EP0924469B1 - Dispositif de tourbillonnement sans venturi - Google Patents

Dispositif de tourbillonnement sans venturi Download PDF

Info

Publication number
EP0924469B1
EP0924469B1 EP98309966A EP98309966A EP0924469B1 EP 0924469 B1 EP0924469 B1 EP 0924469B1 EP 98309966 A EP98309966 A EP 98309966A EP 98309966 A EP98309966 A EP 98309966A EP 0924469 B1 EP0924469 B1 EP 0924469B1
Authority
EP
European Patent Office
Prior art keywords
swirl
air
fuel
cup
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98309966A
Other languages
German (de)
English (en)
Other versions
EP0924469A3 (fr
EP0924469A2 (fr
Inventor
Richard Wade Stickles
John Louis Halpin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP0924469A2 publication Critical patent/EP0924469A2/fr
Publication of EP0924469A3 publication Critical patent/EP0924469A3/fr
Application granted granted Critical
Publication of EP0924469B1 publication Critical patent/EP0924469B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes

Definitions

  • the present invention relates generally to gas turbine engines, and, more specifically, to combustors therein.
  • Undesirable exhaust emissions include unburned hydrocarbons, carbon monoxide (CO), and nitrogen oxides (NO x ). These exhaust emissions are affected by uniformity of the fuel and air mixture and amount of vaporization of the fuel prior to undergoing combustion.
  • a typical gas turbine engine carburetor which mixes the fuel and air includes a fuel injection nozzle mounted in a swirl cup attached to the upstream, dome end of the combustor.
  • the swirl cup typically includes two rows of swirl vanes which operate either in co-rotation or counter-rotation for swirling air around the injected fuel for forming a suitable fuel and air mixture which is discharged into the combustor for combustion.
  • US-A-2,958,145 describes an air inlet scoop arrangement for supplying air to the combustion chamber of a gas turbine engine. Scoop members are separated by vane elements, and air entering the scoop members and striking the vane elements is introduced into the combustion chamber in counter-rotating streams.
  • Gas turbine engine carburetors vary in configuration significantly depending upon the specific engine design, and whether the engine is configured for aircraft propulsion or for marine and industrial (M&I) applications.
  • NO x emissions are typically reduced by operating the combustor with a lean fuel and air mixture.
  • lean mixtures typically result in poor low power performance of the combustor, increased CO and HC emissions, and are susceptible to lean flame blowout (LBO), autoignition, and flashback.
  • NO x emissions may also be reduced by configuring the combustor with a multiple dome, such as a double dome having two radially spaced apart rows of carburetors operated in stages.
  • the radially outer carburetors are sized and configured for pilot performance and operate continuously during all modes of engine operation from idle to maximum power.
  • the radially inner carburetors are sized and configured for main operation and are fueled only above idle for higher power operation of the engine.
  • the required amount of fuel for operating the combustor over the different power settings may be selectively split between the outer and inner carburetors for obtaining suitable combustor performance with reduced exhaust emissions.
  • Performance of the combustor is also evaluated by conventional profile factor and pattern factor which indicate relative uniformity of radial and circumferential temperature distribution from the combustion gases at the exit of the combustor which affect efficiency and life of the high pressure turbine which firstly receives the combustion gases from the combustor.
  • a typical swirl cup used in both the outer and inner carburetors includes a tubular member in the form of a venturi disposed between the two rows of swirl vanes.
  • the venturi has two primary purposes including a throat of minimum flow area sized for accelerating the injected fuel and swirl air from a primary row of swirl vanes to a suitably high velocity to reduce carbon formation on the face of the fuel injection nozzle and to prevent the flame front in the combustor from travelling forwardly into the swirl cup toward the fuel nozzle.
  • the venturi also has an inner surface along which the fuel from the nozzle may form a film which may be airblast atomized by the swirl air flowing through the swirl cup.
  • a swirl cup for premixing fuel and air within a fuel injection nozzle for delivery into a combustion chamber in a gas turbine comprising: a tubular body including at one end a forward plate having an inlet for receiving said fuel injection nozzle to inject fuel into said tubular body, an outlet at an opposite axial end for discharging said fuel into said combustor, and an annular septum axially therebetween; characterised by: a row of first swirl vanes attached to said forward plate and to a forward side of said septum aft of said body inlet for channelling air into said body in a first swirl direction around said injected fuel; and a row of second swirl vanes attached to an aft side of said septum and spaced upstream from said body outlet for channelling into said body additional air in a second swirl direction directly around both said injected fuel and said first swirl air without a flow barrier therebetween.
  • FIG. 1 Illustrated schematically in Figure 1 is a portion of an exemplary gas turbine engine 10 which is axisymmetrical about a longitudinal or axial centerline axis 12.
  • the engine 10 includes a compressor 14 which may take any conventional form for providing compressed air 16 into an annular combustor 18.
  • the combustor 18 is conventionally configured with a radially outer liner 18a, a radially inner liner 18b, and an annular dome 18c joined to the upstream ends thereof to define an annular combustor chamber 18d.
  • the combustor dome 18 is a double-dome in which are conventionally mounted a row of radially outer or pilot swirl cups 20, and a row of radially inner or main swirl cups 22 configured in accordance with an exemplary embodiment of the present invention.
  • a common fuel injector 24 includes a pair of radially outer and inner fuel injection nozzles 24a,b disposed in respective ones of the outer and inner swirl cups 20, 22 for injecting fuel 26 therein in a conventional manner.
  • the air 16 and fuel 26 are mixed together in the separate swirl cups 20, 22 for providing a suitable fuel and air mixture which is discharged into the combustion chamber 18d and conventionally ignited for generating hot combustion gases 28 which are discharged from the combustor 18 into a conventional high pressure turbine nozzle 30a and cooperating high pressure turbine 30b.
  • the turbine 30b includes a row of turbine blades extending radially outwardly from a rotor disk, with the disk being suitably joined to the compressor 14 for providing power thereto during operation.
  • the combustor 18 illustrated in Figure 1 is configured with the double-dome 18c and two rows of swirl cups 20, 22 for reducing exhaust emissions during operation of the engine from idle to maximum power while obtaining acceptable combustor performance.
  • the fuel injector 24 and outer swirl cups 20 may take any conventional configuration, and cooperate with the inner swirl cups 22 which are suitably modified in accordance with the present invention for further reducing exhaust emissions and further improving performance of the combustor.
  • each of the circumferentially spaced apart inner swirl cups 22 includes a tubular body 32 which is axisymmetric about its own longitudinal or axial centerline axis, and includes an annular inlet 32a at a forward or upstream end thereof for receiving the inner fuel nozzle 24b and the fuel 26 therefrom.
  • the body 32 also includes an annular outlet 32b at an opposite downstream or aft axial end thereof disposed coaxially with the body inlet 32a for discharging the fuel 26 into the combustion chamber 18d.
  • the body 32 also includes an annular septum 32c in the form of a flat disk with a central aperture therethrough disposed axially between the body inlet 32a and outlet 32b.
  • each of the inner swirl cups 22 further includes means in the form of a first or primary row of circumferentially spaced apart first swirl vanes 34 fixedly attached to the forward face of the septum 32c adjacent to the body inlet 32a for channeling into the body 32 first swirl air in a first swirl direction, which is counterclockwise for example as shown in Figure 3 circumferentially around the injected fuel 26.
  • Means in the form of a second or secondary row of circumferentially spaced apart second swirl vanes 36 are fixedly attached to the aft face of the septum 32c downstream from and adjacent to the first swirl vanes 34, and are spaced upstream from the body outlet 32b for channeling into the body 32 additional, or second swirl air in a second swirl direction, also counterclockwise for example as illustrated in Figure 3, directly around both the injected fuel 26 and the first swirl air.
  • the septum 32c terminates in accordance with the present invention axially between the first and second swirl vanes 34, 36 without a radial flow barrier or venturi therebetween for allowing direct and immediate contact between the air discharged from the swirl vanes 34, 36.
  • the inner swirl cups 22 are conventionally configured without a conventional flow barrier or venturi between the swirl vanes 34, 36.
  • FIG. 2 which is similarly configured in a conventional manner, but includes a tubular venturi 32d integrally formed with the radially inner end of the septum 32c and extending axially aft therefrom.
  • the venturi 32d is defined by an inner surface which converges to a throat of minimum flow area to accelerate flow, and then diverges to its outlet.
  • the outer surface of the venturi is typically straight cylindrical. The venturi accelerates the fuel and first swirl air while radially separating the second swirl air therefrom up to its outlet.
  • the first and second swirl vanes 34, 36 may be formed in a common casting with the main body 32 including the septum 32c.
  • the body 32 also includes an integral forward plate 32e commonly cast with the forward ends of the first swirl vanes 34 to provide a conventional mount containing a conventional floating ferrule 38 in which the respective fuel nozzles 24a,b are slidably mounted.
  • the bodies 32 themselves are suitably fixedly joined in complementary apertures through the combustor dome 18c and may be welded or brazed therein.
  • the outer swirl cups 20 are provided for pilot performance of the combustor during all modes of operation from idle to maximum power, they are suitably sized for mixing pilot portions of the fuel 26 with pilot portions of the air 16 through the first and second swirl vanes 34, 36 thereof.
  • the inner swirl cups 22 are specifically sized for main performance of the combustor at power setting greater than idle and up to maximum power.
  • the outer and inner swirl cups 20, 22 may be similarly configured in a conventional manner.
  • venturi 32d or other radial flow barrier between the first and second swirl vanes 34, 36 is used in conventional combustors
  • improved fuel and air mixing with a correspondingly longer premixer residence time in the inner swirl cups 22 may be obtained by eliminating the venturi 32d therein.
  • the air from the second swirl vanes 36 directly and immediately contacts the air from the first swirl vanes 34 and injected fuel 26 therein without the barrier or delay as in the outer swirl cups 20.
  • Improved fuel atomization and vaporization are obtained in the inner swirl cups 22, along with improved uniformity of the fuel and air mixture discharged therefrom into the combustion chamber 18d.
  • venturiless inner swirl cups 22 illustrated in Figures 2 and 3 allow an improved method of operation of the combustor 18 by firstly injecting the fuel 26 into the upstream end of the inner swirl cup 22. This is followed in turn by firstly swirling a portion of the air 16 in a first swirl direction into the inner swirl cup 22 coaxially around the injected fuel 26, followed in turn by secondly swirling another portion of the air 16 in a second swirl direction into the inner swirl cup 22 coaxially around both the injected fuel 26 and the firstly swirled air without a radial flow barrier or venturi therebetween. This improves the premixing of the fuel and air inside the inner swirl cups 22, which mixture is then discharged into the combustion chamber 18d for being ignited and undergoing combustion to form the combustion gases 28.
  • the first and second swirl vanes 34, 36 are preferably inclined radially inwardly to swirl the air 16 radially inwardly and circumferentially around the injected fuel 26.
  • This is in contrast to conventional axial swirl vanes which are inclined in the circumferential direction for axially swirling airflow in a manner related to but different than the radial swirling effected by the radial swirl vanes 34,36.
  • the invention may be extended to axial swirl vanes if desired.
  • first and second swirl vanes 34, 36 are similarly inclined, or co-inclined, for effecting equal first and second swirl directions which are counterclockwise in the Figure 3 example. In this way, the first and second swirl vanes 34, 36 swirl the respective air portions radially around the injected fuel 26 in co-rotation.
  • first and second swirl vanes 34, 36 of the outer swirl cups 20 are oppositely inclined radially inwardly for effecting counter-rotation of the respective air portions therefrom with opposite first and second swirl directions, with clockwise rotation being illustrated for the first swirl vanes 34 and counterclockwise rotation being illustrated for the second swirl vanes 36 in this exemplary embodiment.
  • the body outlets 32b may be suitably reduced in flow area for accelerating the flow therethrough.
  • the body outlets 32b are otherwise conventionally configured and include an integral splashplate in a conventional manner.
  • venturiless swirl cup 22 is attributable to the double dome design illustrated in the Figures.
  • combustor performance is also evaluated on the conventionally known profile factor which is an indication of the radial uniformity of temperature of the combustion gases 28 discharged from the outlet of the combustor 18.
  • profile factor is an indication of the radial uniformity of temperature of the combustion gases 28 discharged from the outlet of the combustor 18.
  • the fuel 26 is injected solely from the outer nozzles 24a into the corresponding outer swirl cups 20, with the fuel and air mixture being ignited for sustaining the combustion process.
  • the swirled air from the inner swirl cups 22 continues to mix with the combustion gases 28 during travel through the combustor 18 and improves the profile factor as confirmed by tests.
  • the venturi 32d is kept in the outer swirl cups 20 for its conventional benefits including flame stability and lean flame blowout margin. This is particularly important for idle operation since the inner swirl cups 20 are venturiless.
  • combustor performance is evaluated using various evaluation criteria, and tradeoffs in performance are typically required in view of specific combustion and fuel injection designs.
  • the present invention introduces yet another variable in combustor design in eliminating the venturi 32d in the inner swirl cups 22 for providing enhanced performance of the combustor including reduction in exhaust emissions such as carbon monoxide, and an improved profile factor in the double-dome configuration disclosed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Claims (10)

  1. Coupelle de tourbillonnement (22) pour prémélanger du combustible et de l'air à l'intérieur d'une buse d'injection de combustible pour la délivrance dans une chambre de combustion dans une turbine à gaz (18), comprenant :
    un corps tubulaire (32) comprenant à une extrémité une plaque avant (32e) comportant un orifice d'entrée (32a) pour recevoir ladite buse d'injection de combustible (24b) afin d'injecter du combustible (26) dans ledit corps tubulaire, un orifice de sortie (32b) à une extrémité axiale opposée pour décharger ledit combustible dans ladite chambre de combustion (18), et un diaphragme annulaire (32c) disposé axialement entre ceux-ci ; caractérisée par :
    une rangée de premières aubes de tourbillonnement (34) fixées à ladite plaque avant et à un côté avant dudit diaphragme (32c) à l'arrière dudit orifice d'entrée de corps (32a) pour canaliser de l'air à l'intérieur dudit corps tubulaire dans une première direction de tourbillonnement autour dudit combustible injecté ; et
    une rangée de deuxièmes aubes de tourbillonnement (36) fixées à un côté arrière dudit diaphragme (32c) et espacées en amont dudit orifice de sortie de corps (32b) pour canaliser à l'intérieur dudit corps de l'air additionnel dans une deuxième direction de tourbillonnement directement tout à la fois autour dudit combustible injecté (26) et dudit premier air de tourbillonnement sans barrière d'écoulement entre ceux-ci.
  2. Coupelle de tourbillonnement selon la revendication 1, dans laquelle ledit diaphragme (32c) comprend un disque avec une ouverture centrale disposée axialement entre lesdites première et deuxième aubes de tourbillonnement (34, 36) sans barrière d'écoulement radiale entre lesdites première et deuxième aubes de tourbillonnement (34, 36) afin de permettre un contact direct avec ledit air déchargé de celles-ci.
  3. Coupelle de tourbillonnement selon la revendication 2, dans laquelle lesdites première et deuxième aubes de tourbillonnement (34, 36) sont inclinées radialement vers l'intérieur de façon à faire tourbillonner ledit air radialement vers l'intérieur et circonférentiellement autour dudit combustible injecté (26).
  4. Coupelle de tourbillonnement selon la revendication 3, dans laquelle lesdites première et deuxième aubes de tourbillonnement (34, 36) sont inclinées de façon similaire pour produire une co-rotation dudit air avec des première et deuxième directions de tourbillonnement égales.
  5. Coupelle de tourbillonnement selon la revendication 3 en combinaison avec ladite chambre de combustion (18) jouant le rôle de coupelle de tourbillonnement intérieure (22), et comprenant de plus une coupelle de tourbillonnement extérieure configurée de façon similaire (20) pour recevoir ledit combustible (26) à partir d'un injecteur de combustible commun (24) comportant une paire desdites buses (24a, b), ladite coupelle de tourbillonnement extérieure (20) comprenant de plus un venturi (32d) s'étendant axialement à l'arrière dudit diaphragme (32c) de celui-ci pour séparer radialement ledit deuxième air de tourbillonnement dudit premier air de tourbillonnement et du combustible injecté (26).
  6. Coupelle de tourbillonnement (22) selon la revendication 5, dans laquelle :
    lesdites première et deuxième aubes de tourbillonnement (34, 36) de ladite coupelle de tourbillonnement intérieure (22) sont inclinées de façon similaire pour effectuer une co-rotation dudit air avec des première et deuxième directions de tourbillonnement égales ; et
    lesdites première et deuxième aubes de tourbillonnement (34,36) de ladite coupelle de tourbillonnement extérieure (20) sont inclinées de façon opposée pour effectuer une contre-rotation dudit air avec des première et deuxième directions d'écoulement opposées.
  7. Procédé pour injecter du combustible (26) et de l'air (16) par l'intermédiaire d'une coupelle de tourbillonnement tubulaire (22) à l'intérieur d'une chambre de combustion de moteur à turbine à gaz (18), comprenant les étapes consistant à :
    injecter ledit combustible (26) par l'intermédiaire d'un orifice d'entrée d'ouverture centrale à une extrémité amont de ladite coupelle de tourbillonnement (22) ;
    faire tourbillonner, premièrement, une partie dudit air (16) dans une première direction de tourbillonnement à l'intérieur de ladite coupelle de tourbillonnement (22) de façon coaxiale autour dudit combustible injecté (26), et, ensuite, à son tour, de ladite injection de combustible ;
    faire tourbillonner, deuxièmement, une autre partie dudit air (16) dans une deuxième direction de tourbillonnement à l'intérieur de ladite deuxième coupelle de tourbillonnement (22) de façon coaxiale tout à la fois autour dudit combustible injecté (26) et dudit air ayant tourbillonné en premier, et, ensuite, à son tour, dudit combustible d'injection et du premier tourbillonnement sans barrière d'écoulement radiale entre ceux-ci ; et
    décharger à partir de ladite coupelle de tourbillonnement (22) un prémélange dudit combustible injecté (22) et de l'air ayant tourbillonné en premier et en deuxième à l'intérieur de ladite chambre de combustion (18) afin qu'ils soient allumés dans ladite chambre de combustion (18).
  8. Procédé selon la revendication 7, dans lequel lesdites première et deuxième étapes de tourbillonnement sont effectuées en aval de ladite injection de combustible sans venturi entre celles-ci, de façon à permettre un contact direct desdits premier et deuxième airs de tourbillonnement.
  9. Procédé selon la revendication 8, dans lequel lesdites première et deuxième étapes de tourbillonnement font tourbillonner ledit air de façon radiale vers l'intérieur autour dudit combustible injecté (26) en co-rotation, ladite deuxième direction de tourbillonnement étant égale à ladite première direction de tourbillonnement.
  10. Procédés selon la revendication 9, dans lequel ladite chambre de combustion (18) comprend des coupelles de tourbillonnement radialement extérieure et intérieure (20, 22), et ledit procédé comprend de plus les étapes consistant à :
    injecter ledit combustible (26) à l'intérieur de ladite coupelle de tourbillonnement extérieure (20), et desdites parties d'air tourbillonnant en premier et en deuxième autour dudit combustible injecté à l'intérieur de celles-ci avec un venturi de barrière d'écoulement (30d) entre lesdites premier et deuxième parties d'air de tourbillonnement; et
    arrêter l'injection dudit combustible (26) dans ladite coupelle de tourbillonnement intérieure (22) dans un mode de fonctionnement à puissance nulle, tout en faisant tourbillonner premièrement et deuxièmement lesdites parties d'air à l'intérieur de celle-ci sans ladite barrière d'écoulement entre celles-ci.
EP98309966A 1997-12-18 1998-12-04 Dispositif de tourbillonnement sans venturi Expired - Lifetime EP0924469B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US993861 1997-12-18
US08/993,861 US6550251B1 (en) 1997-12-18 1997-12-18 Venturiless swirl cup

Publications (3)

Publication Number Publication Date
EP0924469A2 EP0924469A2 (fr) 1999-06-23
EP0924469A3 EP0924469A3 (fr) 2001-04-18
EP0924469B1 true EP0924469B1 (fr) 2005-05-11

Family

ID=25540010

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98309966A Expired - Lifetime EP0924469B1 (fr) 1997-12-18 1998-12-04 Dispositif de tourbillonnement sans venturi

Country Status (4)

Country Link
US (2) US6550251B1 (fr)
EP (1) EP0924469B1 (fr)
JP (1) JP3901371B2 (fr)
DE (1) DE69830131T2 (fr)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6550251B1 (en) * 1997-12-18 2003-04-22 General Electric Company Venturiless swirl cup
US6279323B1 (en) * 1999-11-01 2001-08-28 General Electric Company Low emissions combustor
US6354072B1 (en) * 1999-12-10 2002-03-12 General Electric Company Methods and apparatus for decreasing combustor emissions
US6427435B1 (en) * 2000-05-20 2002-08-06 General Electric Company Retainer segment for swirler assembly
JP3986348B2 (ja) * 2001-06-29 2007-10-03 三菱重工業株式会社 ガスタービン燃焼器の燃料供給ノズルおよびガスタービン燃焼器並びにガスタービン
US6865889B2 (en) * 2002-02-01 2005-03-15 General Electric Company Method and apparatus to decrease combustor emissions
US7222488B2 (en) * 2002-09-10 2007-05-29 General Electric Company Fabricated cowl for double annular combustor of a gas turbine engine
US6834505B2 (en) * 2002-10-07 2004-12-28 General Electric Company Hybrid swirler
US6986255B2 (en) * 2002-10-24 2006-01-17 Rolls-Royce Plc Piloted airblast lean direct fuel injector with modified air splitter
US7104066B2 (en) * 2003-08-19 2006-09-12 General Electric Company Combuster swirler assembly
US7096671B2 (en) * 2003-10-14 2006-08-29 Siemens Westinghouse Power Corporation Catalytic combustion system and method
US7310952B2 (en) 2003-10-17 2007-12-25 General Electric Company Methods and apparatus for attaching swirlers to gas turbine engine combustors
US7506511B2 (en) * 2003-12-23 2009-03-24 Honeywell International Inc. Reduced exhaust emissions gas turbine engine combustor
US7185497B2 (en) * 2004-05-04 2007-03-06 Honeywell International, Inc. Rich quick mix combustion system
US7065972B2 (en) * 2004-05-21 2006-06-27 Honeywell International, Inc. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions
US6993916B2 (en) * 2004-06-08 2006-02-07 General Electric Company Burner tube and method for mixing air and gas in a gas turbine engine
US7581402B2 (en) * 2005-02-08 2009-09-01 Siemens Energy, Inc. Turbine engine combustor with bolted swirlers
GB2432655A (en) * 2005-11-26 2007-05-30 Siemens Ag Combustion apparatus
FR2914399B1 (fr) * 2007-03-27 2009-10-02 Snecma Sa Carenage pour fond de chambre de combustion.
US9079203B2 (en) 2007-06-15 2015-07-14 Cheng Power Systems, Inc. Method and apparatus for balancing flow through fuel nozzles
FR2921462B1 (fr) * 2007-09-21 2012-08-24 Snecma Chambre de combustion annulaire de moteur a turbine a gaz
FR2932228B1 (fr) * 2008-06-10 2010-07-30 Mbda France Moteur a detonations pulsees.
US8616003B2 (en) 2008-07-21 2013-12-31 Parker-Hannifin Corporation Nozzle assembly
US8281597B2 (en) * 2008-12-31 2012-10-09 General Electric Company Cooled flameholder swirl cup
FR2955375B1 (fr) * 2010-01-18 2012-06-15 Turbomeca Dispositif d'injection et chambre de combustion de turbomachine equipee d'un tel dispositif d'injection
US10317081B2 (en) * 2011-01-26 2019-06-11 United Technologies Corporation Fuel injector assembly
EP2639505A1 (fr) * 2012-03-13 2013-09-18 Siemens Aktiengesellschaft Système de combustion de turbine à gaz et procédé de stabilisation de la flamme dans un tel système
RU2515909C2 (ru) * 2012-07-04 2014-05-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Кольцевая малоэмиссионная камера сгорания газотурбинного двигателя
US10260748B2 (en) 2012-12-21 2019-04-16 United Technologies Corporation Gas turbine engine combustor with tailored temperature profile
WO2015108583A2 (fr) * 2013-10-24 2015-07-23 United Technologies Corporation Chambre de combustion annulaire étagée circonférentiellement et axialement pour chambre de combustion de moteur à turbine à gaz
FR3050806B1 (fr) * 2016-04-28 2020-02-21 Safran Aircraft Engines Vrille d'admission d'air pour systeme d'injection de turbomachine comprenant un deflecteur aerodynamique a son entree
CN110494693B (zh) * 2017-04-13 2020-12-29 通用电气公司 单腔捕获涡流燃烧器
DE102017217328A1 (de) * 2017-09-28 2019-03-28 Rolls-Royce Deutschland Ltd & Co Kg Düse mit axialer Verlängerung für eine Brennkammer eines Triebwerks

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2879836A (en) * 1957-03-20 1959-03-31 Dumas Albert Combustion chamber air feeding attachment
FR1094871A (fr) * 1959-01-22 1955-05-25 Thomson Houston Comp Francaise Perfectionnements aux appareils de combustion à combustible injecté
US2958195A (en) * 1959-02-25 1960-11-01 Philip G Dooley Air inlet construction
US3589127A (en) 1969-02-04 1971-06-29 Gen Electric Combustion apparatus
US3899884A (en) 1970-12-02 1975-08-19 Gen Electric Combustor systems
US3834159A (en) * 1973-08-03 1974-09-10 Gen Electric Combustion apparatus
US3972182A (en) 1973-09-10 1976-08-03 General Electric Company Fuel injection apparatus
US3946552A (en) 1973-09-10 1976-03-30 General Electric Company Fuel injection apparatus
CH577627A5 (fr) * 1974-04-03 1976-07-15 Bbc Sulzer Turbomaschinen
US3958416A (en) * 1974-12-12 1976-05-25 General Motors Corporation Combustion apparatus
US3930368A (en) * 1974-12-12 1976-01-06 General Motors Corporation Combustion liner air valve
US4012904A (en) * 1975-07-17 1977-03-22 Chrysler Corporation Gas turbine burner
US4017610A (en) * 1975-10-31 1977-04-12 Stauffer Chemical Company Inhibiting growth of bacteria, fungi and algae with a lower alkyl tri-n-octyl phosphonium diphenyl phosphate
US4194358A (en) 1977-12-15 1980-03-25 General Electric Company Double annular combustor configuration
US4276185A (en) * 1980-02-04 1981-06-30 Halliburton Company Methods and compositions for removing deposits containing iron sulfide from surfaces comprising basic aqueous solutions of particular chelating agents
US4381950A (en) * 1981-05-22 1983-05-03 Halliburton Company Method for removing iron sulfide scale from metal surfaces
US4584834A (en) 1982-07-06 1986-04-29 General Electric Company Gas turbine engine carburetor
FI76239C (fi) * 1983-08-26 1988-10-10 Albright & Wilson Foerfarande foer haemning av tillvaexten av mikro-organismer i vattensystem och komposition foer anvaendning i foerfarandet.
GB2150277B (en) * 1983-11-26 1987-01-28 Rolls Royce Combustion apparatus for a gas turbine engine
GB2178960B (en) * 1985-08-06 1990-03-21 Albright & Wilson Novel biocidal mixture
US4653278A (en) 1985-08-23 1987-03-31 General Electric Company Gas turbine engine carburetor
US5197289A (en) * 1990-11-26 1993-03-30 General Electric Company Double dome combustor
US5237820A (en) * 1992-01-02 1993-08-24 General Electric Company Integral combustor cowl plate/ferrule retainer
US5251447A (en) * 1992-10-01 1993-10-12 General Electric Company Air fuel mixer for gas turbine combustor
US5431019A (en) * 1993-04-22 1995-07-11 Alliedsignal Inc. Combustor for gas turbine engine
FR2717250B1 (fr) * 1994-03-10 1996-04-12 Snecma Système d'injection à prémélange.
US5675971A (en) * 1996-01-02 1997-10-14 General Electric Company Dual fuel mixer for gas turbine combustor
FR2752917B1 (fr) * 1996-09-05 1998-10-02 Snecma Systeme d'injection a degre d'homogeneisation avancee
GB9721021D0 (en) * 1997-10-04 1997-12-03 Albright & Wilson Uk Ltd Phosphonium salt composition
US6550251B1 (en) * 1997-12-18 2003-04-22 General Electric Company Venturiless swirl cup
US6001158A (en) * 1999-02-18 1999-12-14 Baker Hughes Incorporated Dry biocide

Also Published As

Publication number Publication date
US6708498B2 (en) 2004-03-23
US20030226361A1 (en) 2003-12-11
US6550251B1 (en) 2003-04-22
DE69830131D1 (de) 2005-06-16
JPH11264540A (ja) 1999-09-28
JP3901371B2 (ja) 2007-04-04
EP0924469A3 (fr) 2001-04-18
DE69830131T2 (de) 2006-01-19
EP0924469A2 (fr) 1999-06-23

Similar Documents

Publication Publication Date Title
EP0924469B1 (fr) Dispositif de tourbillonnement sans venturi
US6363726B1 (en) Mixer having multiple swirlers
US6381964B1 (en) Multiple annular combustion chamber swirler having atomizing pilot
JP4162429B2 (ja) ガスタービンエンジンの運転方法、燃焼器及びミキサ組立体
JP4162430B2 (ja) ガスタービンエンジンの運転方法、燃焼器及びミキサ組立体
US6367262B1 (en) Multiple annular swirler
JP4340770B2 (ja) 燃焼器エミッションを減少させる方法及び装置
EP0500256B1 (fr) Mélangeur air/combustible pour chambre de combustion de turbine à gaz
US5251447A (en) Air fuel mixer for gas turbine combustor
US6834505B2 (en) Hybrid swirler
US5865024A (en) Dual fuel mixer for gas turbine combustor
US6609377B2 (en) Multiple injector combustor
US20020092302A1 (en) Combustor mixer having plasma generating nozzle
US20100083663A1 (en) System and method for air-fuel mixing in gas turbines
JP4086767B2 (ja) 燃焼器のエミッションを低減する方法及び装置
RU2439435C1 (ru) Топливовоздушный модуль фронтового устройства камеры сгорания гтд
JPH06213450A (ja) 燃料噴射ノズル

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011018

AKX Designation fees paid

Free format text: DE FR GB IT

17Q First examination report despatched

Effective date: 20030414

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69830131

Country of ref document: DE

Date of ref document: 20050616

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20060214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121227

Year of fee payment: 15

Ref country code: IT

Payment date: 20121221

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130110

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121231

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69830131

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69830131

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131204