allows the installation of fibers in longitudinal direction.
  • the ribbon is introduced into a calendering station 38 which is shown schematically in Figure 4a. Calendering consists of reduce the thickness of the tape previously formed so as to reduce its thickness from 60 to 50 ⁇ m for example. This operation is generally carried out hot. It consists, in a way conventional, to provide two rollers 40 and 42 between which passes the ribbon 44 whose thickness is to be reduced.
  • the ribbon 10 thus produced is wound on a drum 46, then cut longitudinally as mentioned above.
  • the assembly thus formed, which comprises non-PTFE sintered, is then subjected to a sintering operation which consists of heating to a temperature of at least 342 ° C for about 1 minute.
  • This PTFE sintering operation increases the density of the latter, secures them different layers of ribbons, and changes the structure crystal of the PTFE polymer.
  • sintering expels air residual trapped by unsintered PTFE tapes.
  • the ribbon 50 is formed by the incrustation, by pressure, of fibers 52 at the surface of a ribbon 54 of unsintered PTFE whose thickness is between 25 and 40 ⁇ m.
  • a ribbon of fibers 52 arranged in a very long nonwoven ribbon and previously coated with an aqueous dispersion of PTFE and / or subjected to a Corona treatment as described above.
  • This pre-treatment is particularly useful in this realization, because the pressures exerted between the ribbon 54 of PTFE and the fiber ribbon 52 are significantly less important than in the process described in relation to Figures 4 and 4a.
  • the ribbon 52 of fibers non woven is applied to the PTFE 54 tape and the assembly is hot calendered as described with figure 4a. Pressure exerted between the calendering rollers 56 and 58 encrusts the fibers in the surface of the ribbon 54, thereby forming the ribbon 50.
  • the nonwoven ribbon 52 is placed between 2 PTFE tapes.
  • the ribbon based of non-sintered PTFE which is thus formed is wound around the wire conductor as described with other modes of production.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

L'invention est relative à un fil ou câble comportant au moins un isolant résistant à la propagation de l'arc électrique autour d'au moins un conducteur. L'isolant est étanche et comporte une matrice (12) en PTFE et des fibres (141, 142, 143, ...) de renforcement mécanique, continues et de grande longueur,. L'isolant est soit sous forme de ruban, soit sous forme d'extrudat, de grande longueur. Application aux fils ou câbles d'usage aéronautique et/ou spatial. <IMAGE>

Description

L'invention est relative à un fil conducteur isolé, notamment pour applications aéronautiques et/ou spatiales. Elle concerne également un isolant pour un tel fil ainsi que son procédé de fabrication.
Les fils et les câbles électriques doivent satisfaire un certain nombre de conditions qui dépendent de leur utilisation.
Les applications aéronautiques et/ou spatiales imposent des conditions sévères. En particulier, l'isolant doit présenter des propriétés de résistances mécaniques déterminées. Ces propriétés sont la résistance à la coupure, la résistance à l'abrasion par raclage et la résistance à l'abrasion fil à fil.
La résistance à la coupure se mesure par la force minimale qu'il est nécessaire d'exercer, à une température déterminée, sur un isolant, à l'aide d'un outil coupant de forme normalisée, pour atteindre le conducteur.
La résistance à l'abrasion par raclage se mesure à l'aide d'une aiguille de diamètre 0,5 mm environ qu'on applique sur l'isolant perpendiculairement à l'axe du fil avec, selon les normes, une force de 500g à 1Kg et qu'on déplace dans un sens et dans l'autre sur une partie du fil. Le résultat s'exprime par le nombre minimal de cycles, c'est-à-dire d'allers et retours de l'aiguille, à l'issue desquels le conducteur est mis à nu.
La résistance à l'abrasion fil à fil se mesure à l'aide d'un essai qui consiste à faire frotter un premier fil tendu contre un second fil tendu, le premier fil se déplaçant transversalement au second. Là aussi, le résultat s'exprime par le nombre minimal de cycles (allers et retours) au bout desquels les deux conducteurs sont mis à nu.
Une autre condition que doit satisfaire un fil ou câble électrique pour application aéronautique ou spatiale est que l'isolant ait une sensibilité minimale à la propagation de l'arc électrique.
On sait qu'un arc électrique se produit entre deux fils voisins quand les conducteurs correspondants sont mis en court-circuit, soit par un électrolyte, soit par un élément métallique. Lorsque l'isolant du fil est principalement constitué de résine polyimide, l'arc électrique provoque une pyrolyse locale de la résine et, de ce fait, crée un chemin carboné entre les conducteurs, ce qui facilite le passage de l'arc électrique. Le phénomène s'amplifie ainsi de lui-même et peut entraíner la destruction du faisceau dans lequel se trouvent les deux fils concernés.
Malgré cet inconvénient, on utilise quand même de la résine polyimide pour isoler les fils et câbles électriques pour applications aéronautiques car l'isolant polyimide présente les meilleures caractéristiques de résistance mécanique. Toutefois, pour améliorer la résistance à la propagation de l'arc électrique tout en conservant les avantages de résistance mécanique du polyimide, il est connu d'utiliser une combinaison de ruban polyimide et de ruban en polytétra-fluoréthylène (PTFE), la résistance à la propagation de l'arc électrique étant d'autant plus importante que la quantité de PTFE est importante, car le défaut de propagation de l'arc électrique ne se produit pas avec le PTFE. Mais ce gain en résistance à la propagation de l'arc entraíne une diminution corrélative des propriétés de résistance mécanique.
Par ailleurs, le polyimide est un matériau très onéreux, au moins de l'ordre de quatre fois plus que le PTFE. Le prix du polyimide est encore plus élevé s'il présente des propriétés de résistance à l'hydrolyse.
L'invention permet de réaliser un fil ou câble électrique pour usage aéronautique et/ou spatial comportant un isolant présentant des qualités de résistance mécanique comparables à celles des isolants connus mais d'un prix sensiblement moins élevé et avec de bonnes propriétés de résistance à la propagation de l'arc électrique.
Le fil ou câble selon l'invention comprend un isolant résistant à la propagation de l'arc électrique autour d'un conducteur, caractérisé en ce que l'isolant est étanche et comprend une matrice, ou base, en polymère PTFE et des fibres de renforcement mécanique, continues et de grande longueur,.
Les fibres seront choisies de façon à assurer la résistance mécanique nécessaire pour l'isolant du conducteur, c'est-à-dire la résistance à la coupure et la résistance à l'abrasion (par raclage et fil à fil). Elles sont continues (non coupées).
Ces fibres peuvent être choisies dans le groupe comprenant : les fibres méta aramides ou para-aramides, les fibres polyamides-imides, les fibres de carbone, les fibres polyimides , les fibres PTFE. Les fibres de verre peuvent également être utilisées si une faible résistance de l'isolant à l'abrasion par raclage suffit. On peut utiliser soit un seul type de fibres, soit une combinaison de plusieurs types de fibres.
Sauf si la fibre est en polyimide, le risque de propagation de l'arc électrique est pratiquement éliminé. Dans le cas où les fibres sont en polyimide, ce risque est, de toute façon, considérablement diminué du fait de la diminution de la quantité de polyimide.
En outre, le fil selon l'invention est moins onéreux qu'un fil classique. En effet, les fibres de renforcement ont souvent un coût bien moindre que le polyimide ou que le PTFE. Par exemple le prix au kilogramme d'une fibre de polyamide-imide est environ quatre fois moins important que le prix au kilogramme du PTFE.
L'isolant est réalisé de préférence sous forme de ruban de grande longueur (typiquement plusieurs milliers de mètres) enroulé autour du conducteur.
En variante, l'isolant est extrudé en grande longueur (typiquement plusieurs milliers de mètres) autour du conducteur du fil, et donc il est sous forme d'un extrudat de grande longueur.
Dans le cas où l'isolant est un ruban, les fibres sont avantageusement dans la direction longitudinale du ruban.
Le taux de recouvrement entre spires du ruban est par exemple compris entre 10 et 70%, de préférence entre 10 et 50%.
Le ruban renforcé présente des caractéristiques d'étanchéité, d'isolation et de résistance mécanique suffisantes pour être utilisé seul sur le conducteur. L'étanchéité se mesure par exemple sous pression atmosphérique par la possibilité qu'a le câble formé de l'isolant autour d'une âme de ne pas laisser pénétrer un fluide tel que l'eau radialement, les extrémités dudit câbles étant émergées et le reste du câble étant immergé, au moins pendant quelques heures, par exemple quelques douze heures. Ainsi l'étanchéité se mesure par exemple par le test de tenue en tension suivant la norme NF C 93523 ou toute norme équivalente (qui correspond à une immersion de 12 heures), ou bien par le test de tenue en tension suivant le norme ASTM D 3032 voire ASTM D 149.
Toutefois, il peut s'avérer nécessaire de disposer un autre ruban de PTFE autour du ruban à matrice ou base de PTFE renforcée par des fibres afin d'uniformiser la surface extérieure du fil. En effet, les fibres sont susceptibles de créer, sur la surface extérieure du fil, des irrégularités d'un aspect inacceptable. Le ruban PTFE extérieur a par exemple une épaisseur comprise entre 50 et 100 µm et un taux de recouvrement entre spires compris entre 20 et 70%.
Dans un mode de réalisation, le conducteur est de jauge 20, c'est-à-dire présente une section de 0,6 mm2, et le ruban, à matrice ou base de PTFE renforcée par des fibres, présente une épaisseur de 50 µm. Les fils conducteurs connus de jauge 20 comportent habituellement quatre couches d'un ruban isolant en polyimide d'épaisseur 30 µm environ. Ainsi, si on ne prend pas de précaution particulière, le fil selon l'invention sera sensiblement plus lourd que le fil classique, d'autant plus que la densité du PTFE fritté (qui est de 2,2) est supérieure à la densité (1,5 à 1,8) du polyimide. Dans ces conditions, pour limiter le poids du fil conducteur équipé de ruban isolant selon l'invention, on aura intérêt à prévoir un taux de recouvrement entre spires du ruban qui soit relativement faible, par exemple de l'ordre de 10 à 20%.
Les fibres peuvent être utilisées sans lien les unes avec les autres, ou peuvent être utilisées sous une forme organisée telle qu'un ruban non tissé.
Dans un mode de réalisation, les fibres sont noyées dans la matrice de PTFE.
Dans un autre mode de réalisation, les fibres sont incrustées à la surface de la matrice, ou base, de PTFE.
Le conducteur est par exemple en cuivre ou en alliage de cuivre ou en alliage d'aluminium et est recouvert avantageusement d'étain, d'argent ou de nickel.
D'autres caractéristiques et avantages de l'invention apparaítront avec la description de certains de ses modes de réalisation, celle-ci étant effectuée en se référant aux dessins ci-annexés sur lesquels :
  • la figure 1 est un schéma d'un ruban selon l'invention,
  • la figure 2 est un schéma analogue à celui de la figure 1, mais pour une variante,
  • la figure 3 est un schéma en coupe d'un fil ou câble selon l'invention,
  • les figures 4 et 4a sont des schémas illustrant un procédé de fabrication d'un ruban du type de celui de la figure 1 ou de la figure 2,
  • la figure 5 est un schéma illustrant un autre mode de réalisation de ruban selon l'invention et son procédé de fabrication, et
  • La figure 6 est un schéma montrant un ruban enroulé conformément à l'invention.
  • Dans les modes de réalisation de l'invention que l'on va décrire en relation avec les figures, l'isolant d'un conducteur pour fil d'usage aéronautique et/ou spatial est sous forme d'un ruban comprenant, d'une part, une matrice, ou base, de PTFE et, d'autre part, des fibres de renforcement mécanique. L'invention représentée concerne alors un tel ruban ainsi qu'un fil conducteur ou câble, notamment pour application aéronautique ou spatiale, équipé d'un tel ruban. Elle concerne aussi un procédé de fabrication d'un tel ruban et d'un fil équipé de ce ruban.
    Dans les exemples représentés sur les figures 1 et 2, les fibres continues et de grande longueur (typiquement plusieurs milliers de mètres) sont noyées dans une matrice de PTFE et dans la variante représentée sur la figure 5, lesdites fibres sont incrustées à la surface d'une base de PTFE.
    Quel que soit le mode de réalisation, on choisira de préférence des fibres qui s'étendent dans la direction longitudinale du ruban et qui présentent des propriétés de résistance mécaniques telles que le ruban ainsi formé ait une résistance à la coupure et une résistance à l'abrasion par raclage aussi élevées que possible et, de préférence, comparable aux propriétés analogues des rubans polyimides connus. Ainsi pour une mesure faite sur un conducteur comprenant un fil d'âme conductrice de section 0,6 mm2 et un isolant sur cette âme en une épaisseur radiale de 120 µm, l'abrasion fil à fil est typiquement de l'ordre de 6 millions de cycles, l'abrasion par raclage est typiquement de l'ordre de 100 cycles pour une force de 0,8 kg, et la résistance à la coupure, à la température ambiante soit 20°C ± 5°C, avec une aiguille de diamètre 0,5 mm, est de l'ordre de 10 kgs.
    Pour obtenir ces propriétés de résistance mécanique de l'isolant du conducteur, on choisira de préférence des fibres ayant un haut module d'élasticité en traction, généralement de 2 à 80 N/Tex (où le Tex est le poids de la fibre en g/km).
    Dans un exemple, on fait appel à des fibres de polyamide-imide telles que des fibres Kermel de la société Rhodia. Une fibre de ce type est habituellement constituée par un ensemble de 200 à 300 fibres ayant chacune un diamètre de l'ordre de 5 ou 10 µm.
    Dans un autre exemple, on utilise des fibres méta aramides telles que celles connues sous la marque Nomex ou des fibres para-aramides connues sous les marques Kevlar et Twaron des sociétés Dupont de Nemours et Akzo. On rappelle ici qu'un aramide est un polyamide aromatique.
    On peut également faire appel à des fibres de carbone, des fibres en polyimide, et, éventuellement, des fibres en PTFE.
    Dans le mode de réalisation représenté sur la figure 1, le ruban 10 comporte une matrice 12 de PTFE dans laquelle sont noyées des fibres polyamide-imide 141, 142, 143, etc. Ces fibres sont sans lien les unes avec les autres. Toutefois, elles s'étendent sur une très grande longueur dans la direction longitudinale - représentée par la flèche F - du ruban 10. Dans cet exemple, l'épaisseur du ruban est d'environ 50 µm et sa largeur de l'ordre de 350 mm lors de sa fabrication. Après fabrication, le ruban est découpé longitudinalement en rubans de largeurs de 4 à 15 mm environ chacun.
    Le mode de réalisation représenté sur la figure 2 se distingue de celui décrit en relation avec la figure 1 par le fait qu'on utilise des fibres polyamide-imide 141, 142, 143, etc. sous forme de ruban non tissé, c'est-à-dire que lesdites fibres sont organisées selon des fils de trame parallèles 141, 142, 143 et sont assemblées par des fils transversaux de chaíne 161 (un seul fil de chaíne a été représenté sur la figure 2). De façon en soi connue, la distance entre deux fils voisins de chaíne est nettement plus importante que la distance entre deux fils voisins de trame 141, 142.
    On a représenté sur la figure 3 une coupe d'un fil 20 présentant un conducteur central 22 composé d'une pluralité de brins 211, 212 etc., sur lequel est appliqué un ruban 10 avec un taux de recouvrement de l'ordre de 20% d'une spire à l'autre.
    Le taux de recouvrement est le rapport entre, d'une part, la largeur 1 de recouvrement de deux spires 26 et 28 (figure 6) du ruban enroulé sur le conducteur et, d'autre part, la largeur totale L du ruban. De cette manière, le long du fil on aura soit une simple épaisseur du ruban soit une double épaisseur, la double épaisseur n'apparaissant que sur environ 20% de la longueur. De façon générale, le taux de recouvrement sera compris entre 10 et 50%. Toutefois, on a intérêt à minimiser ce taux de recouvrement de façon à limiter le poids du fil et son diamètre extérieur.
    Le ruban 10 est recouvert par un autre ruban 30 en PTFE de type conventionnel d'épaisseur comprise entre 30 et 100 µm. Ce ruban 30 est enroulé dans le sens contraire du ruban 10, et avec un taux de recouvrement compris entre 20 et 70 %.
    On décrira ci-après en relation avec les figures 4 et 4a, un procédé de fabrication du ruban des figures 1 et 2.
    Préalablement aux étapes de fabrication correspondant aux figures 4 et 4a, on effectue un traitement de surface des fibres de façon à améliorer la liaison, ou adhérence, entre ces dernières et la matrice de PTFE. A cet effet, on enduit les fibres d'une dispersion aqueuse de PTFE. Le PTFE en solution aqueuse est sous forme de fines particules dont chacune a des dimensions de l'ordre de 0,1 µm.
    A la place, ou en plus, de cette enduction des fibres, on peut aussi prévoir un traitement par effet Corona. De façon en soi connue, le traitement par effet Corona consiste à faire circuler une fibre entre deux électrodes entre lesquelles on crée un arc électrique. Le plasma de l'arc électrique effectue un traitement de surface de la fibre qui aide à son adhérence ultérieure au PTFE dans lequel elle sera noyée ou sur lequel elle sera incrustée.
    Après cette enduction des fibres et/ou le traitement par effet Corona, les fibres et le PTFE sont introduits dans une extrudeuse pour PTFE fonctionnant selon un procédé dit de "pultrusion". Le PTFE non fritté en poudre est mélangé à un lubrifiant tel qu'un hydrocarbure, ce mélange formant un ensemble pâteux appelé "préforme".
    L'appareil de pultrusion comporte, tout d'abord, un dispositif de guidage 32 dans lequel les fibres sont introduites longitudinalement en même temps que le mélange pâteux.
    Ensuite, les fibres sont tirées et le mélange pâteux est poussé sous haute pression et à température de l'ordre de 40°C, dans une filière plate 34 qui réduit la section de l'ensemble pour atteindre une épaisseur de ruban de l'ordre de 60 µm. Après passage dans la filière 34, le ruban subit au poste de cuisson 36 une cuisson à une température inférieure ou égale à 250°C destinée à faire évaporer le lubrifiant. L'effort de traction à la sortie du poste 32 ou 34 permet d'installer les fibres en direction longitudinale. Après le poste 36, le ruban est introduit dans un poste de calandrage 38 qui est représenté schématiquement sur la figure 4a. Le calandrage consiste à réduire l'épaisseur du ruban formé précédemment de façon à ramener son épaisseur de 60 à 50 µm par exemple. Cette opération s'effectue, en général, à chaud. Elle consiste, de façon classique, à prévoir deux rouleaux 40 et 42 entre lesquels passe le ruban 44 dont on veut diminuer l'épaisseur.
    Enfin, le ruban 10 ainsi fabriqué est enroulé sur un tambour 46, puis découpé longitudinalement comme mentionné ci-dessus.
    Pour fabriquer le fil 20 (figure 3), on enroule le ruban à base de PTFE non fritté ainsi fabriqué autour du conducteur 22 avec, comme mentionné ci-dessus, un taux de recouvrement de préférence de l'ordre de 20%, puis on enroule le ruban 30 en PTFE non fritté autour de ce ruban 10 en sens contraire. L'ensemble ainsi formé, qui comporte du PTFE non fritté, est alors soumis à une opération de frittage qui consiste en un chauffage à une température d'au moins 342°C pendant environ 1 minute. Cette opération de frittage du PTFE augmente la densité de ce dernier, solidarise entre elles les différentes couches de rubans, et modifie la structure cristalline du polymère PTFE. Enfin, le frittage chasse l'air résiduel emprisonné par les rubans de PTFE non frittés.
    Dans la variante représentée sur la figure 5, le ruban 50 est formé par l'incrustation, par pression, de fibres 52 à la surface d'un ruban 54 de PTFE non fritté dont l'épaisseur est comprise entre 25 et 40 µm. A cet effet, on part d'un ruban de fibres 52 disposées en ruban non tissé de grande longueur et préalablement enduites d'une dispersion aqueuse de PTFE et/ou soumises à un traitement par effet Corona comme décrit ci-dessus. Ce traitement préalable est particulièrement utile dans cette réalisation, car les pressions exercées entre le ruban 54 de PTFE et le ruban de fibres 52 sont sensiblement moins importantes que dans le procédé décrit en relation avec les figures 4 et 4a.
    Après le traitement des fibres, le ruban 52 de fibres non tissé est appliqué sur le ruban PTFE 54 et l'ensemble est calandré à chaud comme décrit avec la figure 4a. La pression exercée entre les rouleaux de calandrage 56 et 58 incruste les fibres dans la surface du ruban 54, formant ainsi le ruban 50.
    En variante (non représentée), le ruban non tissé 52 est disposé entre 2 rubans de PTFE.
    Quel que soit le mode de réalisation, le ruban à base de PTFE non fritté qui est ainsi formé est enroulé autour du conducteur du fil comme décrit avec les autres modes de réalisation.
    Bien qu'on ait le plus souvent intérêt à minimiser le taux de recouvrement du ruban de façon à limiter le poids du conducteur formé, il peut se produire qu'on ait, au contraire, intérêt à l'augmenter de façon à améliorer les résistances mécaniques de l'isolant ainsi formé. Également pour optimiser les performances mécaniques, on peut associer deux rubans selon l'invention ayant chacun un taux de recouvrement de l'ordre de 20 à 30% ; autrement dit, dans le mode de réalisation représenté sur la figure 3, on peut remplacer le ruban de PTFE 30 par un autre ruban selon l'invention.

    Claims (24)

    1. Fil ou câble comportant au moins un isolant résistant à la propagation de l'arc électrique autour d'au moins un conducteur, caractérisé en ce que l'isolant est étanche et comprend une matrice (12), ou base (54), en polymère polytétra-fluoréthylène PTFE et des fibres de renforcement mécanique (141, 142, ... 52) continues et de grande longueur,.
    2. Fil ou câble selon la revendication 1, caractérisé en ce que les fibres (141, 142, ... ) sont noyées dans une matrice (12) de PTFE.
    3. Fil ou câble selon la revendication 1, caractérisé en ce que les fibres (52) sont incrustées à la surface de la base (54) de PTFE.
    4. Fil ou câble selon l'une quelconque des revendications précédentes, caractérisé en ce que l'isolant présente la forme d'un ruban de grande longueur.
    5. Fil ou câble selon la revendication 4, caractérisé en ce que le taux de recouvrement des spires du ruban est compris entre 10 et 70%, de préférence entre 10 et 50%.
    6. Fil ou câble selon la revendication 5, caractérisé en ce que le taux de recouvrement des spires du ruban est de l'ordre de 20%.
    7. Fil ou câble selon la revendication 4, 5 ou 6, caractérisé en ce que le ruban a une épaisseur de l'ordre de 50 µm.
    8. Fil ou câble selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'isolant est sous forme d'un extrudat de grande longueur.
    9. Fil ou câble selon l'une quelconque des revendications précédentes, caractérisé en ce que les fibres de renforcement mécanique (141, 142 ... 52) forment un ruban non tissé.
    10. Fil ou câble selon l'une quelconque des revendications 1 à 8, caractérisé en ce que les fibres de renforcement mécanique (141, 142 ... 52) sont disposées dans la matrice ou sur la base sans lien les unes avec les autres.
    11. Fil ou câble selon l'une quelconque des revendications précédentes, caractérisé en ce que les fibres de renforcement mécanique (141, 142 ... 52) présentent un haut module d'élasticité.
    12. Fil ou câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le PTFE est du PTFE non fritté.
    13. Fil ou câble selon l'une quelconque des revendications précédentes, caractérisé en ce que les fibres de renforcement sont choisies dans le groupe comprenant : les fibres méta-aramides, les fibres para-aramides, les fibres polyamides-imides, les fibres de carbone, les fibres polyimides et les fibres PTFE.
    14. Fil ou câble selon l'une quelconque des revendications précédentes, caractérisé en ce que le conducteur est en cuivre ou alliage de cuivre ou alliage d'aluminium et est, de préférence, revêtu d'étain, d'argent, ou de nickel.
    15. Fil ou câble selon l'une quelconque des revendications précédentes, caractérisé en ce que l'isolant est recouvert par un isolant de PTFE (30), par exemple sous forme de ruban d'épaisseur de l'ordre de 50 à 100 µm enrubanné avec un coefficient de recouvrement entre spires compris entre 20 et 70%.
    16. Fil ou câble selon l'une quelconque des revendications précédentes, caractérisé en ce que l'isolant est disposé directement contre le conducteur (22).
    17. Fil ou câble selon l'une quelconque des revendications précédentes, caractérisé en ce que l'isolant est dépourvu de polyimide.
    18. Fil ou câble selon l'une quelconque des revendications 4 à 7, caractérisé en ce qu'il comporte deux rubans se recouvrant.
    19. Application d'un fil ou câble selon l'une quelconque des revendications précédentes à un usage en aéronautique et/ou spatial.
    20. Ruban isolant à base de PTFE selon l'une des revendications 4 à 7 comportant une matrice, ou base, en polymère PTFE non fritté et des fibres de renforcement mécanique, continues et de grande longueur, orientées sensiblement dans le sens longitudinal dudit ruban.
    21. Procédé de fabrication d'un ruban selon la revendication 20, caractérisé en ce que les fibres étant noyées dans la matrice de PTFE, on fait appel à un procédé de pultrusion qui consiste en une extrusion pâteuse de PTFE et en une traction simultanée sur les fibres.
    22. Procédé de fabrication d'un ruban selon la revendication 20, caractérisé en ce que les fibres étant incrustées dans la base de PTFE, on applique par calandrage à chaud et sous pression des fibres contre une surface de ruban de PTFE.
    23. Procédé selon la revendication 22, caractérisé en ce qu'on choisit un ruban de PTFE non fritté d'épaisseur comprise entre 25 et 40 µm.
    24. Procédé de fabrication d'un ruban selon la revendications 21 à 23, caractérisé en ce qu'avant l'assemblage de la matrice, ou base, aux fibres, on fait subir un traitement aux fibres pour améliorer l'adhérence de ces dernières au PTFE, ce traitement consistant en une enduction d'une solution aqueuse de PTFE et/ou en un traitement à effet Corona.
    EP99400754A 1998-04-09 1999-03-29 Fil électrique et son procédé de fabrication Withdrawn EP0953990A1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9804434A FR2777382A1 (fr) 1998-04-09 1998-04-09 Fil electrique et son procede de fabrication
    FR9804434 1998-04-09

    Publications (1)

    Publication Number Publication Date
    EP0953990A1 true EP0953990A1 (fr) 1999-11-03

    Family

    ID=9525049

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99400754A Withdrawn EP0953990A1 (fr) 1998-04-09 1999-03-29 Fil électrique et son procédé de fabrication

    Country Status (3)

    Country Link
    EP (1) EP0953990A1 (fr)
    CA (1) CA2264978A1 (fr)
    FR (1) FR2777382A1 (fr)

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2921511B1 (fr) * 2007-09-21 2010-03-12 Nexans Cable electrique resistant a la propagation d'arc electrique

    Citations (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2427183A (en) * 1943-10-25 1947-09-09 Du Pont Electrical insulation
    US2691694A (en) * 1949-04-09 1954-10-12 Du Pont Polytetrafluoroethylene-glass fiber insulated electrical conductors
    US4362069A (en) * 1979-04-02 1982-12-07 Markel Corporation High efficiency, abrasion resistant product and process
    EP0076130A2 (fr) * 1981-09-28 1983-04-06 RAYCHEM CORPORATION (a California corporation) Impression sur des polymères ayant une surface à basse énergie
    WO1986003329A1 (fr) * 1984-11-29 1986-06-05 Habia Cable Sa Revetement isolant souple resistant au feu pour conduites, fils cables electriques et fibres optiques
    EP0332932A2 (fr) * 1988-03-07 1989-09-20 AUSIMONT U.S.A. Inc. Polymères fluorés, modifiés pour câbles de plenum résistant aux flammes et dégageant peu de fumée
    WO1990015422A1 (fr) * 1989-06-09 1990-12-13 Rogers Corporation Isolation pour cables coaxiaux et cable coaxial ainsi obtenu
    EP0445523A2 (fr) * 1990-02-02 1991-09-11 E.I. Du Pont De Nemours And Company Fluoropolymères chargés conductivement

    Patent Citations (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2427183A (en) * 1943-10-25 1947-09-09 Du Pont Electrical insulation
    US2691694A (en) * 1949-04-09 1954-10-12 Du Pont Polytetrafluoroethylene-glass fiber insulated electrical conductors
    US4362069A (en) * 1979-04-02 1982-12-07 Markel Corporation High efficiency, abrasion resistant product and process
    EP0076130A2 (fr) * 1981-09-28 1983-04-06 RAYCHEM CORPORATION (a California corporation) Impression sur des polymères ayant une surface à basse énergie
    WO1986003329A1 (fr) * 1984-11-29 1986-06-05 Habia Cable Sa Revetement isolant souple resistant au feu pour conduites, fils cables electriques et fibres optiques
    EP0332932A2 (fr) * 1988-03-07 1989-09-20 AUSIMONT U.S.A. Inc. Polymères fluorés, modifiés pour câbles de plenum résistant aux flammes et dégageant peu de fumée
    WO1990015422A1 (fr) * 1989-06-09 1990-12-13 Rogers Corporation Isolation pour cables coaxiaux et cable coaxial ainsi obtenu
    EP0445523A2 (fr) * 1990-02-02 1991-09-11 E.I. Du Pont De Nemours And Company Fluoropolymères chargés conductivement

    Also Published As

    Publication number Publication date
    FR2777382A1 (fr) 1999-10-15
    CA2264978A1 (fr) 1999-10-09

    Similar Documents

    Publication Publication Date Title
    CA2749829C (fr) Cable de transmission electrique a haute tension
    EP2017855B1 (fr) Cable de contrôle electrique
    FR2908895A1 (fr) Cables lisses et multilignes a rapport resistance/poids eleve
    CA2680411C (fr) Conduite flexible pour le transport des hydrocarbures a couche de maintien renforcee
    FR2693828A1 (fr) Câble pour signaux comportant un écran en polymère recouvert de métal.
    EP2557572B1 (fr) Câble électrique résistant aux décharges partielles
    EP0696750B1 (fr) Procédé de fabrication d&#39;un câble à fibres optiques renforcé; dispositif pour la mise en oeuvre de ce procédé et câble obtenu par ce procédé
    WO1990001209A1 (fr) Cable electroporteur
    EP1017063A1 (fr) Câble de transport d&#39;energie et/ou de télécommunications structurellement reforcé
    EP1234987B1 (fr) Câble de commande comportant un conduit guide-câble en PTFE poreux
    FR2908922A1 (fr) Cable de controle electrique
    WO2010018343A1 (fr) Corde pour raquette, notamment pour raquette de tennis
    EP2637864B1 (fr) Ruban a base de mica
    EP0953990A1 (fr) Fil électrique et son procédé de fabrication
    FR2744809A1 (fr) Cable a fibres optiques sans elements de renfort
    EP0311941B1 (fr) Procédé de fabrication d&#39;un cable à fibre optique et cable obtenu par ce procédé
    EP0500449B1 (fr) Corps allongé isolé au moyen d&#39;une enveloppe isolante
    FR2541782A1 (fr) Procede de fabrication d&#39;un cable a fibres optiques
    EP2783372B1 (fr) Cable electrique haute tension adapte aux conditions extremes
    EP1285747B1 (fr) Structure laminée multicouche, en particulier pour le guipage de câbles électriques
    FR2914040A1 (fr) Conduite flexible pour le transport des hydrocarbures a couche de maintien renforcee
    EP1037216B1 (fr) Fabrication de câble de télécommunication avec des groupes de fils métalliques ayant des pas différents
    WO2022064107A1 (fr) Âme composite pour conducteur électrique résistant aux fissures
    FR2503203A1 (fr) Procede pour l&#39;obtention d&#39;un cable souple et resistant et nouveau type de cable ainsi realise
    FR3104061A1 (fr) Matériau parafoudre et procédé pour fabriquer un composant composite fibreux

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IE IT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20000503

    AKX Designation fees paid

    Free format text: DE FR GB IE IT SE

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

    18W Application withdrawn

    Withdrawal date: 20000922