EP0936888A1 - Systeme pour determiner le debit sanguin pulmonaire effectif - Google Patents

Systeme pour determiner le debit sanguin pulmonaire effectif

Info

Publication number
EP0936888A1
EP0936888A1 EP97911114A EP97911114A EP0936888A1 EP 0936888 A1 EP0936888 A1 EP 0936888A1 EP 97911114 A EP97911114 A EP 97911114A EP 97911114 A EP97911114 A EP 97911114A EP 0936888 A1 EP0936888 A1 EP 0936888A1
Authority
EP
European Patent Office
Prior art keywords
petco
rebreathing
blood flow
patient
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97911114A
Other languages
German (de)
English (en)
Inventor
Marcelo Gama De Abreu
Detlev Michael Albrecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Dresden
Original Assignee
Technische Universitaet Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19742226A external-priority patent/DE19742226A1/de
Application filed by Technische Universitaet Dresden filed Critical Technische Universitaet Dresden
Publication of EP0936888A1 publication Critical patent/EP0936888A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/029Measuring or recording blood output from the heart, e.g. minute volume

Definitions

  • the invention relates to an arrangement for determining the effective pulmonary blood flow according to the preamble of claim 1.
  • the multiple inert gas method with rebreathing of helium, acetylene and carbon monoxide in oxygen and nitrogen from a breathing bag.
  • the disadvantage of this measurement is the relatively great effort involved in preparing gas mixtures for rebreathing , the need for special measuring devices which can measure the concentrations of gases in the ventilated air or in the ventilation flow and the need for a person to connect and care for the breathing bag to the patient, so that the measurement of the effective pulmonary blood flow can only be achieved by Specialists are carried out and serves almost exclusively research purposes.
  • the partial CO 2 pressure at the end of exhalation is converted into the arterial CO 2 concentration, and the total cardiac output can be calculated from the division of the CO 2 emission difference and the arterial CO 2 concentration difference.
  • Disadvantages of this method are the expenditure on equipment for measuring the CO 2 concentration in the ventilated air (mass spectrometer) and the ventilation flow on the endotracheal tube (Fleisch Pneumotacograph).
  • the object of the present invention is to provide a clinically applicable arrangement for the non-invasive determination of the effective pulmonary blood flow, with which only the portion of the cardiac output available for gas exchange stands, can be determined.
  • This arrangement should not be expensive in terms of equipment, not significantly influence the ventilation pattern and should be able to be automated.
  • the signals of a main current CO sensor and a ventilation current sensor are recorded.
  • the main flow CO 2 sensor is used to measure the CO 2 concentration in the breathing air and the ventilation flow sensor is used to measure the ventilation flow (Fig. 1).
  • the respiratory flow sensor is placed between the endotracheal tube and the CO 2 sensor.
  • the measurements of the CO 2 elimination and the end-expiratory partial CO 2 pressure are first carried out during ventilation through the small dead space. This phase lasts approximately 60 seconds and is called the non-rebreathing phase.
  • the three-way valve is switched so that the patient is ventilated through the larger dead space (large leg) and breathes back a gas mixture consisting of his own exhaled air and fresh air from the ventilator. This eliminates the need to use a separate CO 2 source for rebreathing.
  • the time for switching the three-way valve is recognized by the absence of CO 2 in the inspiratory air. This will not change the breath pressure significantly
  • the subsequent phase lasts approx. 30 seconds and is called the rebreathing phase.
  • the CO 2 elimination and the end-expiratory partial CO 2 pressure of this phase are measured as mean values of the corresponding variables during a plateau which forms in the range from 15 to 30 seconds during this phase (second half).
  • the ventilator With the arrangement according to the invention it is now possible to adjust the patient's ventilation pattern in the ventilator so that the maximum pulmonary blood flow is achieved with the lowest mean and end-expiratory airway pressure. For the patient, this means a reduction in the risk of barotrauma, i.e. Lung damage caused by increased airway pressure is avoided and at the same time an optimization of the oxygen supply to the organs is achieved.
  • the solution also offers the option of non-invasively monitoring and automatically documenting the patient's hemodynamics. If measurements of the cardiac output are carried out at the same time, it is possible with the solution found to measure the percentage of the non-ventilated cardiac output (so-called intrapulmonary shunt) without increasing the inspiratory oxygen concentration and taking blood.
  • FIG. 1 shows an arrangement of a microprocessor or a controller for measuring the effective pulmonary blood flow.
  • FIG. 2 shows an arrangement according to the invention with a microprocessor / controller and respirator.
  • FIG. 3 shows an example of a CO 2 measured with the arrangement according to the invention.
  • Blood flow 1 shows an arrangement of a microprocessor / controller for measuring the effective pulmonary blood flow, which consists of four parts. The individual parts are connected to each other via cables and plugs. 1, the system consists of a microprocessor / controller 7 and an analog-digital converter card 8, which receives and processes the CO 2 concentration and respiratory flow signals from the CO 2 sensor 3 or from the respiratory flow sensor 1.
  • FIG. 2 shows a microprocessor or controller-controlled arrangement according to the invention for measuring the pulmonary blood flow, which consists of seven, optionally fewer or more parts.
  • the endotracheal tube of the patient is connected to one side of a ventilation current sensor 1.
  • a CO 2 cuvette 2 is connected to the other side of the ventilation current sensor 1.
  • a CO 2 sensor 3 is inserted into the CO 2 cuvette 2.
  • a controllable three-way valve 4 is connected to the other side of the CO 2 cuvette 2.
  • One way from the three-way valve 4 is connected to a Y-piece 5 and the other way is connected to the dead space 6 for rebreathing.
  • a ventilator and the dead space 6 for rebreathing are connected to the Y-piece 5.
  • the dead space 6 for rebreathing is approx. 200 ml, optionally more or less, depending on the ventilation pattern of the patient.
  • the control of the three-way valve 4 and the recording and processing of the CO 2 concentration and ventilation current signals is carried out by the microprocessor / controller 7.
  • FIG. 3 shows the courses of the CO 2 concentration in the breathing air and the ventilation flow during a measurement.
  • CO 2 is exhaled through the endotracheal tube.
  • the CO 2 concentration (FCO 2 ) in the exhaled air which corresponds to the partial CO 2 pressure (PCO) in the air, increases with the exhaled volume and reaches a maximum value at the end of the exhalation.
  • the partial CO 2 pressure at this point in time the so-called end-expiratory partial CO 2 pressure (PetCO 2 ), corresponds approximately to the partial CO pressure in the aerated pulmonary capillaries.
  • PetCO 2 values are measured, which hardly differ from each other.
  • part of the exhaled CO is breathed back.
  • the course of the partial CO 2 pressure in the breathing air is modified and the PetCO 2 increases.
  • FIG. 4 shows the courses of the end-expiratory partial CO 2 pressure, which corresponds to the highest CO 2 concentration value during exhalation, and the CO 2 elimination per breath, during a measurement with the arrangement according to the invention.
  • the CO 2 elimination decreases during the partial CO 2 rebreathing and the end-expiratory partial CO 2 pressure in the breathing air increases until a plateau is reached, usually after about 15 seconds.
  • the effective pulmonary blood flow is calculated from the four parameters shown in FIG. 4 according to the following equation:
  • VCO 2 (NR) - VCO 2 (R)) PBF f (PetCO 2 (R), PetCO 2 (NR), Hb) x Fs
  • VCO 2 (NR) is the CO 2 elimination in ml / min during the non-backhaul phase, measured as the mean value of the CO 2 elimination of complete breaths within 60 seconds to immediately before the start of the backgam phase.
  • the CO 2 elimination of a breath is calculated from the product of the ventilation current (nil / min) and CO 2 concentration over time.
  • PetCO 2 (R) is the end-expiratory partial CO pressure in mmHg in the breathing air during the non-respiratory phase, measured as the mean of the end-expiratory partial CO 2 pressure values of complete breaths within 60 seconds until immediately before the start of the respiratory phase.
  • VCO (R) is understood to mean CO 2 elimination in ml / min during the rebreathing phase, measured as the mean value of CO 2 elimination of complete breaths within 15 to 30 seconds after the patient is ventilated through the larger dead space 6. So after switching the three-way valve 4 to the rebreathing position. The CO 2 elimination of a breath is calculated from the product of the ventilation flow in ml / min and CO 2 concentration in% over time.
  • PetCO (R) is the end-expiratory partial CO pressure in mmHg in the breathing air during the recovery phase, measured as the mean of the end-expiratory partial CO 2 pressure values of complete breaths within 15 to 30 seconds after the patient is ventilated through the larger dead space 6 ( after switching the three-way valve 4 to the rebreathing position).
  • the function f (PetCO 2 (R), PetCO 2 (NR), Hb) is the standardized CO 2 dissotation curve in the blood. This function, already described in the literature (McHardy, GJR: The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood, Clin. Sei., 1967 32, 299-309), turns the PetCO (R) and PetCO 2 (NR) values, and also the CO 2 content difference based on the hemoglobin concentration (Hb, g / dl), which has to be measured in a patient's blood sample using another device
  • the effective pulmonary blood flow PBF is obtained in 1 / min.

Abstract

L'invention concerne un système permettant de déterminer le débit sanguin pulmonaire effectif (PBF) par réinspiration partielle de CO2. Ce système se caractérise en ce qu'il comprend un tube endotrachéal dont le conduit menant du patient au respirateur est divisé en deux brins, entre une soupape à trois orifices (4) et une pièce en Y (5). Un brin forme un espace mort (6) plus important pour la réinspiration de CO2. Pour la mesure de l'élimination de CO2 et de la pression de CO2 partielle en fin d'expiration, il est prévu un détecteur de CO2 (3) et un détecteur de respiration (1) au niveau du tube endotrachéal du patient. Le calcul du débit sanguin pulmonaire effectif est assuré par un microprocesseur/contrôleur (7) qui pilote également la soupape à trois orifices (4) qui assure la commutation entre les deux brins.
EP97911114A 1996-09-28 1997-09-26 Systeme pour determiner le debit sanguin pulmonaire effectif Withdrawn EP0936888A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19640152 1996-09-28
DE19640152 1996-09-28
DE19742226 1997-09-24
DE19742226A DE19742226A1 (de) 1996-09-28 1997-09-24 Anordnung zur Bestimmung des effektiven pulmonalen Blutdurchflusses
PCT/DE1997/002194 WO1998012963A1 (fr) 1996-09-28 1997-09-26 Systeme pour determiner le debit sanguin pulmonaire effectif

Publications (1)

Publication Number Publication Date
EP0936888A1 true EP0936888A1 (fr) 1999-08-25

Family

ID=26029933

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97911114A Withdrawn EP0936888A1 (fr) 1996-09-28 1997-09-26 Systeme pour determiner le debit sanguin pulmonaire effectif

Country Status (5)

Country Link
US (3) US6106480A (fr)
EP (1) EP0936888A1 (fr)
JP (1) JP2001506872A (fr)
AU (1) AU4861797A (fr)
WO (1) WO1998012963A1 (fr)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6840906B2 (en) * 1996-09-28 2005-01-11 Technische Universitaet Dresden Arrangement for the determination of the effective pulmonary blood flow
US6306098B1 (en) 1996-12-19 2001-10-23 Novametrix Medical Systems Inc. Apparatus and method for non-invasively measuring cardiac output
US6042550A (en) 1998-09-09 2000-03-28 Ntc Technology, Inc. Methods of non-invasively estimating intrapulmonary shunt fraction and measuring cardiac output
US6217524B1 (en) 1998-09-09 2001-04-17 Ntc Technology Inc. Method of continuously, non-invasively monitoring pulmonary capillary blood flow and cardiac output
US6238351B1 (en) 1998-09-09 2001-05-29 Ntc Technology Inc. Method for compensating for non-metabolic changes in respiratory or blood gas profile parameters
US6200271B1 (en) 1998-09-09 2001-03-13 Ntc Technology Inc. Bi-directional partial re-breathing method
US6059732A (en) * 1998-09-09 2000-05-09 Ntc Technology, Inc. ISO-volumetric method of measuring carbon dioxide elimination
US6123674A (en) * 1998-10-15 2000-09-26 Ntc Technology Inc. Airway valve to facilitate re-breathing, method of operation, and ventilator circuit so equipped
US6098622A (en) * 1998-10-15 2000-08-08 Ntc Technology Inc. Airway valve to facilitate re-breathing, method of operation, and ventilator circuit so equipped
US6575164B1 (en) * 1998-10-15 2003-06-10 Ntc Technology, Inc. Reliability-enhanced apparatus operation for re-breathing and methods of effecting same
DE19850770C1 (de) * 1998-11-04 2000-01-27 Draeger Medizintech Gmbh Vorrichtung und Verfahren zur Steuerung eines Beatmungsgerätes
JP2002535024A (ja) * 1999-01-21 2002-10-22 メタセンサーズ,インコーポレイティド 呼吸ガス分析技術および生理学的モデルを使用した非侵襲的な心拍出量および肺機能のモニタリング
US6210342B1 (en) 1999-09-08 2001-04-03 Ntc Technology, Inc. Bi-directional partial re-breathing method
US6631717B1 (en) 1999-10-21 2003-10-14 Ntc Technology Inc. Re-breathing apparatus for non-invasive cardiac output, method of operation, and ventilator circuit so equipped
US6413226B1 (en) 1999-10-22 2002-07-02 Respironics, Inc. Method and apparatus for determining cardiac output
US6540689B1 (en) 2000-02-22 2003-04-01 Ntc Technology, Inc. Methods for accurately, substantially noninvasively determining pulmonary capillary blood flow, cardiac output, and mixed venous carbon dioxide content
US7699788B2 (en) 2000-02-22 2010-04-20 Ric Investments, Llc. Noninvasive effective lung volume estimation
US6322514B1 (en) 2000-03-13 2001-11-27 Instrumentarium Corporation Method for determining cardiac characteristics of subject
US7135001B2 (en) * 2001-03-20 2006-11-14 Ric Investments, Llc Rebreathing methods including oscillating, substantially equal rebreathing and nonrebreathing periods
US7112208B2 (en) * 2001-08-06 2006-09-26 Morris John K Compact suture punch with malleable needle
US6951216B2 (en) * 2002-12-19 2005-10-04 Instrumentarium Corp. Apparatus and method for use in non-invasively determining conditions in the circulatory system of a subject
ES2318920B1 (es) * 2005-05-13 2009-12-22 German Peces-Barba Romero Dispositivo de medicion no invasiva del valor de presion positiva intratoracica intrinseca existente al final de la espiracion.
WO2010005343A2 (fr) * 2008-07-08 2010-01-14 Marat Vadimovich Evtukhov Détecteur d'anomalie dans une boucle respiratoire de recycleur
EP2356407A1 (fr) 2008-09-04 2011-08-17 Nellcor Puritan Bennett LLC Purge de train d'ondes de pression en dent de scie inverse dans des ventilateurs médicaux
US8181648B2 (en) 2008-09-26 2012-05-22 Nellcor Puritan Bennett Llc Systems and methods for managing pressure in a breathing assistance system
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
CA2738212A1 (fr) 2008-09-30 2010-04-08 Nellcor Puritan Bennett Llc Detecteur d'inclinaison pneumatique pour une utilisation avec un dispositif de detection de debit respiratoire
US8776790B2 (en) 2009-07-16 2014-07-15 Covidien Lp Wireless, gas flow-powered sensor system for a breathing assistance system
US8469031B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with integrated filter
US8439037B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integrated filter and flow sensor
US8469030B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with selectable contagious/non-contagious latch
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
USD653749S1 (en) 2010-04-27 2012-02-07 Nellcor Puritan Bennett Llc Exhalation module filter body
USD655809S1 (en) 2010-04-27 2012-03-13 Nellcor Puritan Bennett Llc Valve body with integral flow meter for an exhalation module
USD655405S1 (en) 2010-04-27 2012-03-06 Nellcor Puritan Bennett Llc Filter and valve body for an exhalation module
US9629971B2 (en) 2011-04-29 2017-04-25 Covidien Lp Methods and systems for exhalation control and trajectory optimization
WO2013141766A1 (fr) * 2012-03-21 2013-09-26 Maquet Critical Care Ab Procédé pour la détermination en continu et non invasive du volume utile des poumons et du débit cardiaque
US9950135B2 (en) 2013-03-15 2018-04-24 Covidien Lp Maintaining an exhalation valve sensor assembly
CN104941044B (zh) * 2015-07-14 2017-06-13 张永庆 一种呼吸内科用呼吸器
DE102017124256A1 (de) * 2016-10-29 2018-05-03 Sendsor Gmbh Sensor und Verfahren zum Messen der Eigenschaften des Atemgas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE465497B (sv) * 1989-11-24 1991-09-23 Minco Ab Anordning foer studium av en persons lungfunktion
US5005582A (en) * 1990-06-28 1991-04-09 Vladimir Serikov Non-invasive method for measuring lung tissue volume and pulmonary blood flow and a probe to carry out the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9812963A1 *

Also Published As

Publication number Publication date
US6106480A (en) 2000-08-22
US20020128566A1 (en) 2002-09-12
JP2001506872A (ja) 2001-05-29
WO1998012963A1 (fr) 1998-04-02
AU4861797A (en) 1998-04-17
US6394962B1 (en) 2002-05-28

Similar Documents

Publication Publication Date Title
EP0936888A1 (fr) Systeme pour determiner le debit sanguin pulmonaire effectif
DE69737110T2 (de) Verfahren und vorrichtung zur messung der pulmonaren blutstromung im zuge des austauschs von sauerstoff und einem inerten gas im pulmonaren blut
US6540689B1 (en) Methods for accurately, substantially noninvasively determining pulmonary capillary blood flow, cardiac output, and mixed venous carbon dioxide content
EP0131615B1 (fr) appareil pour la determination du volume-minute du coeur
DE60224786T2 (de) Wiedereinatmungssystem mit oscillatorischen wiedereinatmungs- und nicht-wiedereinatmungsphasen
EP0549685B1 (fr) Dispositif du surveillance du co 2 arteriel et controleur en boucle fermee
DE60224964T2 (de) Beatmungsgerät zur Verwendung in der Untersuchung der Atmungsmechanik eines respiratorischen Systems
DE69635677T2 (de) Künstliches Atmungssystem
US6840906B2 (en) Arrangement for the determination of the effective pulmonary blood flow
US20100132710A1 (en) Apparatus and method for non-invasively measuring caridac output
WO2001030234A9 (fr) Methode et appareil de determination du debit cardiaque
DE102007038856A1 (de) Nicht-Invasive Bestimmung des vom Herzen geförderten Blutvolumens, des Gasaustausches und der Gaskonzentration des arteriellen Blutes
EP1237478B1 (fr) Procede et dispositif de determination, decomposee par respiration, de la pression partielle d'un constituant gazeux dans l'air d'expiration d'un patient
DE102021000313A1 (de) Verfahren zum Betreiben eines Beatmungsgeräts zur künstlichen Beatmung eines Patienten sowie ein solches Beatmungsgerät
Mahamed et al. The contribution of chemoreflex drives to resting breathing in man
EP3964253B1 (fr) Programme d'ordinateur et dispositif de détermination automatique de la fréquence de consigne d'un respirateur
DE19742226A1 (de) Anordnung zur Bestimmung des effektiven pulmonalen Blutdurchflusses
US6337895B1 (en) Method for determining constant in relational expression concerning end-tidal air velocity constant and arterial blood velocity constant and xenon CT apparatus
CA2419622A1 (fr) Nouvelle methode de mesure non invasive de parametres cardiaques par ventilation controlee du spontanee
EP0684048B1 (fr) Dispositif d'oxygénothérapie
DE102016015122A1 (de) Verfahren zur Steuerung einer Vorrichtung zum extrakorporalen Blutgasaustausch, Vorrichtung zum extrakorporalen Blutgasautausch sowie Steuervorrichtung zum Steuern einer Vorrichtung zum extrakorporalen Blutgasaustausch
DE10038818A1 (de) Verfahren und Anordnung zur Bestimmung der funktionellen Residualkapazität der Lungen (FRC)
DE2813518B1 (de) Messgeraet fuer die Lungenfunktionsdiagnostik
Schnetzinger Investigating interactions between heart and lungs-correlation between heartrate variability and respiratory mechanics
DE10222176A1 (de) Verfahren und Vorrichtung zur Einstellung eines Beatmungsgeräts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040608

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20041018