EP0925323A1 - Verfahren zum herstellen von lösungen biologisch abbaubarer kunststoffe, insbesondere aliphatischer polyesteramide - Google Patents

Verfahren zum herstellen von lösungen biologisch abbaubarer kunststoffe, insbesondere aliphatischer polyesteramide

Info

Publication number
EP0925323A1
EP0925323A1 EP97942881A EP97942881A EP0925323A1 EP 0925323 A1 EP0925323 A1 EP 0925323A1 EP 97942881 A EP97942881 A EP 97942881A EP 97942881 A EP97942881 A EP 97942881A EP 0925323 A1 EP0925323 A1 EP 0925323A1
Authority
EP
European Patent Office
Prior art keywords
plastic
solvent mixture
aliphatic polyester
solvent
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97942881A
Other languages
English (en)
French (fr)
Inventor
Hans-Peter Esser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19640032A external-priority patent/DE19640032A1/de
Application filed by Individual filed Critical Individual
Publication of EP0925323A1 publication Critical patent/EP0925323A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/12Polyester-amides

Definitions

  • the present invention relates to a method for producing solutions of biodegradable plastics, in particular aliphatic polyester amides, and to the use of the solution obtained for the production of films and for coating substrates made of metal, paper, wood, plastic, ceramic and foodstuffs.
  • Plastics are widely used in the household, trade and industry, for example as moldings, foils and coatings. However, their disposal after use is an increasing problem. Therefore, biodegradable plastics have also been developed in recent years.
  • polyester amides based on natural amino acids are known. They are manufactured using an elaborate protective group technique, since they are generally natural amino acids in combination with hydroxycarboxylic acids, which is very cumbersome. In addition, these polymers do not have any mechanical properties that are necessary for the production of consumer articles.
  • polyesteramides made from lactic acid, diamines and dicarboxylic acid dichlorides are disclosed in US Pat. Nos. 4,343,931 and 4,529,792.
  • Biodegradable polymers made from caprolactone and caprolactam are known from Japanese patents 79 113 593 and 79 109 594. knows.
  • the polyester amides mentioned above are difficult to produce.
  • polyester amide is disclosed in European patent application EP 641 817.
  • the polyester amide described there can be processed thermoplastically and is biodegradable. It has a melting point of at least 75 ° C. and the proportion by weight of the ester structures is between 30 and 70% and the proportion of the amide structures is between 70 and 30%.
  • the polymer described has good mechanical properties. The processability is very difficult. Molded articles can only be produced from the polymers in bulk. Solutions, for example in ethanol, are not stable and lead to the decomposition of the polymer within a short time.
  • the object of the present invention is to produce solutions of biodegradable polyester amides in order to be able to make them easier and easier to process.
  • the present invention relates to a method for producing solutions of biodegradable plastics, in particular aliphatic polyester amides, which is characterized in that the aliphatic polyester amide contains in a solvent mixture
  • biodegradable aliphatic polyesteramides work well in the solvent mixture according to the invention, which contains components A, B and / or C contains, let solve. After just a few minutes, the polymer swells in the solution and dissolves. The dissolution rate can, if necessary, be increased by mechanical influences, such as stirring.
  • the solution obtained is stable for several days without any degradation of the polymer structure being observed.
  • the method detects the following steps
  • the softened and swollen plastic is mechanically crushed and the emulsion formed is preferably filtered.
  • the soaked and swollen plastic preferably filtered, the filtered solids can be fed to a new batch of plastic / solvent mixture.
  • powdery plastic is introduced into a solvent with constant stirring so that it dissolves immediately and a coating can be carried out.
  • the C - C alcohols of component A are preferably methanol and / or ethanol, it being preferred for ecological reasons to use methanol and ethanol obtained from vegetable raw materials.
  • the solvent mixture preferably contains the C -C alcohol in an amount of 70 to 98.9% by weight, in particular in an amount of 90 to 98.9% by weight.
  • Acetone and butanone have been found to be particularly suitable as C -Cr. Ketone.
  • the ketone is preferably present in the solvent mixture in an amount of 0.1 to 5% by weight, preferably 0.1 to 2% by weight.
  • benzoic acid and its derivatives i.e. Compounds in which the aromatic ring is substituted.
  • Benzoates are preferably used, denatoniomobenzoate being particularly preferred.
  • Component C is usually contained in the solvent mixture in an amount of 0.01 to 5 ppm.
  • a preferably used polyester amide is made up of aliphatic monomers, in which the proportion by weight of the ester structure is between 30 and 70% and the proportion of the id structure is between 70 and 30%. So that the polymer can be used outdoors, ie also in the sun, the polyesteramide should have a melting point of at least 75 ° C. Polyesteramides such as those described in European patent application EP 0 641 817 have proven to be particularly suitable.
  • the average molecular weight (Mw determined by chromatography in n-cresol against standard polystyrene) is from 10,000 to 300,000, preferably 20,000 to 150,000.
  • the polyester amides preferably used can be obtained in a manner known per se, for example by mixing the amide or ester-forming starting components and subsequent polymerization.
  • the synthesis can be carried out either by the "polyamide method” by stoechiometric mixing of the starting components, if appropriate with the addition of water and subsequent removal of water from the reaction mixture, or by the "polyester method” by adding an excess of diol with branching of the acid groups and subsequent esterification or transamidation of these esters.
  • excess glycol is also distilled off in the water.
  • polyesteramides can also be used in which the monomers are distributed as longer segments in the polymer molecule.
  • polyester amides which are preferably used, the following are used as monomers, for example
  • Dialcohols such as ethylene glycol, 1, 4-butanediol, 1, 3-butanediol, 1, 6-hexanediol, diethylene glycol, etc. and / or dicarboxylic acids such as oxalic acid, succinic acid, adipic acid and their lower alkyl esters, and / or hydroxycarboxylic acids and lactones, such as Caprolacton etc., and / or amino alcohols such as ethanolamine, propa- nolamine etc., and / or cyclic lactams such as e-caprolactam and laurolactam etc., and / or v-aminocarboxylic acids such as aminocaproic acid etc. and / or mixtures (lil salts) of dicarboxylic acids such as adipic acid, succinic acid etc. and diamines such as hexamethylene diamine, diaminobutane, etc.
  • dicarboxylic acids such
  • hydroxyl- or acid-terminated polyesters with molecular weights between 200 and 10,000 can also be used as the ester-forming component.
  • the polyester amides obtained can further contain 0.1 to 5% by weight, preferably 0.1 to 2% by weight, of so-called branching agents.
  • branching agents can e.g. trifunctional alcohols such as trimethyolpropane or glycerin, tetrafunctional alcohols such as pentaerythritol, trifunctional carboxylic acids such as citric acid.
  • trifunctional alcohols such as trimethyolpropane or glycerin
  • tetrafunctional alcohols such as pentaerythritol
  • trifunctional carboxylic acids such as citric acid.
  • the solvent mixture used according to the invention can contain, in addition to the above-mentioned components A, B and C, further constituents which improve the solubility of the polymers and, if appropriate, stabilize the solution.
  • the mixture can also contain water in an amount of up to 30% by weight, preferably between 0.1 and 10% by weight.
  • the films produced according to the invention offer a significantly more widespread application range for biodegradable polyester amides than the pure substances.
  • films can be cast from the solutions. Clear, elastic films are obtained which can be produced in any thickness and can be used, for example, as compostable garbage bags or milk films.
  • the films can contain any fillers, care should be taken to ensure that the compostability of the polymers is not impaired by these additives.
  • fillers are talc, CaSO, for example gypsum, which is obtained during flue gas desulfurization, compost, peat, potting soil etc.
  • the last-mentioned fillers enable the use of biodegradable polymers in agriculture and horticulture.
  • Another possible use of the solution obtained according to the invention is the use for coating substrates of metal, paper, wood, plastic, ceramic and food. It can be used as a protective coating for metal substrates and glass as a protective coating during transport. Furthermore, paper or cardboard can be coated, for example, so that the mechanical properties of cardboard and paper and the resistance to moisture and water are increased, but the paper can be returned to the ecological cycle after use.
  • the coating can take place, for example, in the immersion process, by application with a brush or in the spray process.
  • the foils that are formed can be removed in their entirety in a very short time without leaving any residue.
  • solutions obtained according to the invention is as an adhesive.
  • the solutions in concentrated form are applied to the surfaces or points to be connected, after a short flash-off time, which serves to evaporate the solvent mixture, the surfaces are pressed together.
  • BAK 1095 (commercial product from Bayer AG, Leverkusen) was used as the polymer. BAK 2195 can also be used.
  • Example 2t
  • 300 g of the polymer are placed in a beaker.
  • the solvent mixture is added and the mixture is left in a closed vessel in which a vacuum is drawn for 24 hours without heating until an increase in volume and color change in the plastic are found.
  • the plastic is again covered with solvent and then left to stand for about 24 hours with the beaker closed.
  • BAK 1095 was used as the plastic.
  • BAK 2195 can also be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

Es wird ein Verfahren zum Herstellen von Lösungen biologisch abbaubarer Kunststoffe, insbesondere aliphatischer Polyesteramide, beansprucht, das dadurch gekennzeichnet ist, daß das aliphatische Polyesteramid in ein Lösungsmittelgemisch enthaltend (A) ein C1-C4-Alkohol, (B) ein C1-C6-Keton und/oder (C) eine aromatische Carbonsäure oder ein Salz davon, gegeben wird. Die erhaltenen Lösungen eignen sich zum Herstellen von Folien, zum Beschichten von Substraten und als Klebstoffe.

Description

Beschreibung
Verfahren zum Herstellen von Lösungen biologisch abbaubarer Kunststoffe, insbesondere aliphatischer Polyesteramide
Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen von Lösungen biologisch abbaubarer Kunststoffe, insbesondere aliphatischer Polyesteramide sowie die Verwendung der erhaltenen Lösung zur Herstellung von Folien und zum Beschichten von Substraten aus Metall, Papier, Holz, Kunststoff, Keramik und Lebensmitteln.
Kunststoffe finden im Haushalt, Gewerbe und Industrie eine breite Anwendung, beispielsweise als Formkörper, Folien und Beschichtungen. Ihre Entsorgung nach Gebrauch stellt jedoch ein zunehmendes Problem dar. In den letzten Jahren sind daher auch biologisch abbaubare Kunststoffe entwickelt worden.
Aus Polym. Bull. 28 (1992) 301-307 sind Polyesteramide auf Basis natürlicher Aminosäuren bekannt. Ihre Herstellung erfolgt über eine aufwendige Schutzgruppentechnik, da es sich in der Regel um natürliche Aminosäuren in Kombination mit Hydroxycar- bonsäuren handelt, was sehr umständlich ist. Hinzu kommt, daß diese Polymere über keinerlei mechanische Eigenschaften verfügen, die für die Herstellung von Gebrauchsgegenständen notwendig sind.
Weitere biologisch abbaubare Polyesteramide aus Milchsäure, Diaminen und Dicarbonsäuredichloriden werden in den US-Patentschriften 4,343,931 und 4,529,792 offenbart. Aus den japanischen Patentschriften 79 113 593 und 79 109 594 sind biologisch abbaubare Polymere aus Caprolacton und Caprolactam be- kannt. Die voranεtehend genannten Polyesteramide sind jedoch aufwendig herzustellen.
Ein weiteres Polyesteramid wird in der europäischen Patentanmeldung EP 641 817 offenbart. Das dort beschriebene Polyesteramid ist thermoplastisch verarbeitbar und biologisch abbaubar. Es weist einen Schmelzpunkt von mindestens 75°C auf und der Gewichtsanteil der Esterstrukturen beträgt zwischen 30 und 70 % und der Anteil der Amidεtrukturen zwischen 70 und 30 %. Das beschriebene Polymer weist gute mechanische Eigenschaften auf. Die Verarbeitbarkelt ist jedoch sehr schwierig. Die Herstellung von Formkörpern aus den Polymeren kann nur in Substanz erfolgen. Lösungen, beispielsweise in Ethanol, sind nicht stabil und führen innerhalb kurzer Zeit zur Zersetzung des Polymers.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, Lösungen von biologisch abbaubaren Polyesteramiden herzustellen, um diese einer vereinfachten und verbesserten Verarbeitbarkeit zu führen zu können.
Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Herstellen von Lösungen biologisch abbaubarer Kunststoffe, insbesondere aliphatischer Polyesteramide, das dadurch gekennzeichnet ist, daß das aliphatische Polyesteramid in ein Lösungsmittelgemisch enthaltend
(A) ein C -C -Alkohol,
(B) ein C -C -Keton und/oder
1 6
(C) eine aromatische Carbonsäure oder ein Salz davon,
gegeben wird.
Überraschenderweise wurde estgestellt, daß biologisch abbaubare aliphatische Polyesteramide sich gut in dem erfindungsgemäßen Lösungsmittelgemisch, das die Komponenten A, B und/oder C enthält, lösen lassen. Bereits nach wenigen Minuten quillt das Polymer in der Lösung auf und löst sich. Die Lösungsgeschwindigkeit kann ggf. durch mechanische Einwirkungen, wie Rühren, erhöht werden.
Die erhaltene Lösung ist über mehrere Tage stabil, ohne daß ein Abbau der Polymerstruktur beobachtet wird.
Gemäß einer bevorzugten Ausführungsform erfaßt das Verfahren folgende Schrittet
a) der Kunststoff wird in ein Behältnis gefüllt;
b) das Lösungsmittelgemisch wird in das Behältnis gegeben, bis der Kunststoff von dem Lösungsmittelgemisch bedeckt ist;
c) Kunststoff und Lösungsmittelgemisch werden bei verschlossenem Behältnis stehengelassen, bis der Kunststoff unter Aufweichung aufgequollen ist;
d) der aufgeweichte und aufgequollene Kunststoff wird mechanisch zerkleinert und die gebildete Emulsion vorzugsweise gefiltert.
Während des Quellvorgangs kann es vorteilhaft sein, weiteres Lösungsmittel zuzugeben, um den Quellvorgang zu beschleunigen bzw. ein weiteres Aufquellen des Kunststoffes zu bewirken, wenn das ursprünglich in das Behältnis gegebene Lösungsmittelgemisch vollständig vom Kunststoff aufgenommen ist.
Um dabei die Aufnahmeoberflache des Kunststoffes zu vergrös- sern, kann es angebracht sein, während des Quellvorgangs den Kunststoff mechnisch zu verkleinern, um so das Verfahren zu beschleunigen.
Um eine klare Lösung zu erhalten, wird der aufgeweichte und aufgequollene Kunststoff vorzugsweise gefiltert, wobei die ausgefilterten Feststoffe einem neuen Ansatz aus Kunststoff/Lösungsmittelgemisch zugeführt werden können.
Gemäß einer alternativen Ausführungsform wird puderför iger Kunststoff in ein Lösungsmittel unter ständigem Umrühren eingegeben, BO daß er sich sofort auflöst und eine Beschichtung durchgeführt werden kann.
Als C--C -Alkohole der Komponte A werden vorzugsweise Methanol und/oder Ethanol eingesetzt, wobei es aus ökologischen Gründen be bevorzugt ist, Methanol und Ethanol einzusetzen, die aus pflanzlichen Rohstoffen gewonnen wurden. Das Lösungsmittelgemisch enthält den C -C -Alkohol vorzugsweise in einer Menge von 70 bis 98,9 Gew.- , insbesondere in einer Menge von 90 bis 98,9 Gew. -%.
Als C -Cr.-Keton haben sich Aceton und Butanon (Methylethylke- 1 o ton) als besonders geeignet erwiesen. Das Keton ist im Löεungs- mittelgemisch vorzugsweise in einer Menge von 0,1 bis 5 Gew.-%, vorzugsweise von 0,1 bis 2 Gew.-%, enthalten.
Als aromatische Carbonsäure haben sich insbesondere Benzoesäu- re und deren Derivate, d.h. Verbindungen in denen der aromatische Ring substituiert, erwiesen. Bevorzugt werden Benzoate eingesetzt, wobei Denatoniombenzoat besonders bevorzugt ist. Die Komponente C ist im Lösungsmittelgemisch üblicherweise in einer Menge von 0,01 bis 5 ppm enthalten.
Ein bevorzugt eingesetztes Polyesteramid ist aus aliphatischen Monomeren aufgebaut, worin der Gewichtsanteil der Esterstruktur zwischen 30 und 70 % und der Anteil der A idstruktur zwischen 70 und 30 % beträgt. Damit eine Anwendung des Polymers im Außenbereich, d.h. auch in der Sonne, möglich ist, sollte das Polyesteramid einen Schmelzpunkt von mindestens 75°C aufweisen. Als Polyesteramide haben sich insbesondere solche als geeignet erwiesen, wie sie in der europäischen Patentanmeldung EP 0 641 817 beschrieben werden.
Das mittlere Molekulargewicht (Mw ermittelt nach Gechromatogra- phie in n-Kresol gegen Standardpolystyrol) beträgt von 10.000 bis 300.000, vorzugsweise 20.000 bis 150.000.
Die bevorzugt eingesetzten Polyesteramide können in an sich bekannter Weise, beispielsweise durch Mischen der Amid- bzw. esterbildenden Ausgangskomponenten und anschließender Polymerisation, erhalten werden. Die Synthese kann sowohl nach der "Polyamid-Methode" durch stoechiometrisches Mischen der Ausgangskomponenten ggf. unter Zusatz von Wasser und anschließendes Entfernen von Wasser aus dem Reaktionsgemisch als auch nach der "Polyester-Methode" durch Zugabe eines Überschusses an Diol mit Verästelung der Säuregruppen und nachfolgender U äste- lung bzw. Umamidierung dieser Ester erfolgen. In der zweiten Verfahrensvariante wird in dem Wasser auch überschüssiges Gly- col abdestilliert.
Die Anordnung der Ester- bzw. der Amidsegmente erfolgt, schon bedingt durch die Synthesebedingungen, rein statistisch. Es können aber auch Polyesteramide eingesetzt werden, in denen die Monomere als längere Segmente im Polymermolekül verteilt sind.
Zur Herstellung der bevorzugt eingesetzten Polyesteramide werden als Monomere beispielsweise die folgenden eingesetzti
Dialkohole, wie Ethylenglycol , 1 , 4-Butandiol , 1 , 3-Butandiol , 1 ,6-Hexandiol, Diethylenglycol, etc. und/oder Dicarbonsäuren wie Oxalsäure, Bernsteinsäure, Adipinsäure sowie deren niedere Alkylester, und/oder Hydroxycarbonsäuren und Lactone, wie Ca- prolacton etc., und /oder Aminoalkohole wie Ethanolamin, Propa- nolamin etc., und/oder cyclische Lactame wie e-Caprolactam und Laurinlactam etc., und/oder v-Aminocarbonsäuren wie Aminoca- pronsäure etc. und/oder Mischungen (lil Salze) aus Dicarbonsäu- ren wie Adipinsäure, Bernsteinsäure usw. und Diaminen wie Hexa- methylendiamin, Diaminobutan usw.
Ebenso können auch Hydroxyl- oder säureterminierte Polyester mit Molekulargewichten zwischen 200 und 10.000 als esterbildende Komponente eingesetzt werden.
Die erhaltenen Polyesteramide können weiterhin 0,1 bis 5 Gew.-%, bevorzugt 0,1 bis 2 Gew.-% an sog. Verzweigern enthalten. Derartige Verbindungen können z.B. trifunktionelle Alkohole wie Trimethyolpropan oder Glycerin, tetrafunktionelle Alkohole wie Pentaerythrit, trifunktionelle Carbonsäuren wie Citronensäure sein. Durch Einbau derartiger Verbindungen wird die Schmelzviskosität der Polyesteramide erhöht. Die biologische Abbaubarkeit dieser Materialien wird jedoch nicht behindert.
Das erfindungsgemäß eingesetzte Löεungsmittelgemisch kann neben den oben genannten Komponenten A, B und C noch weitere Bestandteile enthalten, die die Löslichkeit der Polymere verbessern und die Lösung ggf. stabilisieren. Das Gemisch kann ebenfalls Wasser in einer Menge bis zu 30 Gew.-*, vorzugsweise zwischen 0,1 und 10 Gew.-% enthalten.
Die erfindungsgemäß hergestellten Folien bieten für biologisch abbaubare Polyesteramide eine deutlich verbreitetere Anwendungspalette als die Reinβυbstanzen.
So lassen sich beispielsweise aus den Lösungen Folien gießen. Es werden klare, elastische Folien erhalten, die in beliebigen Dicken herstellbar sind und beispielsweise als kompostierbare Müllbeutel oder Milchfolien eingesetzt werden können. Die Folien können beliebige Füllstoffe enthalten, wobei darauf geachtet werden sollte, daß die Kompostierbarkeit der Polymere durch diese Zusätze nicht beeinträchtigt wird. Beispiele für Füllstoffe sind Talkum, CaSO , beispielsweise Gips, das bei der Rauchgasentschwefelung anfällt, Kompost, Torf, Blumenerde etc. Insbesondere die zuletzt genannten Füllstoffe ermöglichen den Einsatz der biologisch abbaubaren Polymere in der Landwirtschaft und im Gartenbau.
Eine weitere mögliche Verwendung der erfindungsgemäß erhaltenen Lösung ist der Einsatz zum Beschichten von Substraten von Metall, Papier, Holz, Kunststoff, Keramik und Lebensmitteln. Dabei kommt die Verwendung als Schutzüberzug für Metallsubstrate und Glas als Schutzüberzug beim Transport in Betracht. Ferner kann beispielsweise Papier oder Pappe beschichtet werden, so daß die mechanischen Eigenschaften von Pappe und Papier sowie die Beständigkeit gegenüber Feuchtigkeit und Wasser erhöht wird, das Papier aber nach Gebrauch dem ökologischen Kreislauf wieder zugeführt werden kann. Die Beschichtung kann kann dabei beispielsweise im Tauchverfahren, durch Auftragen mittels Pinsel oder im Sprühverfahren erfolgen. Die sich jeweils bildenden Folien können in kürzester Zeit rückstandsfrei in der Gesamtheit abgezogen werden.
Eine weitere Verwendung der erfindungsgemäß erhaltenen Lösungen ist die als Klebstoff. Die Lösungen in konzentrierter Form werden dazu auf die zu verbindenden Flächen bzw. Punkte aufgetragen, nach einer kurzen Ablüftzeit, die der Verdunstung des Lösungsmittelgemisches dient, werden die Flächen zusammengepreßt.
Beispiel lι
10 gr. des Polymers werden in ein Becherglas gegeben. 300 ml eines Lösungsmittelgemisches bestehend aus 94 Gew.-% Ethylalko- hol, 2 Gew.-% Methylethylketon, 0,1 Gew.-% Denatoniumbenzoat und Wasser ad 100 dazugegeben und 3 Tage stehengelassen. Nach einigen Stunden konnte ein Aufquellen des Polymers beobachtet werden. Nach 2 Tagen war das Polymer vollständig aufgelöst, es wurde eine klare dünnflüssige Lösung erhalten.
Als Polymer wurde BAK 1095 (Handelβprodukt der Bayer AG, Leverkusen) verwendet. Es kann auch BAK 2195 verwendet werden. Beispiel 2t
300 g des Polymers werden in ein Becherglas gegeben. Das Lösungsmittelgemisch wird zugegeben und bei geschlossenem Gefäß, in dem ein Vakuum gezogen wird 24 Stunden ohne eine Erwärmung stehengelassen, bis eine Volumenvergrößerung und farbliche Veränderung des Kunststoffes festgestellt werden.
Der Kunεtstoff wird erneut mit Lösungsmittel abgedeckt und dann bei geschlossenem Becherglas etwa 24 Stunden lang stehengelassen.
Dieser Vorgang wird solange wiederholt, bis eine etwa dreifache Volumenvergrößerung festgestellt wird und der Kunststoff fast klar ist. Die Oberfläche des Kunststoffes ist dann soweit aufgeweicht, daß eine mechanische Zerkleinerung mittels eines einfachen Rührwerks möglich ist. Auch dieser Vorgang wird mehrmals wiederholt, wobei gegebenenfalls zur Verdünnung weiteres Lösungsmittel beigegeben wird, bis eine dünnflüssige Lösung erhalten wird. Diese wird durch einen feinmaschigen Filter gepreßt, um die noch in der Emulsion enthaltenen Feststoffe zu entfernen.
Als Kunststoff wurde BAK 1095 verwendet. Es kann auch BAK 2195 verwendet werden.

Claims

Ansprüche !Peter Tils. Am Haαedorn 14. D-52355 PurenVerfahren zum Herstellen von Lösungen biologisch abbaubarer Kunststoffe, insbesondere aliphatischer Polyesteramide
1. Verfahren zum Herstellen von Lösungen biologisch abbaubarer Kunststoffe, insbesondere aliphatischer Polyesteramide, das dadurch gekennzeichnet ist, daß das aliphatische Polyesteramid in ein Lösungsmittelgemisch enthaltend
(A) ein C^C^Alkohol,
(B) ein C -C -Keton und/oder
(C) eine aromatische Carbonsäure oder ein Salz davon,
gegeben wird.
2. Verfahren nach Anspruch 1, ddaadduurrcchh ggeekkeennnnzzeeiicchhnneett,, ddaaß als C -C -Alkohol Methanol und/oder Ethanol eingesetzt werden
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß als Keton Aceton und/oder Me- thylethylketon eingesetzt werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die aromatische Carbonsäure Ben- zoesäure ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Polyesteramid ein Copolymer auf Basis von aliphatischen Monomeren ist und einen Schmelz- punkt von mindestens 75°C aufweist und der Gewichtsanteil der Esterstruktur zwischen 30 und 70 % und der Anteil der Amidstruktur zwischen 70 und 30 % beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Lösungsmittelgemisch Wasser in einer Menge bis zu 30 Gew.-% enthält.
7. Verfahren nach einem der Ansprüche 1 bis 6, gekennzeichnet durch folgende Schrittet
a) der Kunststoff wird in ein Behältnis gefüllt;
b) das Lösungsmittelgemisch wird in das Behältnis gegeben, bis der Kunststoff von dem Lösungsmittelgemisch bedeckt ist;
c) Kunststoff und Lösungsmittelgemisch werden bei verschlossenem Behältnis stehengelassen, bis der Kunststoff unter Aufweichung aufgequollen ist;
d) der aufgeweichte und aufgequollene Kunststoff wird mechanisch zerkleinert und die gebildete Emulβion vorzugsweise gefiltert.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß der Quellvorgang unter Vakuum stattfindet.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß während des Aufquellens des Kunststoffes erneut wenigstens einmal Lösungsmittel zugegeben wird.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Aufquellzeit 2 bis 60 Stun- den beträgt .
11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß während der Zerkleinerung des aufgequollenen Kunststoffes weiteres Lösungsmittel zugegeben wird.
12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß die bei der Filterung ausgefilterten Feststoffe einem neuen Ansatz von Kunststoff/Lösungsmittelgemisch zugegeben werden.
13. Verwendung der nach einem der Ansprüche 1 bis 12 erhaltenen Lösung zur Herstellung von Folien.
14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, daß die Folien Füllstoffe enthalten.
15. Verwendung nach Anspruch 14, dadurch gekennzeichnet, daß als Füllstoffe Kompost, Torf, Blumenerde und/oder CaSO. eingesetzt werden.
16. Verwendung der nach einem der Ansprüche 1 bis 12 erhaltenen Lösung zum Beschichten von Substraten aus Metall, Glas, Papier, Holz, Kunstoff, Keramik und Lebensmitteln.
17. Verwendung der nach einem der Ansprüche 1 bis 12 erhaltenen Lösung als Klebstoff.
EP97942881A 1996-09-11 1997-08-27 Verfahren zum herstellen von lösungen biologisch abbaubarer kunststoffe, insbesondere aliphatischer polyesteramide Ceased EP0925323A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19636984 1996-09-11
DE19636984 1996-09-12
DE19640032A DE19640032A1 (de) 1996-09-11 1996-09-27 Verfahren zum Herstellen von Lösungen biologisch abbaubarer Kunststoffe, insbesondere aliphatischer Polyesteramide
DE19640032 1996-09-27
PCT/EP1997/004662 WO1998011153A1 (de) 1996-09-11 1997-08-27 Verfahren zum herstellen von lösungen biologisch abbaubarer kunststoffe, insbesondere aliphatischer polyesteramide

Publications (1)

Publication Number Publication Date
EP0925323A1 true EP0925323A1 (de) 1999-06-30

Family

ID=26029270

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97942881A Ceased EP0925323A1 (de) 1996-09-11 1997-08-27 Verfahren zum herstellen von lösungen biologisch abbaubarer kunststoffe, insbesondere aliphatischer polyesteramide

Country Status (3)

Country Link
EP (1) EP0925323A1 (de)
AU (1) AU4455997A (de)
WO (1) WO1998011153A1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL180951B1 (pl) * 1992-12-04 2001-05-31 Khashoggi E Ind Sposób co najmniej jednostronnego, ewentualnie od strony wewnętrznej, nieprzemakalnego powlekania kształtek na bazie skrobi
DE4327024A1 (de) * 1993-08-12 1995-02-16 Bayer Ag Thermoplastisch verarbeitbare und biologisch abbaubare aliphatische Polyesteramide
CA2171498A1 (en) * 1995-03-09 1996-09-10 Takashi Higashi Aliphatic ester-amide copolymer resins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9811153A1 *

Also Published As

Publication number Publication date
WO1998011153A1 (de) 1998-03-19
AU4455997A (en) 1998-04-02

Similar Documents

Publication Publication Date Title
EP0641817B1 (de) Thermoplastisch verarbeitbare und biologisch abbaubare aliphatische Polyesteramide
DE60302885T2 (de) Bioabbaubare gesättigte/ungesättigte thermoplastische polyester
DE69434579T2 (de) Aliphatische Polyester und Verfahren zu seiner Herstellung
EP1656423B1 (de) Biologisch abbaubare polyestermischung
DE69323632T2 (de) Thermoplastische biologisch abbaubare harze und verfahren zu deren herstellung
EP2268702B1 (de) Verfahren zur kontinuierlichen herstellung von biologisch abbaubaren polyestern
DE69325390T2 (de) Abbaubare Harzzusammensetzung
EP0906367A1 (de) Biologisch abbaubarer werkstoff, bestehend im wesentlichen aus oder auf basis thermoplastischer stärke
DE3011561C2 (de) Copolyätherester, abgeleitet aus Terephthalsäure oder ihrem esterbildenden Äquivalent
DE60308175T2 (de) Bioabbaubare thermoplastische polyester
DE60220167T2 (de) Sulfonierte aliphatische-aromatische copolyester
EP0802940A1 (de) Biologisch abbaubare polymere, verfahren zu deren herstellung sowie deren verwendung zur herstellung bioabbaubarer formkörper
EP0927212A1 (de) Biologisch abbaubare polyester
WO1998055527A1 (de) Bioabbaubare polyesterurethane, verfahren zu ihrer herstellung sowie ihre verwendung
WO1996021692A1 (de) Biologisch abbaubare polymere, verfahren zu deren herstellung sowie deren verwendung zur herstellung bioabbaubarer formkörper
DE102005053068A1 (de) Polyester und Polyestermischung auf Basis nachwachsender Rohstoffe
DE19619236A1 (de) Abbau von biologisch abbaubaren Polyesteramiden mit Enzymen
EP0779907A1 (de) Biologisch abbaubarer polyester und werkstoff daraus
DE4200485C1 (de)
EP0925323A1 (de) Verfahren zum herstellen von lösungen biologisch abbaubarer kunststoffe, insbesondere aliphatischer polyesteramide
EP0638609B1 (de) Bioabbaubare, thermoplastisch verformbare Materialien aus Stärkeestern
DE19640032A1 (de) Verfahren zum Herstellen von Lösungen biologisch abbaubarer Kunststoffe, insbesondere aliphatischer Polyesteramide
EP3891208B1 (de) Verfahren zur herstellung eines (co)polyesters
DE1268388B (de) Verfahren zur Herstellung von amorphen, optisch klaren, linearen Polyamiden
DE4108874A1 (de) Polyetheresteramide, verfahren zu ihrer herstellung und deren verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 08J 3/09 A, 7C 08L 77:12 Z

RTI1 Title (correction)

Free format text: PROCESS FOR THE PRODUCTION OF BIOLOGICALLY DEGRADABLE ALIPHATIC PROCESS FOR THE PRODUCTION OF BIOLOGICALLY DEGRADABLE POLYESTER AMIDE SOLUTIONS

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010321

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20011006