EP0928509A1 - Circuit d'alimentation en energie de declencheurs electroniques - Google Patents

Circuit d'alimentation en energie de declencheurs electroniques

Info

Publication number
EP0928509A1
EP0928509A1 EP97911117A EP97911117A EP0928509A1 EP 0928509 A1 EP0928509 A1 EP 0928509A1 EP 97911117 A EP97911117 A EP 97911117A EP 97911117 A EP97911117 A EP 97911117A EP 0928509 A1 EP0928509 A1 EP 0928509A1
Authority
EP
European Patent Office
Prior art keywords
power supply
capacitor
charging
circuit arrangement
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97911117A
Other languages
German (de)
English (en)
Inventor
Ulrich Baumgärtl
Wolfgang Röhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE29617367U external-priority patent/DE29617367U1/de
Priority claimed from DE29617365U external-priority patent/DE29617365U1/de
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0928509A1 publication Critical patent/EP0928509A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/06Arrangements for supplying operative power
    • H02H1/063Arrangements for supplying operative power primary power being supplied by fault current
    • H02H1/066Arrangements for supplying operative power primary power being supplied by fault current and comprising a shunt regulator

Definitions

  • the invention relates to a circuit arrangement for supplying energy to electronic tripping devices with a current converter device, the output voltage of which is rectified and can be fed to a charging capacitor which provides the power supply for the electronic tripping device.
  • a circuit arrangement for example from DE-A-32 46 329. If an upper voltage limit is reached, the voltage is short-circuited such that the current of the current converter device no longer flows into the charging capacitor. During this switching process, electromagnetic interference fields occur, which falsify the measuring current and thus lead to faulty tripping.
  • the object on which the invention is based is to define a circuit arrangement for supplying energy to electronic tripping devices which ensures that the current of the current transformer device is influenced as little as possible and furthermore limits the radiation of electromagnetic interference fields to a minimum.
  • the charging capacitor CL is followed by a switched-mode power supply SNT in the manner of a choke-up converter device DR or also a flyback converter (with transformer principle) SW,
  • the switched-mode power supply SNT contains a diode DI for charging an output capacitor CA, which is connected in parallel with the electronic release device AE and serves for its power supply,
  • the switching power supply contains a switching transistor TR for controlling the charging of the output capacitor CA and the switching transistor TR is under the control of a pulse width modulator circuit PW, 1.4 the pulse width modulator circuit PW st so effective that when the target value of an output voltage UA at the output capacitor CA is reached the switching transistor TR can be controlled with a very large duty cycle, ie is only briefly blocking and as a further development of the invention 1.5, a maximum power point controller MPP is provided, which is connected to the pulse width modulator circuit PW in terms of control and controls it with the start of charging the output capacitance CA in such a way that optimum
  • Power adjustment (11,111, 7) is set.
  • a constant current is impressed in relation to the otherwise usual constant voltage supply.
  • the switching transistor is no longer controlled with a small duty cycle, but with a very large one. Accordingly, in the case of very large currents of the current converter device, these are conducted (via the choke step-up converter device) in the switched-mode power supply through the switched switching transistor TR and are only connected through the diode to the output capacitor CA during the very short opening times of the switching transistor.
  • the voltage at the charging capacitor can thus be kept low by this operating mode, so that there is approximately a constant power consumption at a low voltage level.
  • the control electronics of the switched-mode power supply are supplied by the output voltage of the capacitor CA, since the input voltage at the switched-mode power supply is too low, in particular when the current converter device has high currents.
  • the measurement of the current is carried out by a / at a shunt resistor, which can also be arranged in front of the rectifier device if required.
  • Figure 1 shows a first embodiment.
  • Figure 2 shows a diagram to explain the
  • Figure 3 shows an embodiment of this training.
  • FIG. 1 The invention is explained in more detail by a first exemplary embodiment according to FIG. 1, in which only the switching elements essential for understanding the invention are shown.
  • the current generated by the current converter device SW is rectified in a known manner by the rectifier device GE and is fed via the choke-up converter converter DR depending on the switching position of the switching transistor TR either to the charging capacitor CL or via the diode DI to the output capacitor CA. .
  • the switching transistor TR is controlled by the pulse width modulator circuit in such a way that when the target value of the output voltage UA at the output capacitor CA is reached, the current of the current converter device SW is conducted to the charging capacitor CL via the switching transistor TR and only during the short opening times of the switching transistor TR the diode DI arrives at the output capacitor CA.
  • the voltage at the charging capacitor CL is thus kept at a low value, so that virtually constant power consumption at a low voltage level is achieved
  • the measurement takes place at the shunt resistor, the so-called shunt, which, if necessary, can also be arranged upstream of the rectifier device GE.
  • this is suitable for high measurement accuracy low resistance, so that the current transformer is almost short-circuit loaded.
  • a second, further developed embodiment for particularly rapid charging of the output capacitor CA shows, explained with reference to FIG. 2, FIG. 3.
  • measures 1 to 1.4 are also provided and measure 1.5 is also added. The latter serves the rapid
  • FIG. 2 shows the characteristic of a current transformer with regard to the course of voltage and current between open circuit and short circuit, with the curves a, b, c and d for different sized current (as a parameter) that flows through the power line S, to which the current transformer relevant here is coupled as a source.
  • the area on the right and above the hyperbola H is the working area available for a circuit according to FIG.
  • the power of the current transformer SW for the current is supply of the release EA and the switching power supply SNT is sufficient.
  • the working point of your choice can then be in this area.
  • a switching power supply is provided in the invention is of particular advantage here, because according to one aspect of the invention, depending on the design of the switching power supply with regard to its voltage translation, the output voltage UA at the output of the switching power supply and input of the trigger can optionally be made independent from the input voltage UE at the switching power supply, ie the output voltage of the current transformer SW.
  • the voltages UA and UE are decoupled from one another, for example in the case of a switching power supply, and the invention can be carried out with a low input voltage UE.
  • the charging of the output capacitor CA is carried out at a working point on the connecting line of the points 11, depending on the current transformer output power currently available. 111, 211, 311 started. The choice of the working point on this connecting line ensures optimal rapid
  • Operating point e.g. Point 111
  • MPP Maximum Power Point
  • Output capacitor CA is largely or even completely reached, the work of the MPP control is ended and the operating point (assuming constant power of the current transformer according to curve b) on curve b in the direction of arrow 12 to the intersection P b with the power hyperbolic H shifted. This is done by a corresponding duty cycle of the pulse width modulator
  • Transistor TR of the switching power supply SNT The duty cycle is significantly increased, i.e. the transistor is only temporarily blocked in relation to the period of the keying.
  • FIG. 3 shows a switching power supply SNT with flyback converter.
  • this switching power supply SNT in turn contains the switching transistor TR to be controlled by a pulse width modulator circuit.
  • a MYP microprocessor with maximum power
  • MPP controller is provided, from which the switching transistor TR of the switching power supply is controlled in cycles as indicated.
  • MPP controllers are known as electronic components. They work on the principle of finding out and adjusting the respective maximum of the power adjustment (to the load resistance) by constant variation. In another context, such a technique is e.g. known in the use of solar energy (Electronics 16 (1996), pages 86 to 89).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

L'invention concerne un circuit d'alimentation en énergie de déclencheurs électroniques à partir d'un transformateur de courant (SW). Une alimentation à découpage (SNT), notamment un transformateur élévateur de tension continue (DR) comprenant un dispositif de régulation de tension en largeur de tension (PW), est implantée en aval du condensateur de charge (CL). Lorsque l'on atteint la valeur de consigne de tension de sortie (UA) au niveau d'un condensateur de sortie (CA), on obtient un rapport impulsion/pause très élevé. Notamment une commande du point de puissance maximale (MPP) permet de commander le modulateur en largeur d'impulsion dans la phase de démarrage de charge du condensateur de sortie (CA). Ces circuits sont utilisés pour alimenter en énergie des déclencheurs à maximum de courant des appareils à basse et moyenne tension.
EP97911117A 1996-09-24 1997-09-24 Circuit d'alimentation en energie de declencheurs electroniques Ceased EP0928509A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE29617367U 1996-09-24
DE29617367U DE29617367U1 (de) 1996-09-24 1996-09-24 Schaltungsanordnung zur Energieversorgung von elektronischen Auslöseeinrichtungen
DE29617365U 1996-09-24
DE29617365U DE29617365U1 (de) 1996-09-24 1996-09-24 Schaltungsanordnung zur Energieversorgung von elektronischen Auslöseeinrichtungen
PCT/DE1997/002215 WO1998013918A1 (fr) 1996-09-24 1997-09-24 Circuit d'alimentation en energie de declencheurs electroniques

Publications (1)

Publication Number Publication Date
EP0928509A1 true EP0928509A1 (fr) 1999-07-14

Family

ID=26059500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97911117A Ceased EP0928509A1 (fr) 1996-09-24 1997-09-24 Circuit d'alimentation en energie de declencheurs electroniques

Country Status (3)

Country Link
US (1) US6150739A (fr)
EP (1) EP0928509A1 (fr)
WO (1) WO1998013918A1 (fr)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19738696A1 (de) * 1997-08-29 1999-03-04 Siemens Ag Schaltungsanordnung zur Speisung eines Auslösemagneten eines Leistungsschalters
DE19959786A1 (de) * 1999-12-07 2001-06-13 Siemens Ag Schaltungsanordnung zur Energieversorgung von elektrischen Auslöseeinrichtungen
IT1318719B1 (it) * 2000-08-03 2003-09-10 Abb Ricerca Spa Dispositivo di alimentazione per interruttori differenziali di bassatensione.
DE10342598A1 (de) * 2003-09-11 2005-04-14 Siemens Ag Verfahren und Schaltungsanordnung zur Schnellausschaltung von Niederspannungs-Leistungsschaltern
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
DE102007047166A1 (de) * 2007-09-26 2009-04-02 Siemens Ag Steuerung der Anzeigehintergrundbeleuchtung bei einem Leistungsschalter
WO2009073867A1 (fr) 2007-12-05 2009-06-11 Solaredge, Ltd. Onduleurs connectés en parallèle
WO2009072075A2 (fr) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Procédé de suivi de puissance d'un système photovoltaïque
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
JP2011507465A (ja) 2007-12-05 2011-03-03 ソラレッジ テクノロジーズ リミテッド 分散型電力据付における安全機構、ウェークアップ方法およびシャットダウン方法
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP4145691A1 (fr) 2008-03-24 2023-03-08 Solaredge Technologies Ltd. Convertisseur à découpage avec circuit auxiliaire de commutation par courant nul
EP2294669B8 (fr) 2008-05-05 2016-12-07 Solaredge Technologies Ltd. Circuit combinateur de puissance de courant continu
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
KR20120080107A (ko) * 2011-01-06 2012-07-16 삼성전자주식회사 태양광 발전 시스템에서 최대 전력 점을 추종하는 전력 제어 방법 및 장치
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
CN102856133B (zh) * 2011-06-29 2015-04-29 西门子公司 脱扣机构的电流提供装置、其断路器及其控制方法
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9653905B2 (en) 2012-08-01 2017-05-16 Abb Technology Ag Power supply and measuring device for an intelligent electronic device
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
EP3506370B1 (fr) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Mécanisme de dérivation
DE102013113648A1 (de) * 2013-12-06 2015-06-11 Weidmüller Interface GmbH & Co. KG Stromversorgungseinrichtung und Verfahren zum Begrenzen eines Ausgangsstroms einer Stromversorgungseinrichtung
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3246329A1 (de) * 1982-12-15 1984-06-20 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Elektronisches ueberstromrelais
US4567540A (en) * 1983-06-22 1986-01-28 S&C Electric Company Power supply for a circuit interrupter
CA1256942A (fr) * 1985-06-20 1989-07-04 Gunther Mieth Circuit pour alimenter une charge electrique a partir d'une generatrice solaire
US4992723A (en) * 1989-03-31 1991-02-12 Square D Company Fault-powered power supply
JPH06202745A (ja) * 1992-12-28 1994-07-22 Kyocera Corp 太陽電池装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9813918A1 *

Also Published As

Publication number Publication date
US6150739A (en) 2000-11-21
WO1998013918A1 (fr) 1998-04-02

Similar Documents

Publication Publication Date Title
WO1998013918A1 (fr) Circuit d'alimentation en energie de declencheurs electroniques
DE4321585C2 (de) Wechselstrom-Gleichstrom-Wandler
DE19814681B4 (de) Current-Mode-Schaltregler
EP0355333B1 (fr) Procédé de mise en service pour alimentation stabilisée à découpage
EP0967714B1 (fr) Alimentation à découpage
DE1613338C3 (de) Gleichspannungswandler
WO1995000966A1 (fr) Circuits de commande pour un contacteur-disjoncteur
DE10060344A1 (de) Verfahren zur Regulierung des Ausgangsstroms und/oder der Ausgangsspannung eines Schaltnetzteils
DE102006007021B4 (de) Konstantspannungssteuereinrichtung
DE69108848T2 (de) Verfahren und Schaltungsanordnung zum Abgleichen von Abweichungen in die Eingangs- und/oder Ausgangsspannung eines Umwandlers.
WO2009043412A1 (fr) Dispositif et procédé d'alimentation électrique d'un commutateur à déclenchement de tension ou d'intensité
DE102004016927A1 (de) Verfahren zur Strom- und Spannungsregelung für ein Schaltnetzteil
EP2051360B1 (fr) Circuit de commande pour un bloc à découpage à commande primaire avec precision amèliorèe du réglage de la tension ainsi que un bloc à découpage à commande primaire
DE3525413C2 (fr)
DE2319752A1 (de) Stromquelle zum handschweissen
DE3204800A1 (de) Leistungswechselrichter
DE102005022859B3 (de) Ansteuerschaltung für den Schalter in einem Schaltnetzteil
DE19925490A1 (de) Konverter mit Resonanzkreiselelementen
DE69505017T2 (de) Gleichspannungswandler zur Ausgabe mehreren Signalen
DE3310774C2 (fr)
DE19851248A1 (de) Steuerschaltungs-Leistungsversorgungsschaltung und Leistungsversorgungsschaltung mit einer solchen Schaltung
DE19808297A1 (de) Stromgeregelte Endstufe für elektromagnetische Stellantriebe
DE1638444C3 (de) Verfahren zur verzögerungsfreien Regelung der Blindleistung in elektrischen Netzen
EP0581109B1 (fr) Dispositif de circuit pour commander un élément de commutation dans un régulateur abaisseur de tension
WO1999021269A1 (fr) Procede et circuit pour reduire des chutes de tension dans des lignes d'alimentation de batterie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010426

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20011027