EP0923494A1 - Contenants de transport isoles thermiquement - Google Patents

Contenants de transport isoles thermiquement

Info

Publication number
EP0923494A1
EP0923494A1 EP97940025A EP97940025A EP0923494A1 EP 0923494 A1 EP0923494 A1 EP 0923494A1 EP 97940025 A EP97940025 A EP 97940025A EP 97940025 A EP97940025 A EP 97940025A EP 0923494 A1 EP0923494 A1 EP 0923494A1
Authority
EP
European Patent Office
Prior art keywords
weight
component
graft
heat
transport containers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97940025A
Other languages
German (de)
English (en)
Inventor
Herbert Naarmann
Graham Edmund Mc Kee
Alfred Pirker
Hans-Josef Sterzel
Franz Brandstetter
Bernd-Steffen Von Bernstorff
Bernhard Rosenau
Ulrich Endemann
Burkhard Straube
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0923494A1 publication Critical patent/EP0923494A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3813Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the invention relates to heat-insulated transport containers.
  • the invention relates to heat-insulated transport containers which are both dimensionally stable and heat-resistant and also have good weather stability.
  • Heat-insulated transport containers are used, for example, where ready-made tubs or cold dishes have to be transported to the consumer. Their areas of application are therefore in the social sector, as well as in the catering and food sector. Due to the increasing delivery of packaged, warm, ready-to-eat dishes from the preparer to the consumer, there is an increased demand for suitable thermally insulated transport containers which have a property profile suitable for this use.
  • Different materials are used for the production of heat-insulated transport containers, for example for the transport of food, especially warm prepared dishes.
  • polypropylene is used, but it has a low glass temperature and shows significant softening even at temperatures around 50 ° C. This means that there is insufficient dimensional stability at insulating material temperatures, which can be around 80 ° C for food, for example.
  • polypropylene has an unfavorable toughness / rigidity ratio. The mechanical strength suffers after prolonged exposure to heat and is then insufficient. Insulated transport containers Polypropylene have insufficient scratch resistance and insufficient dimensional accuracy of the parts.
  • HIPS High Impact PolyStyrene
  • HIPS High Impact PolyStyrene
  • the object of the present invention is to provide heat-insulated transport containers which are dimensionally stable and have good dimensional stability.
  • Another object of the invention is to provide heat insulated shipping containers which are light in weight but still stable.
  • Another object of the invention is to provide heat-insulated transport containers which can be heat-loaded without losing strength.
  • Another object of the invention is to provide heat-insulated transport containers which have high weather stability.
  • Another object of the present invention is to provide heat-insulated transport containers which have properties which are superior to the transport containers used hitherto.
  • thermoplastic molding composition other than ABS containing, based on the Sum of the amounts of components A and B, and if appropriate C and / or D, which gives a total of 100% by weight,
  • b 1-99% by weight of at least one amorphous or partially crystalline polymer as component B,
  • component D 0 - 50% by weight of fibrous or particulate fillers or mixtures thereof as component D.
  • the heat-insulated transport containers according to the invention are dimensionally stable, heat-resistant and very weather-resistant. They have a low weight with great stability. They also have good chemical resistance and high scratch resistance.
  • thermoplastic molding compositions used according to the invention for producing the heat-insulated transport containers according to the invention are known per se.
  • DE-A-12 60 135, DE-C-19 11 882, DE-A-28 26 925, DE-A-31 49 358, DE-A-32 27 555 and DE-A-40 11 162 Molding compositions which can be used according to the invention are described.
  • the molding materials other than ABS used for the production of the heat-insulated transport containers according to the invention include according to one embodiment, hold the components A and B listed below and possibly C and / or D as defined below. They contain, based on the sum of the amounts of components A and B, and if appropriate C and / or D, which gives a total of 100% by weight,
  • b 1-99% by weight, preferably 40-85% by weight, in particular
  • component B 50-75% by weight of at least one amorphous or partially crystalline polymer as component B.
  • d 0 - 50% by weight of fibrous or particulate fillers or their mixtures as component D.
  • COMPONENT A Component A is a particulate emulsion polymer with a glass transition temperature below 0 ° C and an average particle size of 50-1000 nm.
  • Component A is preferably a graft copolymer
  • a22 up to 60% by weight, preferably 15-35% by weight, of units of an ethylenically unsaturated monomer, preferably acrylonitrile or methacrylonitrile, in particular acrylonitrile as component A22.
  • the graft pad A2 consists of at least one graft shell, the graft copolymer A overall having an average particle size of 50-1000 nm.
  • component AI consists of the monomers
  • al2 0.01-20% by weight, preferably 0.1-5.0% by weight, of at least one polyfunctional crosslinking monomer, preferably diallyl phthalate and / or DCPA as component A12.
  • the average particle size of component A is 50-800 nm, preferably 50-600 nm.
  • the particle size distribution of component A is bimodal, 60-90% by weight having an average particle size of 50-200 nm and 10-40% by weight having an average particle size of 50-400 nm on the total weight of component A.
  • the sizes determined from the integral mass distribution are given as the average particle size or particle size distribution.
  • the mean particle sizes according to the invention are in all cases the weight average of the particle sizes, as determined by means of an analytical ultracentrifuge according to the method of W. Scholtan and H. Lange, Kolloid-Z. and Z.-Polymer 25Q (1972), pages 782-796.
  • the ultracentrifuge measurement provides the integral mass distribution of the particle diameter of a sample. From this it can be seen what percentage by weight of the particles have a diameter equal to or smaller than a certain size.
  • the average particle diameter, which is also called d 50 value of the integral mass distribution is defined as the particle diameter at which 50% by weight of the particles have a smaller diameter than the diameter which corresponds to the d 50 value.
  • d 10 - d ⁇ To characterize the breadth of the particle size distribution of the rubber particles in addition to the d50 value (median particle diameter) which are selected from the integral mass distribution are d 10 - d ⁇ and used values.
  • the d 10 or d ⁇ value of the integral mass distribution is defined in accordance with the d 50 value with the difference that they are based on 10 or 90% by weight of the particles. The quotient
  • Emulsion polymers A which can be used according to the invention as component A preferably have Q values less than 0.5, in particular less than 0.35.
  • the glass transition temperature of the emulsion polymer A and also of the other components used according to the invention is determined by means of DSC (Differential Scanning Calorimetry) according to ASTM 3418 (mid point temperature).
  • emulsion polymer A such as epichlorohydrin rubbers, ethylene-vinyl acetate rubbers, polyethylene chlorosulfone rubbers, silicone rubbers, polyether rubbers, hydrogenated diene rubbers, polyalkylene rubber rubbers, polyalkylene rubber rubbers, polyalkylene rubber rubbers, according to one embodiment of the invention.
  • Acrylate rubber, ethylene-propylene (EP) rubber, ethylene-propylene-diene (EPDM) rubber, in particular acrylate rubber, are preferably used.
  • the diene basic building block content in the emulsion polymer A is kept so low that as few unreacted double bonds remain in the polymer. According to one embodiment, there are no basic diene building blocks in the emulsion polymer A.
  • the acrylate rubbers are preferably alkyl acrylate rubbers made from one or more C 1-6 alkyl acrylates, preferably C 4 g alkyl acrylates, preferably at least partially butyl, hexyl, octyl or 2-ethylhexyl acrylate, in particular n-butyl and 2-ethylhexyl acrylate is used.
  • These alkyl acrylate rubbers can contain up to 30% by weight of hard polymer-forming monomers, such as vinyl acetate, (Me_h) ac_yl nitrile, styrene, substituted styrene, methyl methacrylate or vinyl ether in copolymerized form.
  • the acrylate rubbers further contain 0.01-20% by weight, preferably 0.1-5% by weight, of cross-linking polyfunctional monomers (cross-linking monomers).
  • cross-linking monomers examples of these are monomers which contain 2 or more double bonds capable of copolymerization, which are preferably not conjugated in the 1,3 positions.
  • Suitable crosslinking monomers are, for example, divinylbenzene, diallyl maleate, diallyl fumarate, diallyl phthalate, diethyl phthalate, triallyl cyanurate, triallyl isocyanurate, tricyclodecenyl acrylate, dihydrodicyclopentadienyl acrylate, triallyl phosphate, allyl acrylate, allyl methacrylate.
  • Dicyclopentadienyl acrylate (DCPA) has proven to be a particularly favorable crosslinking monomer (cf. DE-C-12 60 135).
  • Suitable silicone rubbers can be, for example, crosslinked silicone rubbers composed of units of the general formulas R SiO, RSiO 3 2 , R 3 SiO 1 2 and SiO 2 4 , the radical R representing a monovalent radical.
  • the amount of the individual siloxane units is such that for 100 units of the formula R 2 SiO 0 to 10 mol units of the formula RSi ⁇ , 0 to 1.5 mol units R 3 SiO 1 2 and 0 to 3 mol units SiO 2 4 are present.
  • R can be either a monovalent saturated hydrocarbon radical having 1 to 18 carbon atoms, the phenyl radical or the alkoxy radical or a radical which is easily attackable by free radicals, such as the vinyl or mercaptopropyl radical. It is preferred that at least 80% of all R groups are methyl groups; combinations of methyl and ethyl or phenyl radicals are particularly preferred.
  • Preferred silicone rubbers contain built-in units of groups which can be attacked by free radicals, in particular vinyl, allyl, halogen, mercapto groups, preferably in amounts of 2-10 mol%, based on all radicals R. They can be prepared, for example, as in EP-A-0 260 558.
  • an emulsion polymer A made from uncrosslinked polymer All of the monomers mentioned above can be used as monomers for the production of these polymers.
  • Preferred uncrosslinked emulsion polymers A are, for example, homopolymers and copolymers of acrylic acid esters, in particular n-butyl and ethylhexyl acrylate, and homopolymers and copolymers of ethylene, propylene, butyl lens, isobutylene, and poly (organosiloxanes), all with the proviso that they may be linear or branched.
  • the emulsion polymer A can also be a multi-stage polymer (so-called “core / shell structure", “core-shell morphology”).
  • core / shell structure a multi-stage polymer
  • core-shell morphology a rubber-elastic core (T. ⁇ 0 ° C) can be encased by a “hard” shell (polymers with T g > 0 ° C) or vice versa.
  • component A is a graft copolymer.
  • the graft copolymers A of the molding compositions according to the invention have an average particle size d 50 of 50-1000 nm, preferably 50-600 nm and particularly preferably 50-400 nm. These particle sizes can be achieved if A1 of this component A is used as the graft base Particle sizes of 50-350 nm, preferably 50-300 nm and particularly preferably 50-250 nm are used.
  • the graft copolymer A is generally one or more stages, i.e. a polymer composed of a core and one or more shells.
  • the polymer consists of a basic stage (graft core) Al and one or - preferably - several stages * A2 grafted thereon, the so-called graft stages or graft shells.
  • One or more graft shells can be applied to the rubber particles by simple grafting or multiple step-wise grafting, each graft sheath having a different composition.
  • polyfunctional crosslinking or reductive Monomers containing active groups are grafted on (see, for example, EP-A-0 230 282, DE-A-36 01 419, EP-A-0 269 861).
  • component A consists of a multi-stage graft copolymer, the graft stages being generally made from resin-forming monomers and having a glass transition temperature T g above 30 ° C., preferably above 50 ° C.
  • the multi-stage structure serves, inter alia, to achieve (partial) compatibility of the rubber particles A with the thermoplastic B.
  • Graft copolymers A are prepared, for example, by grafting at least one of the monomers A2 listed below onto at least one of the graft bases or graft core materials AI listed above. All of the polymers which are described above under emulsion polymers A are suitable as graft bases AI of the molding compositions according to the invention.
  • the graft base AI is composed of 15-99% by weight of acrylate rubber, 0.1-5% by weight of crosslinking agent and 0-49.9% by weight of one of the further monomers or rubbers indicated.
  • Suitable monomers for forming the graft A2 can be selected, for example, from the monomers listed below and their mixtures:
  • Vinylaromatic monomers such as styrene and its substituted derivatives, such as ⁇ -methylstyrene, p-methylstyrene, 3,4-D_methyIstyrol, p-tert.-butylstyrene, o- and p-divinylbenzene and p-methyl- ⁇ -methylstyrene or C r C 8 -alkyl (meth) acrylics such as methyl methacrylate, ethyl methacrylate, methyl acrylate, Ethyl acrylate, n-butyl acrylate, s-butyl acrylate; styrene, ⁇ -methylstyrene, methyl methacrylate, in particular styrene and / or methylstyrene, and ethylenically unsaturated monomers, such as acrylic and methacrylic compounds, such as acrylonitrile, methacrylonitrile,
  • Vinyl naphthalene, vinyl carbazole;; 12 -alkyl radicals, halogen atoms, halomethyl groups can continue as (co) monomers styrene, vinyl, acrylic or methacrylic compounds (eg, styrene, optionally substituted with C 1 j vinyl ether with C ⁇ - ether radicals;..
  • Vinylimidazole 3- (4-) vinylpyridine, dimethylaminoethyl (meth) acrylate, p-dimethylaminostyrene, acrylonitrile, methacrylonitrile, acrylic acid, methacrylic acid, butyl acrylate, ethylhexyl acrylate and methyl methacrylate as well as fumaric acid, maleic acid, itaconic acid or their anhydrides, amides, nitriles or esters with 1 to 22 carbon atoms, preferably alcohols containing 1 to 10 carbon atoms) can be used.
  • component A comprises 50-90% by weight of the above-described graft base AI and 10-50% by weight of the above-described graft base A2, based on the total weight of component A.
  • crosslinked acrylic acid ester polymers with a glass transition temperature below 0 ° C. serve as the graft base.
  • the crosslinked acrylic acid ester polymers should preferably have a glass transition temperature below -20 ° C, especially below -30 ° C.
  • the graft A2 consists of at least one graft shell and the outermost graft shell thereof has a glass transition temperature of more than 30 ° C, a polymer formed from the monomers of the graft A2 would have a glass transition temperature of more than 80 ° C.
  • the graft copolymers A can also be prepared by grafting pre-formed polymers onto suitable graft homopolymers. Examples of this are the reaction products of copolymers containing maleic anhydride or acid groups with base-containing rubbers.
  • Suitable preparation processes for graft copolymers A are emulsion, solution, bulk or suspension polymerization.
  • the graft copolymers A are preferably prepared by radical emulsion polymerization, in particular in the presence of latices of component AI at temperatures from 20 ° C. to 90 ° C. using water-soluble or oil-soluble initiators such as peroxodisulfate or benzyl peroxide, or with the aid of redox mitiators. Redox mitiators are also suitable for polymerization below 20 ° C.
  • Suitable emulsion polymerization processes are described in DE-A-28 26 925, 31 49 358 and in DE-C-12 60 135.
  • the graft casings are preferably constructed in the emulsion polymerization process, as described in DE-A-32 27 555, 31 49 357, 31 49 358, 34 14 118.
  • the defined particle sizes of 50-1000 nm according to the invention are preferably carried out after the processes that are described in DE-C-12 60 135 and DE-A-28 26 925, or Applied Polymer Science, Volume 9 (1965), page 2929.
  • the use of polymers with different particle sizes is known, for example, from DE-A-28 26 925 and US 5,196,480.
  • the graft base AI is first prepared by adding the acrylic acid ester (s) used according to one embodiment of the invention and the multifunctional monomers which bring about crosslinking, if appropriate together with the other comonomers, in an aqueous emulsion in a conventional manner at temperatures between 20 and 100 ° C, preferably between 50 and 80 ° C, polymerized.
  • the usual emulsifiers such as alkali metal salts of alkyl or alkylarylsulphonic acids, alkyl sulphets, fatty alcohol sulphonates, salts of higher fatty acids with 10 to 30 carbon atoms or resin soaps can be used.
  • the sodium salts of alkyl sulfonates or fatty acids with 10 to 18 carbon fat atoms are preferably used.
  • the emulsifiers are used in amounts of 0.5-5% by weight, in particular 1-2% by weight, based on the monomers used in the preparation of the graft base AI.
  • the weight ratio of water to monomers is from 2: 1 to 0.7: 1.
  • the usual persulfates, such as potassium persulfate, are used in particular as polymerization initiators. However, redox systems can also be used.
  • the initiators are generally used in amounts of 0.1-1% by weight, based on the monomers used in the preparation of the graft base AI.
  • buffer substances can be used as further polymerization aids which pH values of preferably 6-9 are set, such as sodium bicarbonate and sodium pyrophosphate, and 0-3% by weight of a molecular weight regulator, such as mercaptans, terpinols or dimeric ⁇ -methylstyrene, are used in the polymerization.
  • a molecular weight regulator such as mercaptans, terpinols or dimeric ⁇ -methylstyrene
  • the precise polymerization conditions in particular the type, dosage and amount of the emulsifier, are determined in detail within the ranges given above in such a way that the latex of the crosslinked acrylic ester polymer obtained has a __5 0 value in the range of about 50-1000 nm, preferably 50-150 nm, particularly preferably in the range of 80-100 nm.
  • the particle size distribution of the latex should preferably be narrow.
  • a monomer mixture of styrene and acrylonitrile is then polymerized in a next step in the presence of the latex of the crosslinked acrylic ester polymer thus obtained, the weight ratio of styrene to acrylonitrile in the monomer mixture according to one embodiment of the invention in the range from 100: 0 to 40:60, preferably in the range from 65: 35 to 85: 15. It is advantageous to carry out this graft copolymerization of styrene and acrylonitrile on the crosslinked polyacrylic acid copolymer used as the graft base again in aqueous emulsion under the customary conditions described above.
  • the graft copolymerization can expediently take place in the same system as the emulsion polymerization for the preparation of the graft base AI, wherein, if necessary, further emulsifier and initiator can be added.
  • the monomer mixture of styrene and acrylonitrile to be grafted on according to one embodiment of the invention can be added to the reaction mixture all at once, batchwise in several stages or preferably continuously during the polymerization.
  • the graft copolymerization of the mixture of styrene and acrylonitrile in the presence of the crosslinking acrylic ester polymer is carried out in such a way that a degree of grafting of 1-99% by weight, preferably 20-45% by weight, in particular 35-45% by weight, based on the Total weight of component A, resulting in graft copolymer A. Since the graft yield in the graft copolymerization is not 100%, a somewhat larger amount of the monomer mixture of styrene and acrylonitrile must be used in the graft copolymerization than corresponds to the desired degree of grafting.
  • the control of the graft yield in the graft copolymerization and thus the degree of grafting of the finished graft copolymer A is known to the person skilled in the art and can be carried out, for example, by the metering rate of the monomers or by adding a regulator (Chauvel, Daniel, ACS Polymer Preprints 15 (1974), page 329 ff .).
  • the emulsion graft copolymerization generally gives rise to about 5 to 15% by weight, based on the graft copolymer, of free, non-grafted styrene / acrylonitrile copolymer.
  • the proportion of the graft copolymer A in the polymerization product obtained in the graft copolymerization is determined by the method given above.
  • graft copolymers A In the preparation of the graft copolymers A by the emulsion process, in addition to the process-related advantages which are given, reproducible changes in particle size are also possible, for example by at least partially agglomerating the particles into larger particles. This means that polymers with different particle sizes can also be present in the graft copolymers A.
  • Component A in particular, consisting of the graft base and graft shell (s) can be optimally adapted for the particular application, in particular with regard to the particle size.
  • the graft copolymers A generally contain 1-99% by weight, preferably 55-80 and particularly preferably 55-65% by weight of graft base AI and 1-99% by weight, preferably 20-45, particularly preferably 35-45% by weight .-% of the graft A2, each based on the entire graft copolymer.
  • Component B is an amorphous or teU crystalline polymer.
  • Component B is preferably a copolymer of
  • bl 40-100% by weight, preferably 60-70% by weight, units of a vinylaromatic monomer, preferably styrene, a substituted styrene or a (meth) acrylic acid ester or mixtures thereof, in particular styrene and / or ⁇ -methylstyrene as component Bl,
  • b2 up to 60% by weight, preferably 30-40% by weight, of units of an ethylenically unsaturated monomer, preferably acrylonitrile or methacrylonitrile, in particular acrylonitrile as component B2.
  • the viscosity number of component B is 50-90, preferably 60-80.
  • the amorphous or partially crystalline polymers of component B of the molding composition used according to the invention for producing the heat-insulated transport containers according to the invention are preferably composed of at least one polymer made from partially crystalline polyamides, partially aromatic copolyamides, polyolefins, ionomers, polyesters, polyether ketones, polyoxyalkylenes, polyarylene sulfides and polymers vinyl aromatic monomers and / or ethylenically unsaturated monomers selected. Polymer mixtures can also be used.
  • Component B of the molding composition used according to the invention for producing the heat-insulated transport containers according to the invention are partially crystalline, preferably linear polyamides such as polyamide-6, polyamide-6,6, polyamide-4,6, polyamide-6,12 and partially crystalline copolyamide based on these components .
  • partially crystalline polyamides can be used, the acid component of which consists wholly or partly of adipic acid and / or terephthalic acid and / or isophthalic acid and / or suberic acid and / - or sebacic acid and / orginaic acid and / or dodecanedicarboxylic acid and / or a cyclohexanedicarboxylic acid, and whose diamine component wholly or partly consists in particular of m- and / or p-xylylenediamine and / or hexamethylenediamine and / or 2,2,4- and / or 2,4,4-trimethylhexamethylenediamine and / or isophoronediamine, and their compositions are known in principle from the prior art (cf. Encyclopedia of Polymers, Vol. 11, p. 315 ff.).
  • polymers which are furthermore suitable as component B of the molding compositions used according to the invention for producing the heat-insulated transport containers according to the invention are partially crystalline polyolefins, preferably homo- and copolymers of olefins such as ethylene, propylene, butene-1, pentene-1, hexene-1, heptene-1, 3-methylbutene-1, 4-methylbutene-1, 4-methylpentene-1 and octene-1.
  • Suitable polyolefins are polyethylene, poly propylene, polybutene-1 or poly-4-methylpentene-1.
  • PE polyethylene
  • HDPE high-density PE
  • LDPE low-density PE
  • LLDPE linear low-density PE
  • component B is an ionomer.
  • These are generally polyolefins, as described above, in particular polyethylene, which contain monomers co-condensed with acid groups, for example acrylic acid, methacrylic acid and optionally further copolymerizable monomers.
  • the acid groups are generally converted into ionic, possibly ionically crosslinked polyolefins with the aid of metal ions such as Na + , Ca 2+ , Mg 2 and Al 3+ , but these can still be processed thermoplastically (see, for example, US Pat. No. 3,264,272; 3,404,134; 3,355,319; 4,321,337).
  • Component B according to the invention is also suitable for polyolefins containing free acid groups, which then generally have a rubber-like character and in some cases also contain further copolymerizable monomers, for example (meth) acrylates.
  • component B can also be polyester, preferably aromatic-aliphatic polyester.
  • polyester preferably aromatic-aliphatic polyester.
  • polyethylene terephthalate e.g. based on ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol and 1,4-bis-hydroxymethyl-cyclohexane, and also polyalkylene naphthalates.
  • Aromatic polyether ketones can also be used as component B, as described, for example, in GB 1 078 234, US Pat. No. 4,010,147, EP-A-0 135 938, EP-A-0 292 211, EP-A-0 275 035, EP-A-0 270 998, EP 165 406, and in the publication by CK Sham et. al., Polymer 2 £ / 6, 1016-1020 (1988).
  • component ox of the molding compositions used according to the invention for the production of the heat-insulated transport containers according to the invention may be pol oxyalkylenes, for example polyoxymethylene, and oxymethylene polymers.
  • suitable components B are the polyarylene sulfides, in particular the polyphenylene sulfide.
  • it is composed of 50-99% by weight of vinyl aromatic monomers and 1-50% by weight of at least one of the other specified monomers.
  • Component B is preferably an amorphous polymer, as described above as graft A2.
  • a copolymer of styrene and / or ⁇ -methylstyrene with acrylonitrile is used as component B.
  • the acrylonitrile content in these copolymers of component B is 0-60% by weight, preferably 30-40% by weight, based on the total weight of component B.
  • Component B also includes those used in the graft copolymerization to prepare the component A free, non-grafted styrene / acrylonitrile copolymers formed.
  • component B has already been formed in the graft copolymerization. In general, however, it will be necessary to mix the products obtained in the graft copolymerization with additional, separately prepared component B.
  • This additional, separately produced component B can preferably be a styrene / acrylonitrile copolymer, an ⁇ -methylstyrene / acrylonitrile copolymer or an ⁇ -methylstyrene / styrene / acrylonitrile terpoly- act merisat.
  • These copolymers can be used individually or as a mixture for component B, so that the additional, separately prepared component B of the molding compositions used according to the invention is, for example, a mixture of a s yrol / acrylonitrile copolymer and an ⁇ -methylstyrene / Acrylonitrile copolymer can act.
  • component B of the molding compositions used according to the invention consists of a mixture of a styrene / acrylonitrile copolymer and an ⁇ -methylstyrene / acrylonitrile copolymer
  • the acrylonitrile content of the two copolymers should preferably not be more than 10% by weight. %, preferably not more than 5% by weight, based on the total weight of the copolymer, differ from one another.
  • Component B of the molding compositions used according to the invention can, however, also consist of only a single styrene / acrylonitrile copolymer if, in the graft copolymerizations for the production of component A and also in the production of the additional, separately produced component B, the same monomer mixture of styrene and acrylonitrile is assumed.
  • the additional, separately manufactured component B can be obtained by the conventional methods.
  • the copolymerization of the styrene and / or ⁇ -methylstyrene with the acrylonitrile can be carried out in bulk, solution, suspension or aqueous emulsion.
  • Component B preferably has a viscosity number of 40 to 100, preferably 50 to 90, in particular 60 to 80. The viscosity number is determined in accordance with DIN 53 726, 0.5 g of material being dissolved in 100 ml of dimethylformamide.
  • Components A and B and optionally C, D can be mixed in any desired manner by all known methods. If components A and B have been prepared, for example, by emulsion polymerization, it is possible to use the polymer dispersions obtained to mix with one another, then to precipitate the polymers together and to work up the polymer mixture. However, components A and B are preferably mixed by extruding, kneading or rolling the components together, the components having, if necessary, been isolated beforehand from the solution or aqueous dispersion obtained in the polymerization.
  • the products of the graft copolymerization (component A) obtained in aqueous dispersion can also only be partially dewatered and mixed with component B as a moist crumb, the graft copolymers then being completely dried during the rushing.
  • the molding compositions used to produce the heat-insulated transport containers according to the invention contain, in addition to components A and B, additional components C and / or D and, if appropriate, further additives, as described below.
  • Suitable polycarbonates C are known per se. They preferably have a molecular weight (weight average M w , determined by means of gel permeation chromatography in tetrahydrofuran against polystyrene standards) in the range from 10,000 to 60,000 g / mol. They can be obtained, for example, in accordance with the processes of DE-B-1 300 266 by interfacial polycondensation or in accordance with the process of DE-A-1 495 730 by reacting diphenyl carbonate with bisphenols.
  • Preferred bisphenol is 2,2-di (4-hydroxyphenyl) propane, generally - as also hereinafter - referred to as bisphenol A.
  • aromatic dihydroxy compounds can also be used, in particular 2,2-di (4-hydroxyphenyl) pentane, 2,6-dihydroxynaphthalene, 4,4'-dihydroxydiphenylsulfane, 4,4'-dihydroxydiphenyl ether, 4 , 4'-dihydroxydiphenyl sulfite, 4,4'-dihydroxydiphenylmethane, l, l-di- (4-hydroxyphenyI) ethane, 4,4-dihydroxydiphenyl or dihydroxydiphenylcycloalkanes, preferably dihydroxydiphenylcyclohexanes or dihydroxylcyclopentanes, in particular l, l-B_s (4- hydroxyphenyl) -3,3,5-_rime_hylcyclohexan and mixtures of the aforementioned dihydroxy compounds.
  • 2,2-di (4-hydroxyphenyl) pentane 2,6-dihydroxynaphthalene
  • Particularly preferred polycarbonates are those based on bisphenol A or bisphenol A together with up to 80 mol% of the aromatic dihydroxy compounds mentioned above.
  • Copolycarbonates according to US Pat. No. 3,737,409 can also be used; Of particular interest are copolycarbonates based on bisphenol A and di- (3,5-dime yl-dihydroxyphenyI) sulfone, which are characterized by a high heat resistance. It is also possible to use mixtures of different polycarbonates.
  • the average molecular weights (weight average M w , determined by means of gel permeation chromatography in tetrahydrofuran against polystyrene standards) of the polycarbonates C are in the range from 10,000 to 64,000 g / mol. They are preferably in the range from 15,000 to 63,000, in particular in the range from 15,000 to 60,000 g / mol. This means that the polycarbonates C have relative solution viscosities in the range from 1.1 to 1.3, measured in 0.5% by weight solution in dichloromethane at 25 ° C., preferably from 1.15 to 1.33. The relative solution viscosities of the polycarbonates used preferably differ by no more than 0.05, in particular no more than 0.04.
  • the polycarbonates C can be used both as regrind and in granular form. They are present as component C in amounts of 0-50% by weight, preferably 10-40% by weight, based in each case on the total molding composition.
  • the addition of polycarbonates leads, inter alia, to higher thermostability and improved crack resistance of the molding compositions used according to the invention for producing the heat-insulated transport containers according to the invention.
  • thermoplastic molding compositions used according to the invention for producing the heat-insulated transport containers according to the invention contain, as component D, 0 to 50% by weight, preferably 0 to 40% by weight, in particular 0 to 30% by weight of fibrous or particulate fillers or mixtures thereof based on the total molding compound. These are preferably commercially available products.
  • Reinforcing agents such as carbon fibers and glass fibers are usually used in amounts of 5-50% by weight, based on the total molding composition.
  • the glass fibers used can be made of E, A or C glass and are preferably equipped with a size and an adhesion promoter. Their diameter is generally between 6 and 20 ⁇ m. Both continuous fibers (rovings) and chopped glass fibers (staples) with a length of 1-10 ⁇ m, preferably 3-6 ⁇ m, can be used. Furthermore, fillers or reinforcing materials such as glass balls, mineral fibers, whiskers, aluminum oxide fibers, mica, quartz powder and wollastonite can be added.
  • metal flakes e.g. aluminum flakes from Transmet Corp.
  • metal powder e.g. aluminum flakes from Transmet Corp.
  • metal fibers e.g. nickel-coated glass fibers
  • other additives that shield electromagnetic waves are mixed with the molding materials used according to the invention for the production of the heat-insulated transport containers according to the invention.
  • Aluminum flakes K 102 from Transmet
  • EMI purposes electro-magnetic interference
  • the materials can be mixed with additional carbon fibers, carbon black, in particular conductivity carbon black, or nickel-coated carbon fibers.
  • the molding compositions used according to the invention for the production of the heat-insulated transport containers according to the invention may also contain other additives which are typical and customary for polycarbonates, SAN polymers and graft copolymers or mixtures thereof.
  • additives are: dyes, pigments, colorants, antistatics, antioxidants, stabilizers to improve thermostability, to increase light stability, to increase resistance to hydrolysis and chemicals, to prevent heat decomposition and in particular to lubricants.
  • Lubricants that are useful for the production of moldings or molded parts.
  • These additional additives can be metered in at any stage of the production process, but preferably at an early point in time, in order to take advantage of the stabilizing effects (or other special effects) of the additive at an early stage.
  • Heat stabilizers or oxidation retardants are usually metal halides (chlorides, bromides, iodides) which are derived from metals of group I of the periodic table of the elements (such as Li, Na, K, Cu).
  • Suitable stabilizers are the usual hindered phenols, but also vitamin E or compounds with an analog structure.
  • HALS stabilizers hindered amine light stabilizers
  • benzophenones hindered amine light stabilizers
  • resorcinols resorcinols
  • salicylates benzotriazoles and other compounds are also suitable (for example Irganox *, Tinuvin *.
  • Tinuvin * 770 HALS absorber, bis (2,2,6, 6-tetramethyl-4-piperidyl) sebazate
  • Tinuvin * P UV absorber - (2H-benzotriazol-2-yl) -4-methylphenol
  • Suitable lubricants and mold release agents are stearic acids, stearyl alcohol, stearic acid esters or generally higher fatty acids, their derivatives and corresponding fatty acid mixtures with 12-30 carbon atoms.
  • the amounts of these additives are in the range of 0.05-1% by weight.
  • Silicone oils, oligomeric isobutylene or similar substances are also suitable as additives, the usual amounts being 0.05-5% by weight.
  • Pigments, dyes, color brighteners such as ultramarine blue, phthalocyanines, titanium dioxide, cadmium sulfides, derivatives of perylene tetracarboxylic acid can also be used.
  • Processing aids and stabilizers such as UV stabilizers, lubricants and antistatic agents are usually used in amounts of 0.01-5% by weight, based on the total molding composition.
  • thermoplastic molding compositions used for the production of the heat-insulated transport containers according to the invention can be produced by methods known per se by mixing the components. It can be advantageous to premix individual components. Mixing the components in solution and removing the solvents is also possible.
  • Suitable organic solvents are, for example, chlorobenzene, mixtures of chlorobenzene and methylene chloride or mixtures of chlorobenzene or aromatic hydrocarbons, for example toluene.
  • the solvent mixtures can be evaporated, for example, in evaporation extruders.
  • Mixing the e.g. dry components can be made by all known methods. However, the mixing is preferably carried out by extruding, kneading or rolling the components together, preferably at temperatures of 180-400 ° C., the components having, if necessary, been isolated beforehand from the solution obtained in the polymerization or from the aqueous dispersion.
  • the components can be metered in together or separately / one after the other.
  • the heat-insulated transport containers according to the invention can be produced from the thermoplastic molding compositions used according to the known methods of thermoplastic processing.
  • the production can be carried out by thermoforming, extrusion, injection molding, calendering, blow molding, pressing, press sintering, deep drawing or sintering, preferably by extrusion blowing.
  • the heat-insulated transport containers according to the invention that can be produced from the thermoplastic molding compositions described are scratch-resistant, stable and resistant to chemicals and have very good dimensional stability. They also have a low density and therefore a low weight.
  • the heat-insulated transport containers according to the invention are multi-walled, in particular double-walled.
  • the outer wall surfaces consist of the molding compound according to the invention, preferably also the inner wall surfaces.
  • the inner wall surfaces form a cavity for receiving the objects to be transported.
  • the space between the outer wall surfaces and the inner wall surfaces has a heat-insulating effect.
  • the intermediate space can be evacuated or filled with a gas, for example air or an inert gas, a liquid, or a heat-insulating solid or foam.
  • the cavity is filled with a macroscopic filler, preferably made of foamed polymer.
  • a sandwich construction is thus formed, in which a layer of the themoplastic molding composition according to the invention is applied to both sides of the foamed polymer. All surface coatings are preferably formed from the thermoplastic molding composition.
  • the heat-insulated transport container according to the invention can have any suitable shape.
  • the container can thus have the shape of a sphere, a cube, a cuboid, a cylinder or another suitable shape.
  • the container is designed so that it can be opened on at least one side for the insertion and removal of the objects to be transported or isolated.
  • the container is preferably cuboid in shape and one of the sides is designed as a door or cover which, when closed, enables the interior to be thermally insulated.
  • the temperature range to be maintained in the heat-insulated transport container depends on the object to be picked up. According to one embodiment of the invention, the temperature range is -50 to + 100 ° C, preferably -30 to + 80 ° C. These temperature ranges are found in particular when transporting food, especially in the case of ready-made food. hot or cold dishes.
  • the heat-insulated transport containers according to the invention are also suitable for holding and tempering liquids or beverages, for example in the form of packaged beverages such as beverage cans or beverage bottles.
  • the heat-insulated transport containers can also be used for the transport of medication or body organs that are intended for implantation and must be transported from the organ donor to the corresponding implantation site.
  • Typical heat-insulated transport containers according to the invention have an internal capacity of 1 to 500 liters, preferably 10 to 50 liters.
  • the transport containers according to the invention are provided for the transport of the picked up objects between different locations.
  • the transport containers are used at least partially outdoors (outside buildings). This is the case, for example, in the case of food transports, in which prepared food is transported from the preparer to the consumer, usually by road vehicle.
  • the transport containers according to the invention are exposed to external weathering for more or less long periods. For this reason, they must have good weather stability, which is maintained even with continued heat stress.
  • Transport containers used for the transportation of organs, medication or food, in particular, must be kept clean and often come into contact with chemicals or cleaning agents. Which he- Heat-insulated transport containers according to the invention have good resistance to chemicals, in particular in environments where they are additionally exposed to moisture (such as water vapor).
  • heat-insulated transport containers made of molding compositions which contain polycarbonates as component C are very heat-resistant and resistant to lasting heat. By adding the polycarbonate as component C, the heat resistance and impact resistance of the heat-insulated transport containers are further improved.
  • These heat-insulated transport containers also have a balanced ratio of toughness and rigidity and good dimensional stability, as well as excellent resistance to heat aging and high resistance to yellowing under thermal stress and exposure to UV radiation.
  • Heat-insulated transport containers made of molding compounds containing components A and B have excellent surface properties that can be obtained without further surface treatment.
  • the appearance of the finished surfaces of the heat-insulated transport containers can be modified by suitable modification of the rubber morphology, for example in order to achieve glossy or matt surface designs.
  • the heat-insulated transport containers show a very low graying or yellowing effect when exposed to weather and UV radiation, so that the surface properties are retained.
  • Further advantageous properties of the heat-insulated transport containers are the high weather stability, good thermal resistance, high yellowing resistance under UV radiation and thermal stress, good tension Crack resistance, especially when exposed to chemicals, and good anti-electrostatic behavior. In addition, they have high color stability, for example due to their excellent resistance to yellowing and embrittlement.
  • the wall elements according to the invention made of the thermoplastic molding compositions used according to the invention do not show any significant loss of toughness or impact strength at low temperatures or after prolonged exposure to heat, which loss is retained even when exposed to UV rays. The tensile strength is also retained. They also show a balanced relationship between rigidity and toughness.
  • thermoplastic molding compositions already used to produce the heat-insulated transport containers according to the invention are very suitable for reuse.
  • the proportion of reused (recycled) molding compound can be high.
  • the relevant material properties, such as flowability, Vicat softening temperature and impact strength of the molding compounds and the heat-insulated transport containers according to the invention produced therefrom changed not significant. Similar results were obtained when the weather resistance was examined.
  • Butyl acrylate polymers had a solids content of 40%.
  • the average particle size (weight average of the latex) was found to be 288 nm.
  • Butyl acrylate polymers had a solids content of 40%.
  • the mean particle size (weight average) of the latex was found to be 410 nm.
  • Allocate emulsifier After adding 1 part of potassium persulfate in 40 parts of water, a mixture of 196 parts of butyl acrylate, 4 parts of tricyclodecenyl acrylate and 1.52 parts of the emulsifier was finally added dropwise over the course of 2 hours. The polymer mixture was then polymerized at 65 ° C. for a further 2 hours. An approximately 40% dispersion with an average particle diameter of approximately 500 nm was obtained. If only 100 parts were added instead of a total of 300 parts of monomers, a latex with an average particle diameter of about 300 nm was obtained.
  • a monomer mixture of styrene and acrylonitrile was polymerized in solution under customary conditions.
  • the styrene / acrylonitrile copolymer obtained had an acrylonitrile content of 35% by weight, based on the copolymer, and a viscosity number of 80 ml / g.
  • a monomer mixture of styrene and acrylonitrile was polymerized in solution under customary conditions.
  • the styrene / acrylonitrile copolymer obtained had an acrylonitrile content of 35% by weight, based on the copolymer, and a viscosity number of 60 ml / g.
  • a monomer mixture of styrene and acrylonitrile was polymerized in solution under customary conditions.
  • the styrene / acrylonitrile copolymer obtained had an acrylonitrile content of 27% by weight, based on the copolymer, and a viscosity number of 80 ml / g.
  • the graft rubber content was 23% by weight, based on the total weight of the finished polymer.
  • a HIPS polymer (high impact polystyrene: impact-resistant polystyrene), which consisted of polystyrene with a proportion of 6.5% by weight of polybutadiene rubber, was used as a further molding compound for comparison purposes.
  • the damping maximum of the mechanical damping is -75 ° C.
  • the MVI 200/5 is 4 ml 10 min. Comparative Example 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne l'utilisation d'une matière moulable thermoplastique pour produire des contenants de transport isolés thermiquement. Cette matière, différente de l'ABS, contient, toujours par rapport à la somme des quantités des composants A et B, et éventuellement C et/ou D totalisant 100 %, a) comme composant A, 1 à 99 % en poids, de préférence 15 à 60 % en poids, notamment 25 à 50 % en poids d'un polymère obtenu par émulsion, se présentant sous forme de particules et ayant une température de transition vitreuse inférieure à 0 °C et une taille moyenne de particules comprise entre 50 et 1000 nm, de préférence entre 50 et 500 nm, b) comme composant B, 1 à 99 % en poids, de préférence 40 à 85 % en poids, notamment 50 à 75 % en poids d'au moins un polymère amorphe ou semi-cristallin, c) comme composant C, 0 à 50 % en poids de polycarbonates et d) comme composant D, 0 à 50 % en poids de charges sous forme de fibres ou de particules, ou de leur mélange.
EP97940025A 1996-07-25 1997-07-24 Contenants de transport isoles thermiquement Withdrawn EP0923494A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19630103A DE19630103A1 (de) 1996-07-25 1996-07-25 Wärmeisolierte Transportbehältnisse
DE19630103 1996-07-25
PCT/EP1997/004037 WO1998004463A1 (fr) 1996-07-25 1997-07-24 Contenants de transport isoles thermiquement

Publications (1)

Publication Number Publication Date
EP0923494A1 true EP0923494A1 (fr) 1999-06-23

Family

ID=7800868

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97940025A Withdrawn EP0923494A1 (fr) 1996-07-25 1997-07-24 Contenants de transport isoles thermiquement

Country Status (4)

Country Link
EP (1) EP0923494A1 (fr)
KR (1) KR20000029504A (fr)
DE (1) DE19630103A1 (fr)
WO (1) WO1998004463A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393547B2 (en) 2001-04-11 2008-07-01 Helix Medical, Llc Antimicrobial elastomer composition and method for making
US8317861B2 (en) 2001-04-11 2012-11-27 Helix Medical, Llc Antimicrobial indwelling voice prosthesis
US7520897B2 (en) 2001-04-11 2009-04-21 Helix Medical, Llc Medical devices having antimicrobial properties

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3301161A1 (de) * 1983-01-15 1984-07-19 Bayer Ag, 5090 Leverkusen Thermoplastische formmassen
DE3742768A1 (de) * 1987-12-17 1989-06-29 Basf Ag Halogenfreie flammfeste formmassen, verfahren zur herstellung und ihre verwendung
DE4342048A1 (de) * 1993-12-09 1995-06-14 Basf Ag Dreistufige Pfropfcopolymerisate und solche enthaltende thermoplastische Formmassen mit hoher Zähigkeit
US5569700A (en) * 1994-04-04 1996-10-29 Mitsubishi Gas Chemical Company, Inc. Thermoplastic resin composition for profile extrusion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9804463A1 *

Also Published As

Publication number Publication date
WO1998004463A1 (fr) 1998-02-05
DE19630103A1 (de) 1998-01-29
KR20000029504A (ko) 2000-05-25

Similar Documents

Publication Publication Date Title
EP0914380A2 (fr) Elements d'amenagement interieur pour vehicules sur rails
EP1123351A1 (fr) Corps moule a utiliser dans les domaines du jardin et des soins aux animaux
WO2000020504A1 (fr) Boitiers pour appareils de traitement et de transmission d'informations
EP0923494A1 (fr) Contenants de transport isoles thermiquement
EP1123353A1 (fr) Corps moules pour le secteur du batiment, utilises a l'exterieur
EP0914374B1 (fr) Dispositif pour elever et nourrir de petits animaux
WO2000020505A1 (fr) Corps moules pour le secteur du batiment, utilises a l'interieur
WO1998004631A1 (fr) Pieces moulees pour equipements sanitaires et de salles de bains
WO1998004422A1 (fr) Enjoliveurs
WO1998004634A1 (fr) Boitiers pour appareils electriques contenant de petits transformateurs
EP0914376A1 (fr) Boitiers pour dispositifs de securite
WO1998004622A1 (fr) Abris pour outils de jardinage
WO1998004630A1 (fr) Boitiers pour appareils de traitement et de transmission de donnees
WO2000020509A1 (fr) Article de sport realise a partir de melanges de polycarbonates
WO1998004632A1 (fr) Plaques a grille pour obturer des orifices de ventilation
EP0914384A2 (fr) Panneaux prefabriques minces
EP0914375A1 (fr) Boitiers et elements d'habillage pour instruments medicaux
WO1998004232A1 (fr) Appareils de massage et boitiers correspondants
WO2000020506A1 (fr) Boitiers d'appareils electriques contenant de petits transformateurs
WO2000020507A1 (fr) Carters et elements de recouvrement pour filtres, pompes et moteurs
WO1998004449A1 (fr) Becquets arriere
WO2000020503A1 (fr) Appareils de massage et boitiers correspondants
WO2000020502A1 (fr) Corps moules pour l'industrie du meuble
WO2000020511A1 (fr) Matiere moulable thermoplastique pour la fabrication de demi-produits d'elements de carrosserie pour vehicules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20010404