EP0925079A1 - Coeur bio-mecanique a contre-pulsion diastolique extra-aortique - Google Patents

Coeur bio-mecanique a contre-pulsion diastolique extra-aortique

Info

Publication number
EP0925079A1
EP0925079A1 EP97935620A EP97935620A EP0925079A1 EP 0925079 A1 EP0925079 A1 EP 0925079A1 EP 97935620 A EP97935620 A EP 97935620A EP 97935620 A EP97935620 A EP 97935620A EP 0925079 A1 EP0925079 A1 EP 0925079A1
Authority
EP
European Patent Office
Prior art keywords
aortic
balloon
muscle
heart
extra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97935620A
Other languages
German (de)
English (en)
Inventor
Norbert Guldner
Sylvain Thuaudet
Jens Hutzenlaub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IST Cardiology SA
Original Assignee
IST Cardiology SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IST Cardiology SA filed Critical IST Cardiology SA
Publication of EP0925079A1 publication Critical patent/EP0925079A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/871Energy supply devices; Converters therefor
    • A61M60/882Devices powered by the patient, e.g. skeletal muscle powered devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/152Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel branching on and drawing blood from a blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/161Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel mechanically acting upon the outside of the patient's blood vessel structure, e.g. compressive structures placed around a vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/268Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/289Devices for mechanical circulatory actuation assisting the residual heart function by means mechanically acting upon the patient's native heart or blood vessel structure, e.g. direct cardiac compression [DCC] devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/427Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/427Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic
    • A61M60/43Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic using vacuum at the blood pump, e.g. to accelerate filling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/835Constructional details other than related to driving of positive displacement blood pumps
    • A61M60/837Aspects of flexible displacement members, e.g. shapes or materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/857Implantable blood tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/268Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
    • A61M60/274Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders the inlet and outlet being the same, e.g. para-aortic counter-pulsation blood pumps

Definitions

  • the present invention relates to improvements in bio-mechanical hearts of the type using, as a motor element, a skeletal muscle, and more particularly an extra-aortic diastolic counter-pulse system included in such a heart.
  • Biomechanical hearts which take the form of a circulatory pump capable of being completely implanted in the rib cage of a patient, in particular in cases of terminal heart failure.
  • This pump is actuated by a skeletal muscle, for example the dorsal muscle, which is subjected to electrostimulation in such a way that all the pulsating energy of the pump comes from the metabolism of the muscle which in a way constitutes its motor.
  • a major drawback of this system is that, in order to be fully effective, the skeletal muscle must first be subjected to the training mentioned above, so that it is effective only after a delay of the order of 8 at 12 weeks, so it can only be used on patients with pre-terminal heart failure. It cannot therefore be used on patients with very advanced heart failure requiring immediate treatment.
  • intra-aortic diastolic counter-pulse systems which have the effect of increasing the coronary flow at the time of diastole and decreasing the afterload by aspirating blood from the heart at the time of systole.
  • a balloon is introduced into the patient's aorta, from the femoral artery, which is inflated at the time of diastole and which is deflated at the time of systole.
  • the introduction of this balloon into the arterial system of the patient has the disadvantage of causing, when its use is prolonged in time, hemorrhages, infections of the ischaemias of the lower limb and femoro-iliac thromboses.
  • the present invention proposes to remedy the drawbacks of the two abovementioned intervention techniques by proposing a bio-mechanical heart able to be operational as soon as its implantation is carried out, so that it is able to be used on patients who have very advanced heart failure, requiring immediate mechanical treatment.
  • the present invention thus relates to a bio-mechanical heart of the type comprising means of extra-aortic diastolic counterpulsation constituted by a pumping cage, disposed between two conduits of an aortic bypass, the actuation of which is controlled by a muscle excited by electrical pulses, characterized in that the internal walls of the pumping cage receive a balloon, of substantially annular cross section, so as to provide an axial channel in communication with the two conduits of the aortic bypass, which is connected by a flexible tube to means making it possible to inject a gas flow capable of inflating it, so as to reduce the passage section of the axial channel and to deflate it so as to increase said passage section.
  • the gas flow consists of helium.
  • the present invention is particularly advantageous in that it makes it possible to make a bio-mechanical heart immediately effective, without waiting for a delay in training the muscle 8. Furthermore, the extra-aortic diastolic counter-pulse system according to the invention does not require interrupting the muscular training phase of muscle 8 and can even help improve its training.
  • Figure 1 is a schematic view of a bio-mechanical heart according to the prior art, used in an aorto-aortic application.
  • Figure 2 is a longitudinal sectional view of a bio-mechanical core according to the invention.
  • Figure 3 is a schematic view of a bio-mechanical heart according to the invention, of the type of that shown in Figure 2, and which is implemented in an aorto-aortic application of the type of that shown in Figure 1 .
  • FIG. 4 is a schematic view of an embodiment, in an apico-aortic application, of the bio-mechanical heart shown in FIG. 2.
  • the pumping cage 7 is generally made up of a deformable enclosure forming a pump which is actuated by a muscle 8, in particular by a muscle skeletal type of great dorsal, which for this is wrapped around the pumping cage 7.
  • the contractions of the muscle 8 are triggered by a myostimulator 11, itself synchronized with the cardiac movements by a sensor 13 fixed on the heart 1 to which it is connected.
  • a myostimulator 11 When the muscle 8 is not excited, that is to say when it is released, the cage 7 then has a large diameter and when the muscle 8 is excited, it is then contracted so that the passage section in cage 7 is reduced.
  • the aortic valve 10 is closed (which is detected by the sensor 13, and which corresponds to the diastole) the myostimulator 11 sends an electrical pulse to the muscle 8, which is in synchronism with the diastole.
  • the muscle 8 is then excited and compresses the pumping cage 7, so that the blood which passes through it is forced back both upstream and downstream.
  • FIG. 2 a bio-mechanical heart with a diastolic counterpulse which can be used in aorto-aortic applications, ( Figure 3) as well as apico-aortic ( Figure 4).
  • This heart was placed in a bypass 6 created on the aorta 3 by two conduits 5 and 9, a pumping cage 7 around which was wound a skeletal muscle intended, as mentioned previously, to compress the pumping cage 7 when 'he is electrically excited.
  • the pumping cage 7 comprises on its internal surface 12, a balloon 15 of substantially annular cross section, so as to provide an axial channel 17 which is connected to the upstream 5 and downstream 9 conduit of the bypass 6.
  • the balloon 15 is connected by a flexible tube 19 which leaves the skin after a long subcutaneous journey, to an external pressure and vacuum generator 20 able to successively create in the balloon 15 a pressure, in particular by injection of a gas such as helium, and a vacuum by suction, so, in synchronism with the diastole and the cardiac systole, to inflate and deflate the balloon 15.
  • the pressure and vacuum generator 20 is in communication with the native heart 1 by a link 22 and a listening or implantable listening electrode 24.
  • the operation of the device is of the same type as that described in FIG. 1, with the difference that, instead of exciting the muscle 8 by an electric discharge in order to compress the pumping cage 7 so as to expel the blood contained in the bypass 6, the balloon 15 is inflated, by blowing helium through the line 19. Likewise, instead of leaving the muscle 8 relax, which had the effect of allowing the pumping cage to regain its volume thus creating suction through the pipe 5, a vacuum is created in the balloon 15 to retract it.
  • the present invention has a certain number of advantages and first of all that of making a bio-mechanical heart immediately effective, without waiting for a delay in training the muscle 8.
  • the extra-aortic diastolic counter-pulse system according to the invention does not require interrupting the muscular training phase of muscle 8 and can even contribute to improving the training thereof.
  • the training phase of muscle 8 it is possible either to eliminate the tube 19 through the cutaneous orifice, or to leave it in place by cutting it flush with the skin and burying it in the sub-tissues. skin.
  • the diastolic counter-pulse system according to the invention can also be implemented in bio-mechanical hearts with inlet and outlet valves as well as those used in the so-called apico-aortic arrangements.
  • the blood flow from the left ventricle of the heart 1 enters channel 17 at the time of systole and is ejected into the aorta 3 at the time of diastole.
  • An intake valve 25 and a discharge valve 26 avoid retrograde flow in the left ventricle, which would be extremely harmful on a hemodynamic level.
  • the intake valve 25 is open and the discharge valve 26 is closed at the time of systole.
  • the inlet valve 25 is closed and the discharge valve 26 is open at the time of the diastole.
  • the extra-aortic counterpulsation balloon 15 has the same effects in this apico-aortic configuration as in the aorto-aortic configuration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Rheumatology (AREA)
  • External Artificial Organs (AREA)

Abstract

La présente invention concerne un coeur bio-mécanique du type comportant des moyens de contre-pulsion diastolique extra-aortique, constitués d'une cage de pompage (7), disposée entre deux conduits (5, 9) d'une dérivation aortique (6) dont l'actionnement est commandé par un muscle (8) excité par des impulsions électriques. Ce coeur est caractérisé en ce que les parois internes de la cage de pompage (7), reçoivent un ballon (15) de section droite sensiblement annulaire, de façon à ménager un canal axial (17) en communication avec les deux conduits (5, 9) de la dérivation aortique (6), qui est relié par un tube souple (19) à des moyens (20) aptes à injecter dans ledit ballon (15) un flux gazeux apte à le gonfler, de façon à diminuer la section de passage du canal axial (17) puis à le dégonfler, de façon à augmenter ladite section de passage (17).

Description

COEUR BIO-MECANIQUE A CONTRE-PULSION DIASTOLIQUE EXTRA-AORTIQUE
La présente invention concerne des perfectionnements aux coeurs bio-mécaniques du type utilisant, en tant qu'élément moteur, un muscle squelettique, et plus particulièrement un système de contre-pulsion diastolique extra-aortique inclus dans un tel coeur.
On connaît des coeurs bio-mécaniques qui se présentent sous la forme d'une pompe circulatoire susceptible d'être complètement implantée dans la cage thoracique d'un patient, en particulier dans les cas d'insuffisance cardiaque terminale. Cette pompe est actionnée par un muscle squelettique, par exemple le muscle grand dorsal, qui est soumis à une électrostimulation de telle façon que toute l'énergie pulsatoire de la pompe provienne du métabolisme du muscle qui en constitue en quelque sorte le moteur.
On sait qu'un tel coeur bio-mécanique offre l'avantage qu'il n'entraîne pas une réaction de rejet de l'organisme, du fait que le muscle est prélevé sur le patient dans lequel le coeur bio-mécanique est implanté. Pour pouvoir utiliser, en tant que moteur, un tel coeur bio-mécanique, il s'est avéré nécessaire de soumettre celui-ci, préalablement à sa mise en fonction, à un entraînement dynamique. Pour ce faire, le muscle squelettique est enroulé autour d'un appareil d'entraînement déformable susceptible de pouvoir se contracter en opposant une résistance à la contraction, et reprendre ensuite sa forme initiale, et on stimule le muscle squelettique, au moyen d'impulsions électriques périodiques, de manière à provoquer sa contraction et celle de l'appareil d'entraînement déformable et leur relaxation subséquente.
On a proposé, dans la demande de brevet WO 94/26326, de stimuler au cours d'une première étape, le muscle squelettique au moyen d'impulsions électriques ayant une fréquence allant en croissant en fonction du temps et au cours d'une seconde étape d'augmenter progressivement la résistance de l'appareil d'entraînement déformable à la contraction, les premières et seconde étapes se chevauchant éventuellement quelque peu.
Un inconvénient majeur de ce système est qu'il nécessite, pour être pleinement efficace, de soumettre préalablement le muscle squelettique à l'entraînement précédemment mentionné, si bien qu'il n'est efficace qu'après un délai de l'ordre de 8 à 12 semaines, de sorte qu'il ne peut être utilisé que sur des patients en insuffisance cardiaque pré-terminale. Il ne peut donc pas être utilisé sur des patients en insuffisance cardiaque très évoluée exigeant un traitement immédiat.
Dans ce dernier cas, on fait habituellement appel à des systèmes dits de contre-pulsion diastolique intra-aortique qui ont pour effet d'augmenter le flux coronaire au moment de la diastole et diminuer la postcharge en aspirant le sang du coeur au moment de la systole. Pour mettre en place de tels appareils, on introduit dans l'aorte du patient, à partir de l'artère fémorale, un ballon que l'on gonfle au moment de la diastole et que l'on dégonfle au moment de la systole. L'introduction de ce ballon dans le système artériel du patient présente l'inconvénient de provoquer, lorsque son utilisation se prolonge dans le temps, des hémorragies, des infections des ischémies du membre inférieur et des thromboses fémoro-iliaqueε.
La présente invention se propose de remédier aux inconvénients des deux techniques d'intervention précitées en proposant un coeur bio-mécanique en mesure d'être opérationnel sitôt son implantation effectuée, si bien qu'il est en mesure d'être utilisé sur des patients qui possèdent une insuffisance cardiaque très évoluée, exigeant un traitement mécanique immédiat.
La présente invention a ainsi pour objet un coeur bio-mécanique du type comportant des moyens de contre- pulsion diastolique extra-aortique constitués d'une cage de pompage, disposée entre deux conduits d'une dérivation aortique, dont 1 'actionnement est commandé par un muscle excité par des impulsions électriques, caractérisé en ce que les parois internes de la cage de pompage, reçoivent un ballon, de section droite sensiblement annulaire, de façon à ménager un canal axial en communication avec les deux conduits de la dérivation aortique, qui est relié par un tube souple à des moyens permettant d'injecter dans le dit ballon un flux gazeux apte à le gonfler, de façon à diminuer la section de passage du canal axial et à le dégonfler de façon à augmenter ladite section de passage. Dans une variante de mise en oeuvre de l'invention, le flux gazeux est constitué d'hélium.
La présente invention est particulièrement intéressante en ce qu'elle permet de rendre un coeur bio-mécanique immédiatement efficace, sans attendre un délai d'entraînement du muscle 8. Par ailleurs, le système de contre-pulsion diastolique extra-aortique suivant l'invention ne nécessite pas d'interrompre la phase d'entraînement musculaire du muscle 8 et peut même contribuer à améliorer l'entraînement de celui-ci.
On décrira ci-après, à titre d'exemples non limitatifs, diverses formes d'exécution de la présente invention, en référence au dessin annexé sur lequel :
La figure 1 est une vue schématique d'un coeur bio-mécanique suivant l'état antérieur de la technique, mis en oeuvre dans une application aorto-aortique. La figure 2 est une vue en coupe longitudinale d'un coeur bio-mécanique suivant l'invention.
La figure 3 est une vue schématique d'un coeur bio-mécanique suivant l'invention, du type de celui représenté sur la figure 2, et qui est mis en oeuvre dans un application aorto-aortique du type de celle représentée sur la figure 1.
La figure 4 est une vue schématique d'un mode de mise en oeuvre, dans une application apico-aortique, du coeur bio-mécanique représenté sur la figure 2. Sur la figure 1 , on a représenté un coeur 1 et son aorte 3, sur laquelle on a branché une dérivation 6 formée d'un conduit 5 qui part de l'amont de l'aorte 3, qui traverse une cage de pompage tubulaire 7 pour ressortir de celle-ci par un conduit 9 qui est relié à une partie aval de l'aorte 3. La cage de pompage 7 est globalement constituée d'une enceinte déformable formant pompe qui est actionnée par un muscle 8, notamment par un muscle squelettique de type grande dorsal, qui pour ce faire est enroulé autour de la cage de pompage 7. Les contractions du muscle 8 sont déclenchées par un myostimulateur 11, lui-même synchronisé avec les mouvements cardiaques par un capteur 13 fixé sur le coeur 1 auquel il est relié. Lorsque le muscle 8 n'est pas excité, c'est-à-dire lorsqu'il est relâché, la cage 7 possède alors un grand diamètre et lorsque le muscle 8 est excité, elle est alors contractée si bien que la section de passage dans la cage 7 est réduite . Dans ces conditions, lorsque la valve aortique 10 est fermée (ce qui est détecté par le capteur 13, et ce qui correspond à la diastole) le myostimulateur 11 envoie une impulsion électrique au muscle 8, qui est en synchronisme avec la diastole. Le muscle 8 est alors excité et comprime la cage de pompage 7, si bien que le sang qui traverse celle-ci est refoulé à la fois vers l'amont et vers l'aval. Vers l'amont, cet afflux de sang augmente la circulation sanguine dans les artères coronaires, et vers l'aval il améliore la circulation sanguine se faisant par l'aorte 3. Lorsgue la valve aortique 10 est ouverte (ce qui correspond alors à la systole), le muscle 8 n'est pas excité électriquement, si bien qu'il se relâche et que la cage 7 retrouve son volume, créant ainsi une dépression qui favorise la circulation sanguine dans l'aorte 3.
On a représenté sur la figure 2, sous forme schématique, un coeur bio-mécanique à contre-pulsion diastolique qui peut aussi bien être utilisé dans des applications aorto-aortiques, (figure 3) qu'apico- aortiques (figure 4). Ce coeur a été disposé dans une dérivation 6 crée sur l'aorte 3 par deux conduits 5 et 9, une cage de pompage 7 autour de laquelle a été enroulée un muscle squelettique destiné, comme mentionné précédemment, à comprimer la cage de pompage 7 lorsqu'il est électriquement excité.
Suivant l'invention, la cage de pompage 7 comprend sur sa surface interne 12, un ballon 15 de section droite sensiblement annulaire, de façon à ménager un canal axial 17 qui est relié au conduit amont 5 et aval 9 de la dérivation 6. Le ballon 15 est relié par un tube souple 19 qui sort de la peau après un long trajet sous-cutané, à un générateur externe de pression et de vide 20 en mesure de créer successivement dans le ballon 15 une pression, notamment par injection d'un gaz tel que de l'hélium, et un vide par aspiration, de façon, en synchronisme avec la diastole et la systole cardiaque, à gonfler et à dégonfler le ballon 15. Pour assurer un tel synchronisme, le générateur de pression et de vide 20 est en communication avec le coeur natif 1 par une liaison 22 et une électrode d'écoute 24 implantable ou cutanée. Dans le mode de mise en oeuvre aorto-aortique représenté sur la figure 3, le fonctionnement du dispositif est du même type que celui décrit sur la figure l , à la différence que, au lieu d'exciter le muscle 8 par une décharge électrique afin de comprimer la cage de pompage 7 de façon à expulser le sang contenu dans la dérivation 6, on assure le gonflage du ballon 15, en insufflant dans celui-ci de l'hélium par la canalisation 19. De même, au lieu de laisser le muscle 8 se détendre, ce qui avait pour effet de permettre a la cage de pompage de reprendre son volume créant ainsi une aspiration par la conduite 5, on crée le vide dans le ballon 15 pour rétracter celui-ci.
La présente invention présente un certain nombre d'avantages et tout d'abord celui de rendre un coeur bio-mécanique immédiatement efficace, sans attendre un délai d'entraînement du muscle 8. Par ailleurs, le système de contre-pulsion diastolique extra-aortique suivant l'invention ne nécessite pas d'interrompre la phase d'entraînement musculaire du muscle 8 et peut même contribuer à améliorer l'entraînement de celui-ci. Lorsque la phase d'entraînement du muscle 8 est terminée, on peut soit éliminer le tube 19 au travers de l'orifice cutané, soit le laisser en place en le coupant au ras de la peau et en l'enfouissant dans les tissus sous-cutanés. Le système de contre-pulsion diastolique suivant l'invention peut également être mis en oeuvre dans des coeurs bio-mécaniques avec des valves d'admission et de refoulement ainsi que ceux utilisés dans les dispositions dites apico-aortiques. Dans cette disposition, le flux sanguin provenant du ventricule gauche du coeur 1 pénètre dans le canal 17 au moment de la systole et est éjecté dans l'aorte 3 au moment de la diastole. Une valve d'admission 25 et une valve de refoulement 26 évitent le flux rétrograde dans le ventricule gauche, ce qui serait extrêmement délétère sur un plan hémodynamique. La valve d'admission 25 est ouverte et la valve de refoulement 26 est fermée au moment de la systole. La valve d'admission 25 est fermée et la valve de refoulement 26 est ouverte au moment de la diastole. Le ballon de contre-pulsion extra-aortique 15 a les mêmes effets dans cette configuration apico-aortique que dans la configuration aorto-aortique. La déflation du ballon 15 pendant la systole, la valve de refoulement 26 étant fermée, facilite le remplissage du canal 17 où le sang est aspiré du fait du vide créé. Le gonflage du ballon 15 pendant la diastole, la valve d'admission 25 étant fermée, permet l'éjection de ce volume de sang dans l'aorte 3 au travers de la valve de refoulement 26 qui est alors ouverte.

Claims

REVENDICATIONS
1. - Coeur bio-mécanique du type comportant des moyens de contre-pulsion diastolique extra-aortique, constitués d'une cage de pompage (7), disposée entre deux conduits (5,9) d'une dérivation aortique (6) dont 1 'actionnement est commandé par un muscle (8) excité par des impulsions électriques, caractérisé en ce que les parois internes de la cage de pompage (7), reçoivent un ballon (15) de section droite sensiblement annulaire, de façon à ménager un canal axial (17) en communication avec les deux conduits (5,9) de la dérivation aortique (6), qui est relié par un tube souple (19) à des moyens (20) aptes à injecter dans le dit ballon (15) un flux gazeux apte à le gonfler, de façon à diminuer la section de passage du canal axial (17) puis à le dégonfler, de façon à augmenter ladite section de passage (17).
2.- Coeur suivant la revendication 1 caractérisé en ce que le flux gazeux est constitué d'hélium.
EP97935620A 1996-07-24 1997-07-24 Coeur bio-mecanique a contre-pulsion diastolique extra-aortique Withdrawn EP0925079A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9609320A FR2751549B1 (fr) 1996-07-24 1996-07-24 Coeur bio-mecanique a contre-pulsion diastolique extra-aortique
FR9609320 1996-07-24
PCT/FR1997/001385 WO1998003212A1 (fr) 1996-07-24 1997-07-24 Coeur bio-mecanique a contre-pulsion diastolique extra-aortique

Publications (1)

Publication Number Publication Date
EP0925079A1 true EP0925079A1 (fr) 1999-06-30

Family

ID=9494433

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97935620A Withdrawn EP0925079A1 (fr) 1996-07-24 1997-07-24 Coeur bio-mecanique a contre-pulsion diastolique extra-aortique

Country Status (6)

Country Link
EP (1) EP0925079A1 (fr)
JP (1) JP2000514687A (fr)
AU (1) AU3854197A (fr)
CA (1) CA2261846A1 (fr)
FR (1) FR2751549B1 (fr)
WO (1) WO1998003212A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0023412D0 (en) 2000-09-23 2000-11-08 Khaghani Asghar Aortic counterpulsator
IL156452A0 (en) 2003-06-16 2004-01-04 Technion Res & Dev Foundation Peri-arterial blood flow booster

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685446A (en) * 1984-02-21 1987-08-11 Choy Daniel S J Method for using a ventricular assist device
WO1992008500A1 (fr) * 1990-11-09 1992-05-29 Mcgill University Procede et appareil d'assistance cardiaque
WO1994026326A1 (fr) * 1993-05-14 1994-11-24 Norbert Guldner Procede d'entrainement d'un muscle squelettique pour un c×ur biomecanique et c×ur biomecanique utilisant un tel muscle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9803212A1 *

Also Published As

Publication number Publication date
FR2751549B1 (fr) 1998-10-16
FR2751549A1 (fr) 1998-01-30
AU3854197A (en) 1998-02-10
WO1998003212A1 (fr) 1998-01-29
JP2000514687A (ja) 2000-11-07
CA2261846A1 (fr) 1998-01-29

Similar Documents

Publication Publication Date Title
EP0876168B1 (fr) Pompe d'assistance cardiaque implantable du type a ballonnet de contrepression
CH618609A5 (fr)
FR2773995A1 (fr) Pompe a sang implantable et procede pour alimenter en sang le systeme circulatoire d'un patient
EP0014130A1 (fr) Prothèse cardiaque totale et dispositif de régulation de son débit sanguin
EP0366535A2 (fr) Appareillage pour la réalisation d'une angioplastie prolongée
EP0564321B1 (fr) Dispositif d'injection d'un médicament
EP0821598A1 (fr) Dispositif d'obturation temporaire d'un canal corporel, notamment utile a l'assistance cardiaque par contre-pression
FR2766373A1 (fr) Dispositif d'assistance cardiaque ventriculaire a contre-pulsation
FR2653993A1 (fr) Inverseur hydraulique de pression destine a la commande d'un sphincter artificiel, et prothese implantable comportant ledit inverseur.
WO1994026326A1 (fr) Procede d'entrainement d'un muscle squelettique pour un c×ur biomecanique et c×ur biomecanique utilisant un tel muscle
EP0925079A1 (fr) Coeur bio-mecanique a contre-pulsion diastolique extra-aortique
EP2291209B1 (fr) Appareil permettant d'appliquer une pression pulsatile déterminée sur un dispositif médical
CA2982204C (fr) Dispositif de canule, poumon artificiel
CA3189345A1 (fr) Systeme de pompe a sang de dechargement et sa pompe a sang
WO2022194981A1 (fr) Dispositif d'assistance par compression cardiaque directe
FR2591487A1 (fr) Prothese cardiaque totale comportant deux pompes decouplees associees en une unite fonctionnellement indissociable.
FR2681789A1 (fr) Appareil d'assistance cardio-circulatoire.
EP3917604B1 (fr) Canule d'injection, système ecmo
BE1005293A6 (fr) Procede d'assistance circulatoire et dispositif pour la mise en oeuvre de ce procede.
FR2705238A1 (fr) CÓoeur bio-mécanique à développement dynamique.
FR2708857A1 (fr) CÓoeur bio-mécanique à développement dynamique.
EP0069031A1 (fr) Dispositif et procédé pour faciliter la circulation sanguine extracorporelle d'un être vivant
WO1987006453A1 (fr) Dispositif de commande du debit d'un fluide, organe prothetique equipe de ce dispositif et procede de fabrication d'un tel dispositif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020201