EP0945739A1 - Radar à compression d'impulsion - Google Patents

Radar à compression d'impulsion Download PDF

Info

Publication number
EP0945739A1
EP0945739A1 EP99400660A EP99400660A EP0945739A1 EP 0945739 A1 EP0945739 A1 EP 0945739A1 EP 99400660 A EP99400660 A EP 99400660A EP 99400660 A EP99400660 A EP 99400660A EP 0945739 A1 EP0945739 A1 EP 0945739A1
Authority
EP
European Patent Office
Prior art keywords
signal
replica
radar
impulse response
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99400660A
Other languages
German (de)
English (en)
Inventor
Alain Faure
Noel Suinot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP0945739A1 publication Critical patent/EP0945739A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/282Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using a frequency modulated carrier wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4082Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder

Definitions

  • the invention relates to a compression radar impulse.
  • the wave emitted towards the target is a wave whose frequency varies as a function of time, by example in a linear fashion.
  • the waves are compressed in time.
  • the filter performing this compression uses a signal often called "aftershock".
  • the aftershock determines the performance of the radar.
  • the latter are generally characterized by its impulse response.
  • the impulse response is the response of the instrument when the signal is sent to an isolated point target, without disturbance.
  • the impulse response occurs, in this case, in the form of a cardinal sinus (sint / t) with a peak useful central and secondary lobes which must be reduced or eliminate as they degrade the quality of radar measurements being given that they can be interpreted as false targets and correspondingly reduce the energy contained in the main lobe useful.
  • the most common method of reducing lobes side of the impulse response is to multiply replication by a weighting function.
  • the invention overcomes these drawbacks. It consists in synthesizing the reply from the response desired impulse.
  • FFT Fast Fourier
  • the Fourier transform of the impulse response desired provides a spectrum that is usually unbounded, i.e. extending to infinity. It is therefore, in practice, necessary to select the frequency band kept after this Fourier transformation. We can either settle for the tape useful (determined by the desired resolution), either choose, more, areas outside the useful area in order to have more possibilities to form an impulse response meeting the objective.
  • This band increase is by example between 10% and 100%. Band increase must indeed be limited because it increases the noise band and degrades the signal-to-noise ratio in proportion.
  • replica synthesis method according to the invention is not limited to a particular width signal band to be transmitted. It is compatible with conventional transmitted signals with linear frequency variation and with wider band signals corresponding to a law nonlinear frequency / time.
  • This calibration can be obtained in various ways.
  • This measurement is carried out periodically, by example every minute, or every time the radar is started so to adjust the replica periodically.
  • the calibration is carried out by estimation, i.e. by calculation.
  • the measures are combined by calculation concerning various radar equipment, or predictions performance in order to obtain an estimate of the signal such that it should be after scanning the whole radar.
  • Radar performance also depends on the accuracy and frequency of the pulse calculation calibration since any degradation seen by the useful signal, but not by the calibration signal, cannot be injected into the calculation of the replica and therefore will come degrade the impulse response. It will therefore be advisable to choose the calibration process so that distortions are not calibrated allow the impulse response to satisfy the conditions imposed, that is to say the specifications.
  • the invention applies not only to a compression radar pulse, but also to a coherent radar on multiple pulses, such as an aperture radar imager synthetic (SAR).
  • SAR aperture radar imager synthetic
  • pulse compression radar should be understood not only for a speed camera of this type, but also for a coherent radar for which the received signal would undergo a pulse frequency variation (linear or not) at pulse, as is the case with the Doppler effect in the case SAR during the passage of the echo transversely to the lobe antenna as a result of the movement of the mobile carrying the radar.
  • the distortions measured by the pulse calibration are errors occurring over time of integration on several pulses.
  • block 10 we start, for example, from a classic impulse response in cardinal sine (possibly weighted) which corresponds to a transmission signal without distortions whose frequency varies linearly in function of time, that is to say a "chirp" called ideal.
  • This classical impulse response which is a function of time, is a digital signal.
  • FIG. 4 template showing the objective with an impulse response whose main lobe would be that of the impulse response (RI) ideal in sinc (t) (cardinal sinus) and secondary lobes equal to those of sinc (t) minus 20dB.
  • This template looks like this with a rectangular central part 60 and feet 62 and 64 at 20dB under the central part.
  • the desired impulse response RI obj (t) (block 14), that is: Ideal IR (t) x Gab (t).
  • the function RI obj (f) (block 18), which is a spectrum, is subjected to a calculation (block 20) which consists of a division by the spectrum of a pulse of calibration (or calibration), namely S cal (f).
  • This spectrum of the calibration pulse is determined (block 24) by Fourier transform (block 23) of a measured and / or estimated calibration pulse (block 22).
  • FIGS. 2a, 2b and 2c each is shown times the main parts of the instrument, namely a radar plate 70, an antenna module 72 and an array 74 of distribution, or beam former, of the RF signal.
  • the radar plate 70 includes a digital module 76 which aims to generate the transmission signal and sample it on reception and an RF 78 module which purpose of performing the frequency change and amplification. These two modules concern both transmission and reception. AT transmission, module 76 provides a frequency signal intermediate to module 78 and, upon receipt, this is the module 78 which provides an intermediate frequency signal to the module 76.
  • the active antenna 72 comprises a section 80 of modules send and receive assets, and a set of elements radiant 82.
  • the module 74 makes it possible to withdraw or inject RF signals in the antenna during calibration.
  • S1 (f) is the contribution to the distortion imposed by modules 76 and 78 in the channel emission
  • S2 (f) is the contribution of modules 76 and 78 in the receiving lane.
  • the emission channel of the instrument is calibrated.
  • the signal transmitted passes through modules 76 and 78, those of elements of section 80 which are intended for the emission, the network 74 and then crosses modules 78 and 76 again.
  • the transmission signal first passes through the modules 76 and 78, then network 74, then the elements of section 82 which are dedicated to reception, and, finally, modules 78 and 76 towards exit 84.
  • the operation calibration or estimation consists in measuring the variation, from pulse to pulse, in amplitude and phase of the signal received. This variation is multiplied by a signal S (t) which is the ideal signal sampled at the pulse frequency (for example a band "chirp" equal to the Doppler band for a SAR radar). Then the replica is synthesized as described in relationship to Figure 1.
  • the synthesized replica R (f) (block 20) is used from classic way to get the radar response, as shown in Figure 3:
  • the useful signal is first digitized. This signal useful digitized is represented by the function S (t) (block 30). Then, we apply to the signal S (t), a transformation of Fast Fourier (block 32), which provides the signal to compress S (f) which is a spectrum (block 34).
  • Diagram 90 thus comprises: a first segment 92 between times 0 and ⁇ ( ⁇ being small compared to duration T of the transmitted pulse), a second segment 94 between the instants ⁇ and T- ⁇ , slope less than the slope of the line segment 92 and finally a third segment 96 between the instants T- ⁇ and T which is a line segment with the same slope as the first segment 92.
  • Figure 4c shows the impulse response obtained with a replica synthesized in accordance with the invention, the template imposed - during synthesis - on the lobes secondary and diffuse lobes being of the same order of magnitude than the Hamming weighting of 0.58, as for Figure 4b.
  • the main lobe 50 2 (fig. 4c) is narrower than the main lobe 50 1 (fig. 4b) in the conventional case.
  • the signal to noise ratio is improved by about 1 dB.
  • the contrast between point target (main lobe) and target diffuse (noise floor) will be increased by the same amount, which will improve detection performance.
  • the method according to the invention applies to any type of pulse compression or coherent radar and, in particular, imaging radars, rain radars, altimeters, wind diffusiometers, etc.
  • radars imagers are pulse compression radars in distance (the chirp is in the transmitted pulse) and in azimuth, that is to say along the velocity vector, in time of coherent integration corresponding to the crossing of the diagram antenna.
  • Rain radars can use the technique of pulse compression, provided, however, that the retained technique guarantees a very high level of secondary lobes low, typically -60dB, to avoid pollution of echoes from rain from the ground echoes.
  • modulations pulse type of that shown in Figure 4a.
  • Wind diffusiometers are also radar compression on the distance axis to improve the balance of liaison.
  • altimeters are compression radars on the distance axis.
  • optimization requires a compromise between parameters of the impulse response (resolution, level of side lobes), radar parameters (band, pulse duration, signal-to-noise ratio) and the compression algorithms.
  • Table I is a comparative table between the performances obtained on a radar having ripple-type distortions in the band and in accordance with the invention (synthesized replica) and the performances obtained, on the one hand, with a weighted but not calibrated reply, and, on the other hand, with a classic calibrated replica, assigned here a Hamming weighting of 0.58.
  • ISLR stands for "Integrated Side Lobe ratio" and, conventionally, corresponds to the ratio between the energy contained in the central lobe (between the maximum and -3dB) and the energy contained outside this central lobe.
  • PSLR Peak Side Lobe Ratio
  • SSLR stands for "Spurious Side Lobe Ratio" and corresponds the distance, in dB, between the maximum of the main lobe and the maximum of a secondary lobe outside the aforementioned window.
  • Table II below makes it possible to compare a radar with impulse response obtained in a conventional manner and a radar according to the invention with a synthesized impulse response.
  • IR settings "Classic” Hamming IR 0.58 / 0.65 "Synthetic” IR + Hamming 0.65 Losses on the main peak (linked to the weighting) 1dB / 0.6dB 0.6dB Resolution broadening factor 1.2 / 1.1 1.1 PSLR 34.3dB / 26.8dB 33dB ISLR 19.7dB / 19dB 19.9dB SSLR 43.3dB / 38dB 43.6dB
  • the answer impulse is synthesized from a response impulse in time obtained by the classical method with Hamming weighting of coefficient 0.65 and a template 20dB attenuation on the side lobes and a limiting the band of the replica to 1.1 times the band B of the chirp issued.
  • Table II shows that the impulse response synthesized has secondary lobes less than 33dB, that is to say roughly at the same level as those obtained with a conventional Hamming weighting of 0.58. Furthermore the loss of signal-to-noise ratio and degradation of resolution are practically identical to those obtained with a conventional method with a Hamming coefficient of 0.65.
  • Table II clearly shows that the invention allows, for a single coefficient, to combine the advantages obtained with the conventional weights of 0.58 and 0.65 without represent the disadvantages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

L'invention est relative à un procédé de synthèse d'une réplique intervenant dans le filtre de compression d'un radar à compression d'impulsion. On calcule la réplique (R(f)), 20) à partir du spectre (18) d'une réponse impulsionnelle désirée (RI obj (t), 10). De préférence la réponse impulsionnelle désirée (RIobj(t)) est obtenue à partir d'une fonction analytique, telle qu'un sinus cardinal (10) ou un sinus cardinal pondéré, et d'un gabarit (12). Pour le calcul de la réplique (R(f)) il est préférable d'utiliser des signaux d'étalonnage (22, 23, 24) de l'instrument. L'invention s'applique aussi aux radars à ouverture synthétique. <IMAGE>

Description

L'invention est relative à un radar à compression d'impulsion.
Dans un radar de ce type, l'onde émise vers la cible est une onde dont la fréquence varie en fonction du temps, par exemple de façon linéaire. Afin de ne pas dégrader, à la réception, le pouvoir séparateur en distance, les ondes sont comprimées dans le temps. Le filtre réalisant cette compression utilise un signal souvent appelé "réplique".
La réplique détermine les performances du radar. Ces dernières sont généralement caractérisées par sa réponse impulsionnelle. La réponse impulsionnelle est la réponse de l'instrument quand le signal est émis vers une cible ponctuelle isolée, sans perturbation. On rappelle ici que la réponse impulsionnelle temporelle RI(t) a pour valeur : RI(t) = s(t)*r(t), s(t) étant le signal émis en fonction du temps, r(t) étant la réplique et le signe * représentant le produit de convolution.
Dans le domaine fréquenciel on obtient donc :
   RI(f) = S(f).R(f), où S(f) = F(s(t)) est le spectre du signal émis, et R(f) = F(r(t)) est le spectre de la réplique.
Dans le cas classique du filtrage adapté, qui est le traitement maximisant le rapport signal à bruit, on calcule :
   r(t) = s*(t), s*(t) désignant ici le complexe conjugué du signal s(t).
La réponse impulsionnelle se présente, dans ce cas, sous la forme d'un sinus cardinal (sint/t) comportant un pic central utile et des lobes secondaires qu'il faut réduire ou éliminer car ils dégradent la qualité des mesures radar étant donné qu'ils peuvent être interprétés comme des fausses cibles et réduisent d'autant l'énergie contenue dans le lobe principal utile.
Le procédé le plus courant pour réduire les lobes secondaires de la réponse impulsionnelle consiste à multiplier la réplique par une fonction de pondération.
Mais la pondération utilisée élargit le lobe principal et abaisse son amplitude maximale. L'élargissement (augmentation de la durée) entraíne une dégradation de la résolution, et la diminution de l'amplitude signifie une dégradation du rapport signal à bruit. Pour obtenir les résultats voulus en résolution et en rapport signal à bruit, on compense cette dégradation par une augmentation de la bande de fréquence émise et de la puissance d'émission. Le radar est ainsi complexe et coûteux. En outre, les lobes lointains, appelés lobes de Fresnel, ne sont pas réduits dans une mesure significative car le niveau de ces lobes est distant de -20 log(BT) + 3dB du maximum du lobe principal, B étant la bande du signal émis et T la durée de l'impulsion émise.
Pour réduire les lobes de Fresnel, on utilise des signaux émis qui s'écartent d'un signal à simple variation linéaire de la fréquence. Ces signaux augmentent les largeurs de bande des signaux émis et reçus, ce qui entraíne également une augmentation de la complexité du radar.
L'invention permet de remédier à ces inconvénients. Elle consiste à synthétiser la réplique à partir de la réponse impulsionnelle désirée.
En d'autres termes, on fixe a priori la réponse impulsionnelle (en temps) que l'on désire obtenir, c'est-à-dire qu'on fixe le niveau d'abaissement des lobes secondaires, le niveau des lobes de Fresnel, et les autres paramètres de la réponse impulsionnelle en fonction des performances désirées. La réplique est obtenue numériquement à partir de la transformée de Fourier de cette réponse impulsionnelle temporelle désirée.
On utilise de préférence un algorithme de transformée de Fourier discrète tel qu'un algorithme de transformée de Fourier rapide (FFT).
La transformée de Fourier de la réponse impulsionnelle désirée fournit un spectre habituellement non borné, c'est-à-dire s'étendant à l'infini. Il est donc, en pratique, nécessaire de sélectionner la bande de fréquences conservée après cette transformation de Fourier. On peut soit se contenter de la bande utile (déterminée par la résolution désirée), soit choisir, en plus, des zones extérieures à la zone utile afin de disposer de davantage de possibilités de former une réponse impulsionnelle répondant à l'objectif. Cette augmentation de bande est par exemple comprise entre 10% et 100%. L'augmentation de la bande doit en effet être limitée car elle augmente la bande de bruit et dégrade en proportion le rapport signal à bruit.
On notera ici que le procédé de synthèse de réplique conforme à l'invention n'est pas limité à une largeur particulière de bande de signal à émettre. Il est compatible avec des signaux émis classiques à variation linéaire de fréquence et avec des signaux à bande plus large correspondant à une loi fréquence/temps non linéaire.
Étant donné que la réplique doit être multipliée par le spectre du signal reçu par le radar et que ce signal est nécessairement affecté par les distorsions - inévitables - introduites par l'instrument, on a constaté que, pour obtenir une réponse impulsionnelle correcte, il était préférable de tenir compte de ces distorsions dans la détermination de la réplique.
C'est pourquoi, dans le mode de réalisation préféré de l'invention, on étalonne l'instrument et on utilise le signal d'étalonnage dans le calcul de la réplique.
A cet effet, on détermine une impulsion temporelle de d'étalonnage puis on en calcule le spectre dont l'inverse est multiplié par la transformée de Fourier (le spectre) de la réponse impulsionnelle désirée.
Cet étalonnage peut être obtenu de manières diverses. Dans un premier exemple, on mesure la distorsion après passage du signal émis dans la chaíne de réception. Ce signal d'étalonnage est ensuite échantillonné et numérisé.
Cette mesure s'effectue de façon périodique, par exemple toutes les minutes, ou à chaque démarrage du radar afin d'ajuster périodiquement la réplique.
Dans un second exemple, qui peut être combiné avec le premier, l'étalonnage est réalisé par estimation, c'est-à-dire par calcul. A cet effet, on combine par calcul les mesures concernant les divers équipements du radar, ou les prédictions de performances afin d'obtenir une estimation du signal tel qu'il devrait être après avoir parcouru tout le radar.
Les performances du radar dépendent également de la précision et de la fréquence du calcul de l'impulsion d'étalonnage dans la mesure où toute dégradation vue par le signal utile, mais non par le signal d'étalonnage, ne pourra pas être injectée dans le calcul de la réplique et donc viendra dégrader la réponse impulsionnelle. Il conviendra donc de choisir le procédé d'étalonnage afin que les distorsions non étalonnées permettent que la réponse impulsionnelle satisfasse aux conditions imposées, c'est-à-dire aux spécifications.
L'invention s'applique non seulement à un radar à compression d'impulsion, mais également à un radar cohérent sur plusieurs impulsions, tel qu'un imageur radar à ouverture synthétique (SAR). Ainsi, dans ce qui précède et dans ce qui suit, l'expression "radar à compression d'impulsion" doit être comprise non seulement pour un radar de ce type, mais aussi pour un radar cohérent pour lequel le signal reçu subirait une variation (linéaire ou non) de fréquence d'impulsion à impulsion, comme c'est le cas avec l'effet Doppler dans le cas du SAR au cours du passage de l'écho transversalement au lobe antenne par suite du déplacement du mobile porteur du radar. Dans ce dernier cas, les distorsions mesurées par l'impulsion d'étalonnage sont les erreurs intervenant lors du temps d'intégration sur plusieurs impulsions.
D'autres caractéristiques et avantages de l'invention apparaítront avec la description de certains de ses modes de réalisation, celle-ci étant effectuée en se référant aux dessins ci-annexés sur lesquels :
  • la figure 1 est un schéma, sous forme de blocs, représentant un procédé de synthèse de réplique conforme à l'invention,
  • les figures 2a à 2c sont des schémas montrant un exemple de détermination d'une impulsion d'étalonnage dans le procédé de la figure 1,
  • la figure 3 est un schéma, sous forme de blocs, d'un radar conforme à l'invention utilisant la réplique déterminée par le procédé montré sur la figure 1,
  • la figure 4 est un diagramme d'un gabarit utilisé dans le procédé selon l'invention,
  • la figure 4a montre un exemple de modulation de signal émis,
  • la figure 4b est un graphique montrant la réponse impulsionnelle obtenue avec une réplique pondérée classique, et
  • la figure 4c est un graphique montrant une réponse impulsionnelle obtenue avec une réplique conforme à l'invention.
  • On se réfère tout d'abord à la figure 1. Dans le procédé représenté sur cette figure, on synthétise la réplique fréquencielle R(f) (qui sera utilisée dans le filtre de compression) qui est caractérisée par une fonction complexe de la fréquence f.
    A cet effet (bloc 10), on part, par exemple, d'une réponse impulsionnelle classique en sinus cardinal (éventuellement pondéré) qui correspond à un signal d'émission sans distorsions dont la fréquence varie linéairement en fonction du temps, c'est-à-dire à un "chirp" dit idéal. Cette réponse impulsionnelle classique, qui est une fonction du temps, est un signal numérique.
    Ensuite (bloc 12), on applique à cette réponse impulsionnelle classique un gabarit qui a pour but de réduire les lobes secondaires et les lobes lointains ainsi que les lobes diffus en fonction de la précision voulue pour le radar.
    A titre d'illustration, on donne figure 4 un exemple de gabarit montrant l'objectif avec une réponse impulsionnelle dont le lobe principal serait celui de la réponse impulsionnelle (RI) idéale en sinc(t) (sinus cardinal) et les lobes secondaires égaux à ceux du sinc(t) moins 20dB. Ce gabarit se présente ainsi avec une partie centrale rectangulaire 60 et des pieds 62 et 64 à 20dB sous la partie centrale.
    On obtient ainsi, après application du gabarit, la réponse impulsionnelle souhaitée RIobj(t) (bloc 14), soit : RI idéale(t) x Gab(t).
    Étant donné que la réplique est une fonction de la fréquence, on applique donc à la fonction RIobj(t) une transformation de Fourier, comme représentée par le bloc 16. Dans l'exemple on utilise une transformation de Fourier rapide (FFT).
    A l'issue de cette transformation de Fourier, la fonction RIobj(f) (bloc 18), qui est un spectre, est soumise à un calcul (bloc 20) qui consiste en une division par le spectre d'une impulsion d'étalonnage (ou calibration), à savoir Scal(f).
    Ce spectre de l'impulsion d'étalonnage, noté Scal(f), est déterminé (bloc 24) par transformée de Fourier (bloc 23) d'une impulsion d'étalonnage mesurée et/ou estimée (bloc 22).
    On va maintenant décrire en relation avec les figures 2a à 2c un exemple de mesure de l'impulsion d'étalonnage.
    Sur les figures 2a, 2b et 2c on a représenté à chaque fois les parties principales de l'instrument, à savoir un plateau radar 70, un module d'antenne 72 et un réseau 74 de distribution, ou formateur de faisceau, du signal RF.
    Le plateau radar 70 comprend un module numérique 76 qui a pour but de générer le signal d'émission et de l'échantillonner à la réception et un module RF 78 qui a pour but d'effectuer le changement de fréquence et l'amplification. Ces deux modules concernent tant l'émission que la réception. A l'émission, le module 76 fournit un signal en fréquence intermédiaire au module 78 et, à la réception, c'est le module 78 qui fournit un signal en fréquence intermédiaire au module 76.
    L'antenne active 72 comprend une section 80 de modules actifs d'émission et de réception, et un ensemble d'éléments rayonnants 82. Le module 74 permet de prélever ou d'injecter des signaux RF dans l'antenne au cours de l'étalonnage.
    Pour déterminer l'impulsion d'étalonnage dans le cas d'un tel instrument, on procède en trois étapes.
    Au cours de la première étape, représentée sur la figure 2a, le signal d'émission du radar traverse uniquement les modules 76 et 78 dans les deux sens. On obtient ainsi en sortie de réception 84 un signal SD(f) ayant la valeur suivante : SD(f) = S1(f) x S2(f).
    Dans cette formule S1(f) est la contribution à la distorsion imposée par les modules 76 et 78 dans la voie d'émission, et S2(f) est la contribution des modules 76 et 78 dans la voie de réception.
    Au cours d'une seconde étape, représentée sur la figure 2b, on étalonne la voie d'émission de l'instrument. A cet effet, le signal émis traverse les modules 76 et 78, ceux des éléments de la section 80 qui sont destinés à l'émission, le réseau 74 et, ensuite, traverse de nouveau les modules 78 et 76.
    Dans ce cas, on obtient sur la sortie 84 le signal SE(f) ayant la valeur suivante : SE (f) = S1(f)xSEant(f)xS2(f).
    Dans cette formule S1(f) et S2(f) ont la même signification que dans le cas de la figure 2a décrite ci-dessus, tandis que SEant(f) correspond à la distorsion introduite, à l'émission, par l'antenne 80 et le réseau 74.
    Au cours de la troisième étape, représentée sur la figure 2c, le signal d'émission traverse d'abord les modules 76 et 78, ensuite le réseau 74, puis les éléments de la section 82 qui sont dédiés à la réception, et, enfin, les modules 78 et 76 vers la sortie 84.
    Dans ce cas on obtient sur cette sortie 84, un signal SR(f) satisfaisant à la formule suivante : SR(f) = S1(f)xSRant(f)xS2(f)
    Dans cette formule SRant(f) correspond à la distorsion introduite, dans ce mode de fonctionnement en réception, par le réseau 74 et par les éléments de la section 80 qui sont affectés à la réception.
    L'impulsion d'étalonnage Scal(f) a alors pour valeur : Scal(f) = SE(f)xSR(f)SD(f) = S1(f)xS2(f)xSEant(f)xSRant(f).
    On voit ainsi que l'impulsion d'étalonnage tient compte des distorsions introduites à l'émission et à la réception par les modules 76 et 78, par le module d'antenne et par le réseau 74.
    Cependant, cet étalonnage n'est pas parfait car il ne tient pas compte de toutes les distorsions, en particulier celles qui peuvent être introduites à l'aval des éléments de la section 80. Toutefois, l'expérience montre que ce type d'étalonnage fournit des résultats satisfaisants.
    Dans le cas d'un radar pour lequel la compression s'effectue sur des impulsions cohérentes successives (par exemple un radar SAR à ouverture synthétique), l'opération d'étalonnage ou estimation consiste à mesurer la variation, d'impulsion à impulsion, en amplitude et en phase du signal reçu. Cette variation est multipliée par un signal S(t) qui est le signal idéal échantillonné à la fréquence d'impulsion (par exemple un "chirp" de bande égale à la bande Doppler pour un radar SAR). Ensuite la réplique est synthétisée comme décrit en relation avec la figure 1.
    La réplique synthétisée R(f) (bloc 20) est utilisée de façon classique pour obtenir la réponse du radar, comme représenté sur la figure 3 :
    Le signal utile est tout d'abord numérisé. Ce signal utile numérisé est représenté par la fonction S(t) (bloc 30). Ensuite, on applique au signal S(t), une transformation de Fourier rapide (bloc 32), ce qui fournit le signal à comprimer S(f) qui est un spectre (bloc 34).
    Pour comprimer le signal on multiplie S(f) par la réplique synthétisée R(f) (bloc 36) . On obtient ainsi le spectre: RI(f) = R(f)xS(f).
    A ce signal comprimé, on applique enfin une fonction de Fourier inverse rapide (bloc 38), ce qui fournit la réponse impulsionnelle, en temps, du radar (bloc 40).
    On va maintenant décrire les résultats obtenus avec un radar à compression d'impulsion conforme à l'invention et dont le signal émis correspond à un "Chirp" doublement brisé tel que représenté sur la figure 4a. Ce diagramme de la figure 4a représente la variation en fonction du temps t de la modulation fréquentielle du signal émis sur une bande de fréquence 2B. L'émission est effectuée pendant un temps T.
    Le diagramme 90 comporte ainsi : une premier segment 92 entre les temps 0 et τ (τ étant petit par rapport à la durée T de l'impulsion émise), un second segment 94 entre les instants τ et T-τ, de pente inférieure à la pente du segment de droite 92 et enfin un troisième segment 96 entre les instants T-τ et T qui est un segment de droite de même pente que le premier segment 92.
    Sur le diagramme de la figure 4b, on a représenté la réponse impulsionnelle obtenue avec une réplique classique égale au conjugué du signal émis, une calibration parfaite et une pondération de Hamming de coefficient 0,58.
    La figure 4c représente la réponse impulsionnelle obtenue avec une réplique synthétisée conformément à l'invention, le gabarit imposé - lors de la synthèse - aux lobes secondaires et aux lobes diffus étant du même ordre de grandeur que la pondération de Hamming de 0,58, comme pour la figure 4b.
    Sur les diagrammes des figures 4b et 4c, le temps, en microsecondes, est porté en abscisses, l'origine correspondant au pic du lobe principal 501 ou 502.
    Dans le cas de l'invention, le lobe principal 502 (fig. 4c) est plus étroit que le lobe principal 501 (fig. 4b)dans le cas classique. On obtient ainsi un gain en résolution de l'ordre de 35%, le facteur d'élargissement passant de 1,2 à 0,89. On rappelle ici que la résolution est le rapport entre le facteur d'élargissement et la bande B de modulation du signal d'émission (figure 4a).
    En outre, avec l'invention, le rapport signal à bruit est amélioré d'environ 1 dB.
    Pour des performances identiques de résolution, de bilan de liaison, et de niveaux de lobes secondaires pour une cible ponctuelle, avec l'invention on peut obtenir une diminution de 35% de la bande utile émise, une diminution de 25% de la puissance à émettre ainsi que de la consommation et une amélioration du contraste cible ponctuelle sur cible diffuse, et donc une amélioration de la probabilité de détection.
    En effet, le lobe principal étant plus étroit de 35% on obtiendra la résolution souhaitée en utilisant une bande B1 telle que :
       B1 = Bclassique x 0,65, puisque la résolution est inversement proportionnelle à la bande émise.
    De même, au lieu de tirer avantage de l'amélioration (1dB) du rapport signal à bruit obtenue par la méthode de traitement on peut - pour la même performance en SNR ("signal to noise ratio") entre un radar à traitement classique et un radar utilisant le principe de l'invention - diminuer la puissance moyenne émise (donc consommée) de 25%.
    Par ailleurs, le lobe principal n'étant pas atténué, le contraste entre cible ponctuelle (lobe principal) et cible diffuse (plancher de bruit) sera augmenté d'autant, ce qui améliorera les performances de détection.
    Le procédé selon l'invention s'applique à tout type de radar à compression d'impulsion ou cohérent et, en particulier, aux radars imageurs, aux radars à pluie, aux altimètres, aux diffusiomètres à vent, etc. On rappelle en effet que les radars imageurs (SAR) sont des radars à compression d'impulsion en distance (le chirp est dans l'impulsion émise) et en azimut, c'est-à-dire le long du vecteur vitesse, dans le temps d'intégration cohérent correspondant à la traversée du diagramme antenne.
    Les radars à pluie peuvent utiliser la technique de compression d'impulsion, à condition, toutefois, que la technique retenue garantisse un niveau de lobes secondaires très bas, typiquement -60dB, pour éviter la pollution des échos de pluie par les échos de sol. On utilise alors des modulations d'impulsion du type de celle représentée sur la figure 4a.
    Les diffusiomètres à vent sont également des radars à compression sur l'axe distance pour améliorer le bilan de liaison.
    De même les altimètres sont des radars à compression sur l'axe distance.
    Dans tous ces radars, l'optimisation nécessite un compromis entre les paramètres de la réponse impulsionnelle (résolution, niveau des lobes secondaires), les paramètres radar (bande, durée de l'impulsion, rapport signal à bruit) et les algorithmes de compression.
    Le tableau I ci-dessous est un tableau comparatif entre les performances obtenues sur un radar ayant des distorsions de type ondulations dans la bande et conforme à l'invention (réplique synthétisée) et les performances obtenues, d'une part, avec une réplique pondérée mais non calibrée, et, d'autre part, avec une réplique classique calibrée, affectée ici d'une pondération de Hamming de 0,58.
    Par rapport aux radars à compression d'impulsions à réplique non étalonnée ou étalonnée, on note une nette augmentation du niveau du pic principal, c'est-à-dire une amélioration du rapport signal à bruit, ainsi qu'une nette amélioration de la résolution et également du paramètre ISLR.
    Paramètres RI Réplique non calibrée Réplique "classique" calibrée Réplique synthétisée
    Niveau du pic principal -4,9 dB -4,7 dB 0 dB
    Facteur d'élargissement de la résolution 1,2 1,2 0,89
    ISLR 17,2 dB 19,6 dB 25,6 dB
    PSLR 19,8 dB 34,3 dB 34 dB
    SSLR 41,6 dB 43 dB 44,9 dB
    Dans ce tableau ISLR signifie "Integrated Side Lobe ratio" et, de façon classique, correspond au rapport entre l'énergie contenue dans le lobe central (entre le maximum et -3dB) et l'énergie contenue en dehors de ce lobe central.
    PSLR signifie "Peak Side Lobe Ratio" et correspond à la distance, en dB, entre le maximum du lobe principal et le maximum d'un lobe secondaire dans une fenêtre déterminée autour du pic principal.
    SSLR signifie "Spurious Side Lobe Ratio" et correspond à la distance, en dB, entre le maximum du lobe principal et le maximum d'un lobe secondaire se trouvant à l'extérieur de la fenêtre précitée.
    Dans un second exemple on fait appel à un radar émettant un chirp classique, c'est-à-dire une modulation linéaire de fréquence du signal d'émission avec une bande B = 20Mhz et une durée T de 25µsec, la fréquence d'échantillonnage étant de 1,1B après un filtre anti-repliement.
    Le tableau II ci-dessous permet d'effectuer une comparaison entre un radar à réponse impulsionnelle obtenue de façon classique et un radar conforme à l'invention avec une réponse impulsionnelle synthétisée.
    Paramètres RI RI "classique" Hamming 0,58/0,65 RI "synthétisée" + Hamming 0,65
    Pertes sur le pic principal (liées à la pondération) 1dB/0,6dB 0,6dB
    Facteur d'élargissement de la résolution 1,2/1,1 1,1
    PSLR 34,3dB/26,8dB 33dB
    ISLR 19,7dB/19dB 19,9dB
    SSLR 43,3dB/38dB 43,6dB
    Dans le cas du radar classique on a considéré deux pondérations de Hamming, l'une de coefficient 0,58 et l'autre de coefficient 0,65. Dans le cas de l'invention, la réponse impulsionnelle est synthétisée à partir d'une réponse impulsionnelle en temps obtenue par la méthode classique avec pondération de Hamming de coefficient 0,65 et un gabarit d'atténuation de 20dB sur les lobes secondaires et une limitation de la bande de la réplique à 1,1 fois la bande B du chirp émis.
    Le tableau II montre que la réponse impulsionnelle synthétisée présente des lobes secondaires inférieurs à 33dB, c'est-à-dire sensiblement au même niveau que ceux obtenus avec une pondération classique de Hamming de 0,58. Par ailleurs la perte sur le rapport signal à bruit et la dégradation de la résolution sont pratiquement identiques à celles obtenues avec une méthode classique à coefficient de Hamming de 0,65.
    Le tableau II montre clairement que l'invention permet, pour un seul coefficient, de combiner les avantages obtenus avec les pondérations classiques de 0,58 et 0,65 sans en représenter les inconvénients.

    Claims (7)

    1. Procédé de synthèse d'une réplique intervenant dans le filtre de compression d'un radar à compression d'impulsion, dans lequel on calcule la réplique (R(f)) à partir d'une réponse impulsionnelle désirée (RI obj (t), caractérisé en ce que la réponse impulsionnelle désirée (RIobj(t)) est obtenue à partir d'une fonction analytique, telle qu'un sinus cardinal ou un sinus cardinal pondéré, et d'un gabarit, en ce que pour le calcul de la réplique (R(f)) on utilise des signaux d'étalonnage de l'instrument et en ce que la réplique est définie par la formule suivante : R(f) = RIobj(f)/Scal(f),    formule dans laquelle RIobj(f) est le spectre de la réponse impulsionnelle désirée et Scal(f) est le spectre d'un signal d'étalonnage, notamment une impulsion d'étalonnage.
    2. Procédé selon la revendication 2, caractérisé en ce que, dans le spectre de la réponse impulsionnelle désirée, on conserve une bande de fréquences supérieure d'environ 10% à 100% de la bande utile pour obtenir la résolution souhaitée.
    3. Procédé selon la revendication 1 ou 2, caractérisé en ce que, pour la synthèse de la réplique, on utilise un signal ou une impulsion d'étalonnage qui est mesuré(e) et/ou estimé(e) et qui représente les distorsions introduites par le radar.
    4. Procédé selon la revendication 3, caractérisé en ce que la mesure et/ou l'estimation est effectuée de façon périodique afin d'ajuster périodiquement la réplique.
    5. Procédé selon la revendication 3 ou 4, caractérisé en ce que la mesure de l'impulsion d'étalonnage consiste à acquérir un signal ayant traversé les chaínes d'émission et de réception du radar.
    6. Procédé selon la revendication 2 caractérisé en ce que le spectre de la réponse impulsionnelle désirée est obtenu à l'aide d'un algorithme de transformation de Fourier discrète de la réponse impulsionnelle désirée temporelle.
    7. Application du procédé selon la revendication 1 à un radar cohérent sur un temps d'intégration de plusieurs impulsions.
    EP99400660A 1998-03-23 1999-03-18 Radar à compression d'impulsion Withdrawn EP0945739A1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9803529 1998-03-23
    FR9803529A FR2776392B1 (fr) 1998-03-23 1998-03-23 Radar a compression d'impulsion

    Publications (1)

    Publication Number Publication Date
    EP0945739A1 true EP0945739A1 (fr) 1999-09-29

    Family

    ID=9524362

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99400660A Withdrawn EP0945739A1 (fr) 1998-03-23 1999-03-18 Radar à compression d'impulsion

    Country Status (4)

    Country Link
    US (1) US6067043A (fr)
    EP (1) EP0945739A1 (fr)
    CA (1) CA2262848C (fr)
    FR (1) FR2776392B1 (fr)

    Families Citing this family (27)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB0220299D0 (en) * 2002-08-31 2002-10-09 Astrium Ltd Method and system for correcting the image effects of signal non-linearity in radar
    US7151484B2 (en) * 2003-09-30 2006-12-19 Kabushiki Kaisha Toshiba Pulse compression processor
    US7019686B2 (en) * 2004-02-27 2006-03-28 Honeywell International Inc. RF channel calibration for non-linear FM waveforms
    US7474257B2 (en) * 2004-11-08 2009-01-06 The United States Of America As Represented By The Secretary Of The Navy Multistatic adaptive pulse compression method and system
    DE102007041669B4 (de) * 2007-09-01 2013-04-18 Eads Deutschland Gmbh Verfahren zur Verbesserung der Signalqualität von Radaranlagen
    US7688257B1 (en) 2009-03-24 2010-03-30 Honeywell International Inc. Marine radar systems and methods
    US8436766B1 (en) 2009-11-06 2013-05-07 Technology Service Corporation Systems and methods for suppressing radar sidelobes using time and spectral control
    US8928524B1 (en) 2009-11-06 2015-01-06 Technology Service Corporation Method and system for enhancing data rates
    US8604971B2 (en) * 2009-12-01 2013-12-10 Bae Systems Information And Electronic Systems Integration Inc. Scanning near field electromagnetic probe
    US9291711B2 (en) * 2010-02-25 2016-03-22 University Of Maryland, College Park Compressive radar imaging technology
    DE102012216269A1 (de) * 2012-09-13 2014-03-13 Siemens Aktiengesellschaft Röntgensystem und Verfahren zur Erzeugung von Bilddaten
    WO2014045926A1 (fr) * 2012-09-19 2014-03-27 古野電気株式会社 Radar à compression d'impulsion
    CN103207387B (zh) * 2013-03-26 2014-11-05 北京理工雷科电子信息技术有限公司 一种机载相控阵pd雷达杂波的快速模拟方法
    US10114116B2 (en) 2014-08-19 2018-10-30 Navico Holding As Common burst for pulse compression radar
    US9739873B2 (en) 2014-08-19 2017-08-22 Navico Holding As Range sidelobe suppression
    US10222454B2 (en) * 2014-08-19 2019-03-05 Navico Holding As Combining Reflected Signals
    FR3030774B1 (fr) * 2014-12-19 2017-01-20 Thales Sa Procede de determination de parametres d'un filtre de compression et radar multivoies associe
    US10001548B2 (en) 2015-01-23 2018-06-19 Navico Holding As Amplitude envelope correction
    US9810772B2 (en) 2015-02-27 2017-11-07 Navico Holding As Radar signal generator
    JP6327188B2 (ja) * 2015-03-30 2018-05-23 三菱電機株式会社 窓関数決定装置、パルス圧縮装置、レーダ信号解析装置、レーダ装置、窓関数決定方法およびプログラム
    US9952312B2 (en) 2015-07-06 2018-04-24 Navico Holding As Radar interference mitigation
    US10107896B2 (en) * 2016-01-27 2018-10-23 Rohde & Schwarz Gmbh & Co. Kg Measuring device and measuring method for measuring the ambiguity function of radar signals
    US10713642B2 (en) 2016-08-05 2020-07-14 Denso International America, Inc. System and method for selecting a parking space using a mobile device
    US10884102B2 (en) * 2018-01-20 2021-01-05 Michael Joseph Lindenfeld Pulsed radar system using optimized transmit and filter waveforms
    US10935631B2 (en) 2018-04-24 2021-03-02 Navico Holding As Radar transceiver with a switched local oscillator
    JP6866329B2 (ja) * 2018-06-21 2021-04-28 株式会社東芝 レーダ装置及びそのレーダ信号処理方法
    JP7269144B2 (ja) * 2019-10-07 2023-05-08 株式会社東芝 レーダ装置、信号処理装置、および方法

    Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0291337A2 (fr) * 1987-05-14 1988-11-17 Nec Corporation Système radar cohérent à impulsions
    US5568150A (en) * 1995-07-31 1996-10-22 Northrop Grumman Corporation Method and apparatus for hybrid analog-digital pulse compression

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2473184A1 (fr) * 1980-01-08 1981-07-10 Labo Cent Telecommunicat Dispositif de demodulation adapte a l'elimination des lobes secondaires d'auto-correlation pour un signal radar continu periodique code en phase
    DE4240225C2 (de) * 1991-05-31 1995-09-07 Deutsche Forsch Luft Raumfahrt Verfahren zur Generierung einer Korrekturfunktion für eine Eliminierung von Phasen- und Amplitudenfehlern eines komprimierten Signals
    NL9200837A (nl) * 1992-05-12 1993-12-01 Hollandse Signaalapparaten Bv Radarapparaat.
    US5808580A (en) * 1997-02-06 1998-09-15 Andrews, Jr.; Grealie A. Radar/sonar system concept for extended range-doppler coverage
    US5708436A (en) * 1996-06-24 1998-01-13 Northrop Grumman Corporation Multi-mode radar system having real-time ultra high resolution synthetic aperture radar (SAR) capability

    Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0291337A2 (fr) * 1987-05-14 1988-11-17 Nec Corporation Système radar cohérent à impulsions
    US5568150A (en) * 1995-07-31 1996-10-22 Northrop Grumman Corporation Method and apparatus for hybrid analog-digital pulse compression

    Non-Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Title
    SKOLNIK, M I: "Introduction to radar Systems", 1981, MCGRAW-HILL, SINGAPORE, XP002085824 *
    VINCENT N ET AL: "PULSE COMPRESSION WITH -65 DB SIDELOBE LEVEL FOR A SPACEBORNE METEOROLOGICAL RADAR", IGARSS 1996. INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM REMOTE SENSING FOR A SUSTAINABLE FUTURE, LINCOLN, NE, MAY 28 - 31, 1996, vol. 1, 28 May 1996 (1996-05-28), STEIN T I (ED ), pages 490 - 492, XP000659613 *
    VINCENT N ET AL: "SPACEBORNE RAIN RADAR MISSION AND INSTRUMENT ANALYSIS", IGARSS 1996. INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM REMOTE SENSING FOR A SUSTAINABLE FUTURE, LINCOLN, NE, MAY 28 - 31, 1996, vol. 1, 28 May 1996 (1996-05-28), STEIN T I (ED ), pages 279 - 281, XP000659601 *

    Also Published As

    Publication number Publication date
    US6067043A (en) 2000-05-23
    CA2262848C (fr) 2006-12-19
    CA2262848A1 (fr) 1999-09-23
    FR2776392B1 (fr) 2000-04-28
    FR2776392A1 (fr) 1999-09-24

    Similar Documents

    Publication Publication Date Title
    CA2262848C (fr) Radar a compression d&#39;impulsion
    EP0803991B1 (fr) Procédé pour optimiser la communication radio entre une base fixe et un mobile
    FR2774174A1 (fr) Technique pour l&#39;estimation de pluie a partir d&#39;un radar meteorologique a diversite de polarisation
    FR2751754A1 (fr) Altimetre radar a emission continue
    FR2737307A1 (fr) Systeme de mesure de distance
    EP3234638B1 (fr) Procédé de détermination de paramètres d&#39;un filtre de compression et radar multivoies associé
    CA2059780A1 (fr) Dispositif, embarque sur satellite, de mesure du coefficient de retrodiffusion de la mer
    FR2529347A1 (fr) Methode de teledetection a faible consommation d&#39;energie
    FR2729474A1 (fr) Procede et dispositif pour estimer la distance de detection d&#39;un radar
    EP3022573B1 (fr) Dispositif de detection de signaux electromagnetiques
    FR2735937A1 (fr) Procede de tarage des chaines emission et reception des voies formees par une station de base d&#39;un systeme de radiocommunication entre mobiles
    EP0185585A1 (fr) Dispositif d&#39;élimination de bruit basse fréquence d&#39;un système de transmission, en particulier de bruit en l/f dans un récepteur radar homodyne
    FR2465233A1 (fr) Appareil de determination de gisement a radar ultrasonore
    EP0486094A1 (fr) Dispositif de réception formé d&#39;une pluralité de branches de réception
    EP0841759A1 (fr) Procédé de calibration d&#39;émission d&#39;une station de base équipée d&#39;une antenne à plusieurs capteurs
    EP0044235B1 (fr) Dispositif de détection de cibles mobiles dans un système radar et radar comportant un tel dispositif
    EP3321711A1 (fr) Dispositif de reception pour antenne a balayage electronique apte a fonctionner en mode radar et resm, et radar equipe d&#39;un tel dispositif
    EP0390657B1 (fr) Mesure de la stabilité en émission-réception d&#39;un radar
    FR2751421A1 (fr) Altimetre radar a emission continue
    FR3089726A1 (fr) Procédé de confusion de la signature électronique émise par un radar, et dispositif d’émission/réception adapté pour sa mise en œuvre
    RU2792418C1 (ru) Многоканальное устройство обработки фазоманипулированных радиолокационных сигналов
    EP0977051B1 (fr) Procédé de restitution de la sensibilité d&#39;un radar en présence d&#39;une pollution électromagnétique impulsionnelle
    FR2745388A1 (fr) Procede de mesure, de type altimetrique, destine a etre mis en oeuvre a bord d&#39;un satellite
    EP4202471A1 (fr) Procédé et système de détection d&#39;appareils électroniques
    EP0910173A1 (fr) Système de communication comportant des antennes d&#39;émission et de réception proches les unes des autres

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20000329

    AKX Designation fees paid

    Free format text: DE ES FR GB IT

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCATEL LUCENT

    17Q First examination report despatched

    Effective date: 20081031

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20090512