EP0943867B1 - Keramische Auskleidung einer Brennkammer - Google Patents

Keramische Auskleidung einer Brennkammer Download PDF

Info

Publication number
EP0943867B1
EP0943867B1 EP19980810220 EP98810220A EP0943867B1 EP 0943867 B1 EP0943867 B1 EP 0943867B1 EP 19980810220 EP19980810220 EP 19980810220 EP 98810220 A EP98810220 A EP 98810220A EP 0943867 B1 EP0943867 B1 EP 0943867B1
Authority
EP
European Patent Office
Prior art keywords
wall
ceramic
combustion chamber
hollow chambers
lining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19980810220
Other languages
English (en)
French (fr)
Other versions
EP0943867A1 (de
Inventor
Manfred Dr. Aigner
Peter Dubach
Armin Dr. Heger
Andreas Dr. Pfeiffer
Ludwig Dr. Weiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to DE59806717T priority Critical patent/DE59806717D1/de
Priority to EP19980810220 priority patent/EP0943867B1/de
Publication of EP0943867A1 publication Critical patent/EP0943867A1/de
Application granted granted Critical
Publication of EP0943867B1 publication Critical patent/EP0943867B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/02Casings; Linings; Walls characterised by the shape of the bricks or blocks used

Definitions

  • the invention relates to a ceramic lining for thermally highly stressed Walls of combustion chambers according to the preamble of claim 1.
  • Such Linings are used in particular as inner wall insulation for metallic combustion chambers, for example for gas turbines.
  • a ceramic lining of a combustion chamber is known from DE 195 02 730 A1, which an uncooled removable lining of a combustion chamber with ceramic Elements that meet the high thermal and mechanical Stresses in a modern commercial, highly stressed gas turbine combustor Holds up.
  • the lining consists of at least one wall plate made of high temperature resistant Structural ceramics, also called monolithic ceramics, with at least a through opening and one fastener per Opening.
  • the fastener is in one with the foot on the metallic Fastened wall-mounted metallic holding device, the Head of the fastener rests in the opening of the wall plate.
  • the fastener also consists of high temperature resistant structural ceramics and is resiliently connected to the holding device. Between the metallic Wall and the ceramic wall plate is an insulation layer made of fiber ceramic intended.
  • the lining consists of many individual There are wall elements that must be attached separately that the Attaching the lining to the metallic support structure is quite complex, and that the lining is complicated due to the need for multiple layers is. In addition, it has been shown in practice that monolithic ceramics a shock or impact stress are very sensitive and often too Break go.
  • the invention tries to avoid all of these disadvantages. You have the task based on a ceramic lining made of fiber ceramics for combustion chambers develop which is suitable for large combustion chamber dimensions, the simple is to be attached to the metallic supporting wall and its heat transfer mainly done by radiation.
  • the advantages of the invention are that there is no additional insulating material it is necessary that the ceramic fiber material is resistant to thermal shock and is fault tolerant and the lining consists of only a few individual parts.
  • the hollow chambers have a longitudinal expansion, which is adapted to the longitudinal extent of the combustion chamber.
  • the hollow chambers can also run transversely.
  • the limitations in temperature resistance The fiber-ceramic materials can be removed maintained by guiding cooling air inside the hollow chambers be, so that the hollow chambers then in addition to their function as heat shields also perform the function of cooling air ducts.
  • the hollow chambers are filled with insulating material on the inside. In this way, the temperature of the metallic supporting wall can be further dismantled.
  • each hollow chamber is advantageously made more resistant to high temperatures Screws and elastic elements, preferably disc springs fixed to the metallic supporting wall. This attachment is compared to that of monolithic ceramic components much easier. Because of the hollow chamber only needs to be fixed to the wall resting on the metal support the low thermal expansion of a wall thickness with the elastic elements be balanced.
  • an embodiment of the invention is based on a thermal shown highly loaded gas turbine combustion chamber.
  • Fig. 1 shows a longitudinal section
  • Fig. 2 shows a cross section of the combustion chamber in schematic representation in a first embodiment of the invention.
  • the Combustion chamber 1 consists of a metallic support wall 2, on the inside several segments in the form of hollow chambers 3 are arranged side by side. These hollow chambers 3 are made from fault-tolerant ceramic fiber material, which also has a very good thermal shock resistance.
  • the inner wall 4 of each hollow chamber 3 is the interior of the combustion chamber 1 facing, while the outer wall 5 of each hollow chamber directly on the metallic Support wall 2 is applied. Between the individual in the circumferential direction juxtaposed hollow chambers 3 should only have the narrowest possible gap 6 (see FIG. 2) so that only a small convection flow occurs.
  • Convection-free hollow chambers 3 are aimed at, so that the heat transfer from the hot combustion chamber to the (cooled) metallic support structure must mainly be done by radiation.
  • the hollow chamber 3 thus forms even an insulating layer, it is not an additional insulating material, such as necessary when using linings with monolithic structural ceramics.
  • the hollow chambers 3 extend over the entire Length of the combustion chamber 1, its longitudinal extent is the longitudinal extent adapted to the combustion chamber 1.
  • the hollow chambers 3 are in the circumferential direction arranged side by side. Of course it is in another Embodiment also possible that the hollow chambers 3 transverse to the longitudinal direction run.
  • FIG. 3 is a partial perspective view of a combustion chamber in a second Embodiment of the invention shown.
  • the hollow chambers 3 made of ceramic fiber material on the Metallic support wall 2 applied and serve on the one hand as a heat shield, on the other hand additionally flows through the interior of the hollow chambers 3 cooling air 7. This may be necessary if the material is exposed to extremely high temperatures for a long time is because the ceramic fiber material currently available with respect to Long-term stability at high temperatures does not meet all requirements enough. The solution to this problem is from different sides worked out.
  • the hollow chambers arranged side by side in the circumferential direction 3 are in their longitudinal extent also the longitudinal extent of the Combustion chamber 1 adapted so that advantageously only a few individual parts for the lining are needed.
  • In the entry area into the combustion chamber 1 are vertical to the above Hollow chambers also hollow chambers 3 made of ceramic fiber material arranged, which have an opening for the burner in the middle
  • Fig. 4 shows a third partial perspective view of a combustion chamber Embodiment variant of the invention.
  • the ceramic fiber material Hollow chambers 3 are here directly with their outer wall 5 with the metallic support structure 2 connected, as exemplified with reference to FIG. 5 is explained.
  • the inner wall 4 of the hollow chambers 3 is the interior of the Combustion chamber 1 facing.
  • the hollow chambers 3 are filled with insulating material 8. This too In this way, the temperature acting on the metallic support wall 2 is reduced.
  • Fig. 5 shows an example of a possible type of attachment of the hollow chambers 3 on the metallic support wall 2.
  • the attachment is relatively simple and without large spring elements possible because the thermal expansion takes place in the combustion chamber.
  • the Hollow chamber 3 is on its outer wall lying on the metal support 2 5 fixed. This means that only the slight expansion of a wall thickness (approx. 5 mm) be intercepted.
  • the attachment is done with high temperature resistant screws 9, for example made of fiber ceramics and with external elastic elements, z. B. disc springs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Insulation (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Technisches Gebiet
Die Erfindung betrifft eine keramische Auskleidung für thermisch hochbeanspruchte Wände von Brennräumen gemäss Oberbegriff des Patentanspruches 1. Solche Auskleidungen finden insbesondere Anwendung als innere Wandisolierung von metallischen Brennkammern, beispielsweise für Gasturbinen.
Stand der Technik
Aus DE 195 02 730 A1 ist eine keramische Auskleidung einer Brennkammer bekannt, welche eine ungekühlte lösbare Auskleidung eines Brennraumes mit keramischen Elementen ermöglicht, die den hohen thermischen und mechanischen Beanspruchungen in einer modernen kommerziellen hochbelasteten Gasturbinenbrennkammer Stand hält.
Die Auskleidung besteht hierzu aus mindestens einer Wandplatte aus hochtemperaturbeständiger Strukturkeramik, auch monolithische Keramik genannt, mit mindestens einer durchgehenden Öffnung und aus einem Befestigungselement pro Öffnung. Das Befestigungselement ist mit seinem Fuss in einer an der metallischen Tragwand angebrachten metallischen Haltevorrichtung befestigt, wobei der Kopf des Befestigungselementes in der Öffnung der Wandplatte ruht. Das Befestigungselement besteht ebenfalls aus hochtemperturbeständiger Strukturkeramik und ist federelastisch an die Haltevorrichtung angebunden. Zwischen der metallischen Wand und der keramischen Wandplatte ist eine Isolationsschicht aus Faserkeramik vorgesehen. Die Vorteile dieser Lösung bestehen darin, dass die Auskleidung zerstörungsfrei demontierbar ist und daher mehrfach verwendet werden kann. Ferner können durch die federelastische Anbindung der keramischen Struktur an die metallische Haltekonstruktion die thermischen Dehnungen zwischen metallischen und keramischen Komponenten bzw. Verformungen der Isolationsschicht durch mechanische Beanspruchungen aufgenommen werden.
Diesen Vorteilen steht nachteilig gegenüber, dass die Auskleidung aus vielen einzelnen Wandelementen besteht, die separat befestigt werden müssen, dass die Befestigung der Auskleidung an der metallischen Tragstruktur recht aufwendig ist, und dass die Auskleidung aufgrund der Notwendigkeit mehrerer Lagen kompliziert ist. Ausserdem hat sich in der Praxis gezeigt, dass monolithische Keramiken gegenüber einer Stoss- bzw. Schlagbeanspruchung sehr empfindlich sind und oft zu Bruch gehen.
Aus diesem Grunde sollen faserverstärkte Keramiken eingesetzt werden. So wurde von K. Smith, A. Fahme: "Testing of Full Scale, Low Emissions, Ceramic Gas Turbine Combustor", ASME, 97-Gasturbine-157, Internatinal Gas Turbine & Aeroengine Congress & Exhibition, Orlando, Florida, 02.-03.06.1997, eine Brennkammerauskleidung in Form von zwei konzentrisch angeordneten faserkeramischen Rohren vorgestellt. Das Aussenrohr hat dabei einen Durchmesser von ca. 0.75 m, während das Innenrohr einen Durchmesser von ca. 0.35 m aufweist. Gegenüber monolithischer Keramik soll die Faserkeramik zusätzlich eine wesentlich bessere Widerstandsfähigkeit gegen Temperaturschock aufweisen.
Der Nachteil dieser Lösung besteht darin, dass derartige Rohre aus Faserkeramik aus technischen Gründen bisher nur für verhältnismässig kleine Abmessungen hergestellt werden können. Für die Brennkammern moderner hochleistungsfähiger Gasturbinen sind aber Aussendurchmesser von ca. 3.5 m notwendig. Ein weiterer Nachteil der o.a. Lösung besteht darin, dass die Keramikrohre durch äussere Konvektion gekühlt werden müssen und dafür sehr viel Kühlluft benötigt wird.
Darstellung der Erfindung
Die Erfindung versucht, alle diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, eine keramische Auskleidung aus Faserkeramik für Brennräume zu entwickeln, welche für grosse Brennraumabmessungen geeignet ist, die einfach auf der metallischen Tragwand zu befestigen ist und deren Wärmeübertragung überwiegend durch Strahlung erfolgt.
Erfindungsgemäss wird dies bei einer keramische Auskleidung gemäss Oberbegriff des Patentanspruches 1 dadurch erreicht, dass die Auskleidung aus einzelnen nebeneinander angeordneten Segmenten in Form von Hohlkammern mit einer dem Brennrauminneren zugewandten inneren Wand und einer direkt auf der metallischen Tragwand aufliegenden äusseren Wand besteht.
Die Vorteile der Erfindung bestehen darin, dass kein zusätzliches Isoliermaterial notwendig ist, dass das keramische Fasermaterial thermoschockbeständig und fehlertolerant ist und die Auskleidung aus nur wenigen Einzelteilen besteht.
Es ist zweckmässig, wenn die Hohlkammern eine Längsausdehnung aufweisen, welche der Längsausdehnung des Brennraumes angepasst ist. Selbstverständlich können die Hohlkammern auch quer verlaufen. Die Limitierungen in der Temperaturbeständigkeit der faserkeramischen Materialien können bis zu deren Aufhebung durch das Führen von Kühlluft im Inneren der Hohlkammern eingehalten werden, so dass die Hohlkammern dann neben ihrer Funktion als Hitzeschilde auch noch die Funktion von Kühlluftführungen erfüllen.
In einer Ausgestaltungsvariante ist es ferner vorteilhaft, wenn die Hohlkammern innen mit Isoliermaterial gefüllt sind. Auf diese Weise kann die Temperatur der metallischen Tragwand weiter abgebaut werden.
Schliesslich ist mit Vorteil die äussere Wand jeder Hohlkammer mittels hochtemperaturfester Schrauben und elastischer Elemente, vorzugsweise Tellerfedern, an der metallischen Tragwand fixiert. Diese Befestigung ist verglichen mit der von monolithischen Keramikbauteilen wesentlich einfacher. Dadurch, dass die Hohlkammer nur an der auf dem Metallträger aufliegenden Wand fixiert wird, muss nur die geringe thermische Dehnung einer Wandstärke mit den elastischen Elementen ausgeglichen werden.
Kurze Beschreibung der Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer thermisch hochbelasteten Gasturbinenbrennkammer dargestellt.
Es zeigen:
Fig. 1
einen schematischen Längsschnitt der Brennkammer in einer ersten Ausführungsvariante;
Fig. 2
einen Querschnitt der Brennkammer entlang der Linie II-II in Fig. 1;
Fig. 3
eine perspektivische Teilansicht einer Brennkammer in einer zweiten Ausführungsvariante;
Fig. 4
eine perspektivische Teilansicht der Brennkammer in einer dritten Ausführungsvariante der Erfindung;
Fig. 5
einen Schnitt im Bereich der Befestigung der Auskleidung an der metallischen Tragwand.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind von der Anlage beispielsweise die Brenner und die Anbindung der Brennkammer an die Turbine. Die Strömungsrichtung der Medien ist mit Pfeilen bezeichnet.
Weg zur Ausführung der Erfindung
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und der Figuren 1 bis 5 näher erläutert.
Fig. 1 zeigt einen Längsschnitt, Fig. 2 einen Querschnitt der Brennkammer in schematischer Darstellung in einer ersten Ausführungsvariante der Erfindung. Die Brennkammer 1 besteht aus einer metallischen Tragwand 2, auf deren Innenseite mehrere Segmente in Form von Hohlkammern 3 nebeneinander angeordnet sind. Diese Hohlkammern 3 sind aus fehlertolerantem keramischen Fasermaterial hergestellt, welches auch eine sehr gute Thermoschockbeständigkeit aufweist. Die innere Wand 4 jeder Hohlkammer 3 ist dabei dem Inneren der Brennkammer 1 zugewandt, während die äussere Wand 5 jeder Hohlkammer direkt auf der metallischen Tragwand 2 aufgebracht ist. Zwischen den einzelnen in Umfangsrichtung nebeneinander angeordneten Hohlkammern 3 sollte nur ein möglichst enger Spalt 6 (siehe Fig. 2) vorhanden sein, damit nur eine kleine Konvektionsströmung auftritt. Angestrebt werden konvektionsfreie Hohlkammern 3, so dass der Wärmetransport aus dem heissen Brennraum zur (gekühlten) metallischen Tragstruktur überwiegend durch Strahlung erfolgen muss. Somit bildet die Hohlkammer 3 selbst eine Isolierschicht, es ist kein zusätzliches Isoliermaterial, wie beispielsweise bei Verwendung von Auskleidungen mit monolithischer Strukturkeramik, notwendig.
Wie aus Fig. 1 zu entnehmen ist, erstrecken sich die Hohlkammern 3 über die gesamte Länge der Brennkammer 1, ihre Längsausdehnung ist der Längsausdehnung der Brennkammer 1 angepasst. Die Hohlkammern 3 sind dabei in Umfangsrichtung nebeneinander angeordnet. Selbstverständlich ist es in einer anderen Ausführungsform auch möglich, dass die Hohlkammern 3 quer zur Längsrichtung verlaufen.
In Fig. 3 ist eine perspektivische Teilansicht einer Brennkammer in einer zweiten Ausführungsvariante der Erfindung dargestellt. Bei dieser Ausführungsvariante sind die aus keramischem Fasermaterial bestehenden Hohlkammern 3 auf der metallischen Tragwand 2 aufgebracht und dienen einerseits als Hitzeschild, andererseits strömt zusätzlich durch das Innere der Hohlkammern 3 Kühlluft 7. Dies kann notwendig sein, wenn das Material lange extrem hohen Temperaturen ausgesetzt ist, da das zur Zeit zur Verfügung stehende keramische Fasermaterial bezüglich Langzeitbeständigkeit bei hohen Temperaturen noch nicht allen Ansprüchen genügt. An der Lösung dieses Problemes wird von verschiedenen Seiten aus gearbeitet. Die in Umfangsrichtung nebeneinander angeordneten Hohlkammern 3 sind in ihrer Längsausdehnung ebenfalls der Längsausdehnung der Brennkammer 1 angepasst, so dass vorteilhaft nur wenige Einzelteile für die Auskleidung benötigt werden. Im Eintrittsbereich in die Brennkammer 1 sind senkrecht zu den o. a. Hohlkammern ebenfalls Hohlkammern 3 aus keramischen Fasermaterial angeordnet, welche mittig eine Öffnung für den Brenner aufweisen
Fig. 4 zeigt in einer perspektivischen Teilansicht einer Brennkammer eine dritte Ausführungsvariante der Erfindung. Die aus keramischen Fasermaterial bestehenden Hohlkammern 3 sind auch hier direkt mit ihrer äusseren Wand 5 mit der metallischen Tragstruktur 2 verbunden, wie anhand von Fig. 5 beispielhaft näher erläutert wird. Die innere Wand 4 der Hohlkammern 3 ist dem Innenraum der Brennkammer 1 zugewandt. Im Gegensatz zur Ausführungsform gemäss Fig. 3 sind bei Fig. 4 die Hohlkammern 3 mit Isoliermaterial 8 gefüllt. Auch auf diese Weise wird die auf die metallische Tragwand 2 einwirkende Temperatur gesenkt. Bei dieser Ausführungsform ist es ausserdem auch möglich, die Innenkontur der Brennkammer 1 allein durch die Faserkeramik zu modellieren. Auf diese Weise kann die metallische Tragstruktur 2 wesentlich vereinfacht werden.
Fig. 5 zeigt beispielhaft eine mögliche Befestigungsart der Hohlkammern 3 an der metallischen Tragwand 2. Die Befestigung ist relativ einfach und ohne grosse Federelemente möglich, denn die Thermodehnung erfolgt in die Brennkammer. Die Hohlkammer 3 wird an ihrer äusseren, auf dem Metallträger 2 aufliegenden Wand 5 fixiert. Dadurch muss nur die geringe Dehnung einer Wandstärke (ca. 5 mm) abgefangen werden. Die Befestigung erfolgt mit hochtemperaturfesten Schrauben 9, beispielsweise aus Faserkeramik und mit aussenliegenden elastischen Elementen, z. B. Tellerfedern.
Bezugszeichenliste
1
Brennkammer
2
metallische Tragwand
3
Hohlkammer
4
innere Wand von Pos. 3
5
äussere Wand von Pos. 3
6
Spalt
7
Kühlluft
8
Isoliermaterial
9
Schraube
10
Tellerfeder

Claims (5)

  1. Keramische Auskleidung für Brennräume, welche an der Innenseite einer thermisch hochbeanspruchten metallischen Tragwand (2) befestigt ist, wobei das Material der Auskleidung Faserkeramik ist, dadurch gekennzeichnet, dass die Auskleidung aus einzelnen nebeneinander angeordneten Segmenten in Form von Hohlkammern (3) mit einer dem Brennrauminneren zugewandten inneren (4) und einer direkt auf der metallischen Tragwand (2) aufliegenden äusseren Wand (5) besteht.
  2. Keramische Auskleidung nach Anspruch 1, dadurch gekennzeichnet, dass die Hohlkammern (3) eine Längsausdehnung aufweisen, welche der Längsausdehnung des Brennraumes (1) angepasst ist.
  3. Keramische Auskleidung nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die Hohlkammern (3) zur Führung von Kühlluft (7) vorgesehen sind.
  4. Keramische Auskleidung nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die Hohlkammern (3) mit Isoliermaterial (8) gefüllt sind.
  5. Keramische Auskleidung nach einem der Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die äussere Wand (5) jeder Hohlkammer (3) mittels hochtemperaturfester Schrauben (9) und elastischer Elemente, vorzugsweise Tellerfedern (10), an der metallischen Tragwand (2) fixiert ist.
EP19980810220 1998-03-17 1998-03-17 Keramische Auskleidung einer Brennkammer Expired - Lifetime EP0943867B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE59806717T DE59806717D1 (de) 1998-03-17 1998-03-17 Keramische Auskleidung einer Brennkammer
EP19980810220 EP0943867B1 (de) 1998-03-17 1998-03-17 Keramische Auskleidung einer Brennkammer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19980810220 EP0943867B1 (de) 1998-03-17 1998-03-17 Keramische Auskleidung einer Brennkammer

Publications (2)

Publication Number Publication Date
EP0943867A1 EP0943867A1 (de) 1999-09-22
EP0943867B1 true EP0943867B1 (de) 2002-12-18

Family

ID=8235987

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19980810220 Expired - Lifetime EP0943867B1 (de) 1998-03-17 1998-03-17 Keramische Auskleidung einer Brennkammer

Country Status (2)

Country Link
EP (1) EP0943867B1 (de)
DE (1) DE59806717D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1939529A1 (de) 2006-12-22 2008-07-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. CMC-Brennkammerauskleidung in Doppelschichtbauweise
EP2075506A2 (de) 2007-12-27 2009-07-01 Rolls-Royce Deutschland Ltd & Co KG Brennkammerauskleidung

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008010294A1 (de) * 2008-02-21 2009-08-27 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammer mit keramischem Flammenrohr
FR2929690B1 (fr) * 2008-04-03 2012-08-17 Snecma Propulsion Solide Chambre de combustion sectorisee en cmc pour turbine a gaz
FR2929689B1 (fr) * 2008-04-03 2013-04-12 Snecma Propulsion Solide Chambre de combustion de turbine a gaz a parois interne et externe sectorisees
EP2233835A1 (de) * 2009-03-23 2010-09-29 Siemens Aktiengesellschaft Mit Keramikeinsätzen hartgelötete Brennkammer
EP3017253B1 (de) 2013-09-11 2017-04-26 Siemens Aktiengesellschaft Keramisches hitzeschild für eine gasturbinenbrennkammer, brennkammer für eine gasturbine und verfahren
DE102014204468A1 (de) 2014-03-11 2015-10-01 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammer sowie Verfahren zu deren Herstellung
EP3540314B1 (de) * 2016-11-11 2023-07-12 Kawasaki Jukogyo Kabushiki Kaisha Brennkammerwand für eine gasturbine
IT201600130851A1 (it) * 2016-12-23 2018-06-23 Ansaldo Energia Spa Piastrella termoisolante per camere di combustione di turbine a gas

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1038661A (en) * 1961-12-05 1966-08-10 Ass Elect Ind Improvements relating to metallic gas turbine combustion chambers
BE790956A (fr) * 1971-11-05 1973-03-01 Penny Robert N Tube de flamme pour chambre de combustion de moteur a turbine agaz
DE2364258C3 (de) * 1973-12-22 1981-01-29 Lucas Industries Ltd., Birmingham, West Midlands (Ver. Koenigreich) Flammrohr für eine Gasturbine
DE3031689A1 (de) * 1980-08-22 1982-03-04 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Keramische brennkammer
US4422300A (en) * 1981-12-14 1983-12-27 United Technologies Corporation Prestressed combustor liner for gas turbine engine
DE3823510A1 (de) * 1988-07-12 1990-01-18 Kernforschungsanlage Juelich Keramische auskleidung fuer einen brennraum
US5592814A (en) * 1994-12-21 1997-01-14 United Technologies Corporation Attaching brittle composite structures in gas turbine engines for resiliently accommodating thermal expansion
DE19502730A1 (de) 1995-01-28 1996-08-01 Abb Management Ag Keramische Auskleidung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1939529A1 (de) 2006-12-22 2008-07-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. CMC-Brennkammerauskleidung in Doppelschichtbauweise
DE102006060857B4 (de) * 2006-12-22 2014-02-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. CMC-Brennkammerauskleidung in Doppelschichtbauweise
EP2075506A2 (de) 2007-12-27 2009-07-01 Rolls-Royce Deutschland Ltd & Co KG Brennkammerauskleidung
DE102007062699A1 (de) 2007-12-27 2009-07-02 Rolls-Royce Deutschland Ltd & Co Kg Brennkammerauskleidung

Also Published As

Publication number Publication date
DE59806717D1 (de) 2003-01-30
EP0943867A1 (de) 1999-09-22

Similar Documents

Publication Publication Date Title
EP0895027A1 (de) Keramische Auskleidung
EP0777115B1 (de) Temperatursonde
DE3532232C2 (de)
EP0943867B1 (de) Keramische Auskleidung einer Brennkammer
EP1635118B1 (de) Heissgaskammer und Schindel für eine Heissgaskammer
DE102006026969A1 (de) Gasturbinenbrennkammerwand für eine mager-brennende Gasturbinenbrennkammer
EP1741981A1 (de) Keramisches Hitzeschildelement sowie damit ausgekleideter Hochtemperaturgasreaktor
EP1255953B1 (de) Hochtemperatur-solarabsorber
DE3635270C2 (de)
DE3039479A1 (de) Hochtemperaturbestaendiger gegenstand, halter und puffer fuer diesen gegenstand
EP0895028B1 (de) Keramische Auskleidung
EP0904512B1 (de) Hitzeschildanordnung, insbesondere für strukturteile von gasturbinenanlagen
DE60225411T2 (de) Flammrohr oder Bekleidung für die Brennkammer einer Gasturbine mit niedriger Schadstoffemission
DE4343319A1 (de) Brennkammer mit keramischer Auskleidung
EP0979347B1 (de) Vorrichtung zur wärmeisolierung für eine dampfturbine
DE102022210199A1 (de) Brenner und Brennkammer
EP1384950B1 (de) Ringförmige Brennkammer für eine Gasturbine
EP2075506A2 (de) Brennkammerauskleidung
DE4343332A1 (de) Vorrichtung zur Konvektivkühlung einer dichten Brennkammer
EP1422479B1 (de) Brennkammer zur Verbrennung eines brennbaren Fluidgemisches
DE3535442A1 (de) Ringbrennkammer fuer gasturbinentriebwerke
DE2615041B2 (de) Absperrklappe für einen heiße Gase, insbesondere Rauchgase, führenden Kanal
EP1128131A1 (de) Hitzeschildelement, Brennkammer und Gasturbine
DE4029313C2 (de)
DE102019205540A1 (de) Resonator, Verfahren zur Herstellung eines solchen sowie mit einem solchen versehene Brenneranordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000302

AKX Designation fees paid

Free format text: DE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REF Corresponds to:

Ref document number: 59806717

Country of ref document: DE

Date of ref document: 20030130

Kind code of ref document: P

Ref document number: 59806717

Country of ref document: DE

Date of ref document: 20030130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030919

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59806717

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59806717

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59806717

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140131

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59806717

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001