EP0918317B1 - Procédé de filtrage fréquentiel appliqué au débruitage de signaux sonores mettant en oeuvre un filtre de Wiener - Google Patents
Procédé de filtrage fréquentiel appliqué au débruitage de signaux sonores mettant en oeuvre un filtre de Wiener Download PDFInfo
- Publication number
- EP0918317B1 EP0918317B1 EP98402894A EP98402894A EP0918317B1 EP 0918317 B1 EP0918317 B1 EP 0918317B1 EP 98402894 A EP98402894 A EP 98402894A EP 98402894 A EP98402894 A EP 98402894A EP 0918317 B1 EP0918317 B1 EP 0918317B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- noise
- model
- signals
- frame
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 56
- 238000001914 filtration Methods 0.000 title claims description 19
- 230000005236 sound signal Effects 0.000 title claims description 12
- 230000003595 spectral effect Effects 0.000 claims description 53
- 230000003068 static effect Effects 0.000 claims description 9
- 238000005070 sampling Methods 0.000 claims description 5
- 230000003252 repetitive effect Effects 0.000 claims 1
- 230000008569 process Effects 0.000 description 18
- 230000029058 respiratory gaseous exchange Effects 0.000 description 13
- 238000012545 processing Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000015654 memory Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 241001644893 Entandrophragma utile Species 0.000 description 2
- 241000405147 Hermes Species 0.000 description 2
- 241000135309 Processus Species 0.000 description 2
- 241000897276 Termes Species 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000011410 subtraction method Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
Definitions
- the present invention relates to a method of frequency filtering using a Wiener filter.
- the main areas concern telephone or radiotelephone communications, speech recognition, sound recording on board aircraft civil or military, and more generally of all noisy vehicles, on-board intercoms, etc.
- noise is caused by engines, air conditioning, ventilation of on-board equipment or aerodynamic noises. All these noises are picked up, at less partially, by the microphone in which the pilot or another member of the crew.
- one of the characteristics noises is to be very variable over time. In indeed, they are very dependent on the operating regime engines (take-off phase, stabilized speed, etc.).
- Useful signals i.e. signals representing the conversations, also present particularities: they are most often short-lived.
- voicing relates to elementary characteristics of pieces of speech, and more specifically concerns vowels, as well only part of the consonants: "b”, “d”, “g”, “j”, etc. These letters are characterized by an audio signal from pseudo-periodic structure.
- the denoising process take into account this important characteristic of audio signals including speech.
- These processes generally include the steps following main: a division into frames of the signal to denois, the processing of these frames by a Fourier transform operation (or a similar transform) to move into the field frequency, the proper denoising treatment by digital filtering, and processing, dual of the first, by an inverse Fourier transform, to return to the time domain.
- the last step is a signal reconstruction. This reconstruction can be obtained by multiplying each of the frames by a window of weighting.
- Wiener filter in particular a so-called optimal Wiener filter. This one presents the advantage of differentiating the frames successive.
- Wiener's optimal filtering is at the center of the methods signal processing, based on second order statistical characteristics and therefore of the notion of correlation.
- Wiener filtering allows the separation of decorrelation signals. Its importance is linked to the simplicity of theoretical calculations. In addition, it can apply to a multitude of specific processes, and in particular, with regard to the preferred application targeted by the invention, the extraction of noise polluting a signal of speech.
- the invention therefore sets itself the aim of overcoming the disadvantages of filtering methods of the known art, especially the main drawback which has just been recalled: the presence of a parasitic residual noise in the denoised signal, called "musical noise".
- the invention aims to more generally, to increase the intelligibility of the speech, in its main application.
- the Wiener filter used for digital filtering is modified in an optimized way by introducing a term of energy compensation aimed at overestimating the level of noise.
- this compensation term is adaptive.
- Each block referenced 0 to 5, represents a phase of the process, which itself can be subdivided into elementary steps.
- the method of the invention includes a step of splitting the signal into frames audiophonic to denois (block 0).
- the frame signals are not “continuously evolving" signals, but discrete signals obtained by sampling. It is assumed that the signals are sampled at period T e , before digital processing. It is common to then consider 2 p samples for a signal frame, choosing p so that the value 2 p T e is of the order of magnitude of the duration D of a frame.
- p the value of the duration of a frame.
- D LGframe ⁇ T e is therefore satisfied.
- the step of cutting into frames, as indicated in FIG. 1, is therefore preceded by a step of digitization by sampling.
- the stages of digitization and cutting into frames (block 0) are common to known art.
- the samples numeric thus created are stored in a buffer memory circulating of type "FIFO" (that is to say of type "first in - first out ”) to be read as frames successive.
- FIFO type "first in - first out ”
- the operations carried out in block 1 consists in identify segments of the signal to be denoised that do not contain only noise.
- the output of this block consists of a series of digital samples representative of noise alone.
- a noise model is developed at from noisy signals, or more precisely from frames successively read (block 0).
- block 3 has a step of estimating the spectral density of the frame signal current and its energy calculation.
- the coefficients of the filter frequency denoising the signal are determined in the manner which will be detailed below.
- the method of the invention is based on a energy compensation and noise overestimation.
- the denoised time signal is rebuilt, ensuring the best continuity possible between frames.
- the signals can be used as is by various methods such as automatic speech recognition. In itself, this phase of the process is common to known art, and there is no no need to detail the reconstruction method or for processing the signals at the output of block 4.
- the process makes it possible to modify and optimize the coefficients of the Wiener filter used for the phase of denoising proper (block 4), so as to eliminate or, to say the least, strongly attenuate the so-called parasitic noises "Musical".
- the dispersion is quantified by a coefficient from the analysis carried out in block 2, from the model of noise developed in block 1.
- the method according to the invention overestimates this spectral density, in y introducing a degree of adaptability in order to optimize the perception of the denoised signal.
- FIG. 2 very schematically illustrates a Wiener filter used to denoise a noisy signal U (n) .
- the coefficients of the filter Wiener are modified using parameters determined in blocks 2 and 3, in the way that will now be Detailed.
- the process according to the invention optimally modifies the coefficients of the Wiener filter and introduces a compensation term energy, artificially overestimating the level of noise, with different levels of adaptivity of this compensation.
- the exponential attenuation coefficient ⁇ is a term commonly used in the literature on digital filtering and, more specifically, noising. A typical value for this parameter is 0.5.
- the curve in FIG. 4a shows that the energy of the signal in the frequency band ⁇ , represented by the spectral density ⁇ x , is not negligible.
- the energy weighting report described below reduces this distortion in the signal noised.
- noise denoising alone is correct, but it can be too brutal within parts of the useful signal.
- ⁇ remains close to a typical value equal to 10, when the noisy signal contains only noise, and varies between 0 and 10, when a useful signal is present in the noisy signal. A degree is therefore advantageously introduced adaptivity.
- FIG. 5 This third modification is illustrated by FIG. 5.
- This type of filter therefore has good efficiency. in terms of eliminating degraded signal segments in which speech is absent and decrease in distortions inflicted on the wanted speech signal.
- the probability of generating "musical noise” is also related, as noted, to the variance of of the spectral density of the noise over all of the frames.
- the value of the overestimation coefficient is made dependent on the statistical properties of the noise.
- a coefficient, called maximum below is introduced, proportional to the dispersion of the values of spectral densities of the noise.
- the maximum coefficient is equal to the maximum ratio, for all the frames of the noise model, between the maximum of the spectral density of the frame of the noise model considered, and the maximum of the estimated spectral density of the noise model.
- this coefficient characterizes the maximum noise disparity for frequency channels carrying significant energy. Multiplied by the coefficient ⁇ , it provides additional proportional attenuation to this disparity.
- the method is based on continuous research and noise model automatically. This research is done on digitized and stored u (t) signal samples into an input buffer. This memory is capable to memorize all the samples of several frames of the input signal (at least 2 frames and, in the general case, N frames).
- the noise model sought consists of a succession of several frames including energy stability and the relative energy level suggest that it is ambient noise and not a speech signal or other disturbing noise. We will see later how this automatic search.
- ambient noise is a signal with a minimum energy stable in the short term. In the short term, it must hear a few frames, and we will see in the example practice given below that the number of frames intended for assess the noise stability is from 5 to 20. The energy must be stable on several frames, otherwise we must assume that the signal contains speech or a noise other than ambient noise. It must be minimal, otherwise, the signal is considered to contain breathing or phonetic speech resembling noise but superimposed on ambient noise.
- Figure 6 shows a typical configuration time evolution of the energy of a signal microphone at the start of a broadcast, speech, with a breathing noise phase, which goes out during a few tens to hundreds of milliseconds to make room for ambient noise alone, after which an energy level high indicates the presence of speech, to finally return to the ambient noise.
- N1 5
- the digital values of all the samples of these N frames are stored.
- This set of NxP samples constitutes the current noise model. It is used in denoising. Analysis of the following frames continues.
- the ambient noise changes slowly, the change will be taken into account that the comparison threshold with the stored model is greater than 1. If it evolves more rapidly in the increasing direction, evolution risks not not be taken into account, so it is better to schedule a reset from time to time looking for a noise pattern. For example, on an airplane on the ground at a standstill, the ambient noise will be relatively low, and it should not be that during the takeoff phase the noise model remains frozen on what it was at standstill that a noise model is only replaced by a less energetic or not much more energetic. The reset methods will be explained later. considered.
- Figure 7 shows a flowchart of automatic noise pattern search operations ambient.
- n The number of the current frame in a noise model search operation is designated by n and is counted by a counter as the search is carried out.
- n is set to 1. This number n will be incremented as a model of several successive frames is developed.
- the model already includes by hypothesis n -1 successive frames meeting the conditions imposed to be part of a model.
- the signal energy of the frame is calculated by summation of the squares of the numerical values of the samples of the frame. It is kept in memory.
- the ratio between the energies of the two frames is calculated. If this ratio is between two thresholds S and S 'one of which is greater than 1 and the other of which is less than 1, it is considered that the energies of the two frames are close and that the two frames can be part of a noise model.
- the frames are declared incompatible and the search is reset by resetting n to 1.
- the rank n of the current frame is incremented, and in an iterative procedure loop, the energy of the next frame is calculated and a comparison with the energy of the previous frame or previous frames, using thresholds S and S ' .
- the first type of comparison consists in comparing only the energy of the frame n to l energy of the frame n -1.
- the second type consists in comparing the energy of the frame n to each of the frames 1 to n -1.
- the second way leads to a greater homogeneity of the model but it has the disadvantage of not taking into account sufficiently well the cases where the noise level increases or decreases quickly.
- the energy of the frame of rank n is compared with the energy of the frame of rank n -1 and possibly of other previous frames (not necessarily all for that matter).
- the number N2 is chosen so as to limit the computation time in the subsequent operations for estimating the spectral noise density.
- n is less than N2 , the homogeneous frame is added to the previous ones to help build the noise model, n is incremented and the next frame is analyzed.
- n is equal to N2
- the frame is also added to the previous n -1 homogeneous frames and the model of n homogeneous frames is stored for use in eliminating noise.
- the search for a model is also reset by setting n to 1.
- the previous steps relate to the first model search. But once a model has been stored, it can be replaced at any time by a model more recent.
- the replacement condition is still a energy condition but this time it relates to the average energy of the model and no longer on the energy of each frame.
- the new model is considered to be better and it is stored in place of the previous one. Otherwise, the new model is rejected and the old one remains in force.
- the threshold SR is preferably slightly greater than 1.
- the SR threshold was less than or equal to 1, we would store the least energetic homogeneous frames each time, which corresponds well to the fact that we consider that ambient noise is the energy level below which we never descend . But, we would eliminate any possibility of evolution of the model if the ambient noise started to increase.
- the threshold SR is about 1.5. Above this threshold we will keep the old model; below this threshold we will replace the old model with the new one. In both cases, the search will be reinitialized by recommencing the reading of a first frame of the input signal u (t) , and setting n to 1.
- This inhibition is to prevent certain sounds are taken for noise, when they are useful phonemes, that a noise model based on these sounds be stored and that noise suppression after the development of the model then tends to remove all similar sounds.
- Ambient noise can indeed increase significantly and quickly, for example during the acceleration phase of the engines of an airplane or other vehicle, air, land or sea.
- the threshold SR requires that the previous noise model be kept when the average noise energy increases too quickly.
- Periodicity can be based on the average duration of speech in the application considered; for example the speaking times are in average of a few seconds for the crew of an airplane, and resetting can take place with a frequency of a few seconds.
- Figure 1 block 1
- the implementation of the method of developing a noise model ( Figure 1: block 1) and, more general of the process according to the invention, can be done at from non-specialized computers, provided with necessary calculation programs and receiving the digitized signal samples as supplied by an analog-digital converter, via a port adapted.
- This implementation can also be done from a specialized computer based on signal processors digital, which enables faster processing large number of digital signals.
- the computers are associated, as is well known, with different types of memories, static and dynamic, for recording the programs and the intermediate data, as well as with circulating memories of the "FIFO" type.
- the system includes an analog-to-digital converter, for digitizing u (t) signals, and a digital-to-analog converter, as needed, if the denoised signals are to be used in analog form.
- Figure 8 is a summary diagram all the stages of the filtering process according to the invention, in a preferred embodiment.
- stages are divided into a first subset steps to determine the parameters depending on the noise model, and a second subset steps to determine the dependent parameters only from the current frame of the signal to be denoised.
- the first step of the first subset includes an initial step of selecting a suitable noise model to the specific application, advantageously a model of noise determined by the method described above, in reference to Figures 6 and 7.
- This first subset of steps includes two branches.
- the energy of the frame is calculated for each frame of the noise model (in the time domain), then the average energy of the frames of the model is calculated, which makes it possible to estimate the average energy of the model, i.e. the parameter E x .
- the parameter ⁇ x ( ⁇ ) is also used for the calculation of one of the other coefficients of the Wiener filter.
- the second subset of steps also includes two branches.
- the energy of the current frame, E u is determined, and in the second branch, the spectral density of the current frame ⁇ u is estimated.
- the coefficients ⁇ and ⁇ are fixed coefficients predetermined, typically equal to 10 and 0.5, respectively.
- the invention is not not reduced to the only domain of filtering of signals containing noisy speech, even if this domain constitutes one of the favorite apps.
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Quality & Reliability (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Computational Linguistics (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Filters That Use Time-Delay Elements (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Noise Elimination (AREA)
Description
- la probabilité de bruit musical est d'autant plus forte que l'estimée des densités spectrales du bruit est instable d'une trame à l'autre ;
- la probabilité de présence de bruit musical est d'autant plus forte que l'estimée de la densité spectrale du bruit est faible par rapport à sa densité spectrale réelle.
- élaboration à partir desdits signaux bruités d'un modèle de bruit sur un nombre N déterminé desdites trames, N étant compris entre des bornes minimale et maximale prédéterminées ;
- application d'une transformée de Fourier auxdites N trames ;
- estimation, pour chaque trame dudit modèle, de la densité spectrale de cette trame ;
- estimation de la densité spectrale moyenne dudit modèle de bruit ;
- calcul, à partir de ces deux estimations, d'un coefficient de surestimation statistique, ledit coefficient statistique étant égal au rapport maximal, pour lesdites N trames du modèle de bruit, entre le maximum de la densité spectrale d'une trame considérée dudit modèle de bruit, et le maximum de la densité spectrale estimée du modèle de bruit ;
- estimation, pour chaque trame desdits signaux à débruiter, de sa densité spectrale ; et
- modification, pour chaque trame desdits signaux à débruiter, des coefficients dudit filtre de Wiener pour que la relation suivante soit vérifiée : relation dans laquelle α et β sont des coefficients fixes prédéterminés, dits coefficient statique de compensation énergétique et coefficient d'atténuation exponentielle, respectivement, ν décrit l'ensemble des canaux fréquentiels de ladite transformée de Fourier, γ u(ν) étant l'estimée de la densité spectrale de la trame à débruiter, γx(ν) est ladite densité spectrale du modèle de bruit, et maxi ledit coefficient de surestimation statistique, modifiant le coefficient statique de compensation énergétique α.
- la figure 1 illustre, sous forme de bloc diagramme, les principales étapes du procédé selon l'invention ;
- la figure 2 illustre schématiquement un filtre de Wiener de l'art connu ;
- la figure 3 est un diagramme illustrant la densité spectrale d'un modèle de bruit et les densités spectrales γ u de chaque trame de ce modèle de bruit ;
- les figures 4a et 4b sont des diagrammes comparatifs illustrant ces mêmes paramètres avec surestimation de la densité spectrale du modèle de bruit ;
- la figure 5 est un diagramme illustrant ces mêmes paramètres avec surestimation adaptative de la densité spectrale du modèle de bruit ;
- la figure 6 représente un exemple typique de signal issu d'une prise de son bruitée ;
- la figure 7 est un organigramme représentant les étapes d'un procédé particulier de recherche d'un modèle de bruit ;
- et la figure 8 est un organigramme détaillé représentant les étapes du procédé de filtrage numérique selon un mode de réalisation préféré de l'invention.
- l'estimation de la densité spectrale moyenne du bruit (par exemple par spectre moyen et corrélogramme lissé) ;
- la détermination de l'énergie moyenne du modèle de bruit ;
- et la détermination d'un coefficient traduisant la dispersion statistique du bruit.
- Yves THOMAS : "Signaux et systèmes linéaires", éditions MASSON (1994) ; et :
- François MICHAUT : "Méthodes adaptatives pour le signal", édition HERMES (1992).
- U(n) : transformée de Fourier discrète du processus aléatoire observé, soit le signal bruité ;
- S(n) : transformée de Fourier discrète du processus "désiré", à estimer par filtrage linéaire de U(n) ;
- X(n) : transformée de Fourier discrète du bruit additif polluant le signal utile ;
- S and(n) : estimation de S(n) exprimée dans le domaine de Fourier, avec ε= S and - S = erreur d'estimation (S étant le signal débruité réel) ; et
- W(z) : filtre d'estimation exprimé dans le domaine fréquentiel.
- γS
- la densité spectrale du signal utile, et
- γX
- la densité spectrale du bruit parasite,
- N est le nombre de trames du modèle de bruit ;
- ν décrit l'ensemble des canaux fréquentiels, soit LGtrame/2 canaux ;
- γ i(ν) est la densité spectrale de la i ème trame du modèle de bruit dans le canal ν ; et
- γx(ν) est la densité spectrale du modèle de bruit.
- le bruit qu'on veut éliminer est le bruit de fond ambiant,
- le bruit ambiant a une énergie relativement stable à court terme,
- la parole est le plus souvent précédée d'un bruit de respiration du pilote qu'il ne faut pas confondre avec le bruit ambiant; mais ce bruit de respiration s'éteint quelques centaines de millisecondes avant la première émission de parole proprement dite, de sorte qu'on ne retrouve que le bruit ambiant juste avant l'émission de parole,
- et enfin, les bruits et la parole se superposent en termes d'énergie de signal, de sorte qu'un signal contenant de la parole ou un bruit perturbateur, y compris la respiration dans le microphone, contient forcément plus d'énergie qu'un signal de bruit ambiant.
- ou bien n est inférieur ou égal à un nombre minimal N1 en dessous duquel le modèle ne peut pas être considéré comme significatif du bruit ambiant parce que la durée d'homogénéité est trop courte; par exemple N1 = 5; dans ce cas on abandonne le modèle en cours d'élaboration, et on réinitialise la recherche au début en remettant n à 1 ;
- ou bien n est supérieur au nombre minimal N1. Dans ce cas, puisqu'on trouve maintenant un manque d'homogénéité, on considère qu'il y a peut-être un début de parole après une phase de bruit homogène, et on conserve à titre de modèle de bruit tous les échantillons des n-1 trames de bruit homogènes qui ont précédé le manque d'homogénéité. Ce modèle reste stocké jusqu'à ce qu'on trouve un modèle plus récent qui semble également représenter du bruit ambiant. La recherche est réinitialisée de toute façon en remettant n à 1.
Claims (9)
- Procédé de filtrage fréquentiel pour le débruitage de signaux sonores bruités (u(t)) constitués de signaux sonores dits utiles mélangés à des signaux de bruit, le procédé comprenant au moins une étape de découpage (0) desdits signaux sonores en une série de trames identiques d'une longueur déterminée et une étape de filtrage fréquentiel (4) à l'aide d'un filtre de Wiener, caractérisé en ce qu'il comprend, en outre, les étapes suivantes :élaboration à partir desdits signaux bruités (u(t)) d'un modèle de bruit (1) sur un nombre N déterminé desdites trames, N étant compris entre des bornes minimale et maximale prédéterminées ;application d'une transformée de Fourier auxdites N trames ;estimation (2), pour chaque trame dudit modèle, de la densité spectrale de cette trame ;estimation (2) de la densité spectrale moyenne dudit modèle de bruit ;calcul (2), à partir de ces deux estimations, d'un coefficient de surestimation statistique, ledit coefficient statistique étant égal au rapport maximal, pour lesdites N trames du modèle de bruit, entre le maximum de la densité spectrale d'une trame considérée dudit modèle de bruit, et le maximum de la densité spectrale estimée du modèle de bruit ;estimation (3), pour chaque trame desdits signaux à débruiter (u(t)), de sa densité spectrale ; et :modification (4), pour chaque trame desdits signaux à débruiter (u(t)), des coefficients dudit filtre de Wiener pour que la relation suivante soit vérifiée : relation dans laquelle α et β sont des coefficients fixes prédéterminés, dits coefficient statique de compensation énergétique et coefficient d'atténuation exponentielle, respectivement, ν décrit l'ensemble des canaux fréquentiels de ladite transformée de Fourier, γ u(ν) étant l'estimée de la densité spectrale de la trame à débruiter, γ x(ν) est ladite densité spectrale du modèle de .bruit, et maxi ledit coefficient de surestimation statistique, modifiant le coefficient statique de compensation énergétique α.
- Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'il comprend les étapes supplémentaires suivantes :calcul de l'énergie moyenne dudit modèle de bruit Ex ;calcul, pour chaque trame desdits signaux à débruiter (u(t)), de l'énergie de la trame en cours Eu ; etmultiplication dudit coefficient statique de compensation énergétique α par un coefficient de pondération énergétique égal au rapport Ex /Eu , de manière à modifier sélectivement ces coefficients pour chaque trame desdits signaux à débruiter (u(t)) par application d'un coefficient continûment variable entre un extrêma et un minima, l'extrêma étant sensiblement égal à l'unité lorsque lesdits signaux utiles sont absents desdits signaux à débruiter (u(t)) et sensiblement égal à zéro lorsque l'énergie desdits signaux utiles est très supérieure à l'énergie desdits signaux de bruit, et à ce que lesdits coefficients du filtre de Wiener satisfassent la relation suivante :
- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit coefficient statique de compensation énergétique α est égal à 10.
- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit coefficient d'atténuation exponentielle β est égal à 0,5.
- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une étape initiale (0) consistant à numériser lesdits signaux à débruiter (u(t)) par échantillonnage, chaque trame comprenant p échantillons.
- Procédé selon la revendication 6, caractérisé en ce que ledit modèle de bruit (1) est obtenu par une recherche répétitive effectuée en permanence dans lesdits signaux à débruiter (u(t)), en recherchant N trames successives, de p échantillons chacune, ayant les caractéristiques attendues d'un bruit, en stockant les NxP échantillons correspondants pour constituer ledit modèle de bruit, et en réitérant la recherche pour trouver un nouveau modèle de bruit et stocker le nouveau modèle en remplacement du précédent ou conserver le modèle précédent selon les caractéristiques respectives des deux modèles.
- Procédé selon l'une quelconque des revendications précédentes selon lequel lesdits signaux sonores bruités sont des signaux de parole bruités (u(t)).
- Procédé selon la revendication 8, caractérisé en ce que la durée desdites trames est comprise dans la gamme 10 à 20 ms.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9714641A FR2771542B1 (fr) | 1997-11-21 | 1997-11-21 | Procede de filtrage frequentiel applique au debruitage de signaux sonores mettant en oeuvre un filtre de wiener |
FR9714641 | 1997-11-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0918317A1 EP0918317A1 (fr) | 1999-05-26 |
EP0918317B1 true EP0918317B1 (fr) | 2003-08-27 |
Family
ID=9513645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98402894A Expired - Lifetime EP0918317B1 (fr) | 1997-11-21 | 1998-11-20 | Procédé de filtrage fréquentiel appliqué au débruitage de signaux sonores mettant en oeuvre un filtre de Wiener |
Country Status (5)
Country | Link |
---|---|
US (1) | US6445801B1 (fr) |
EP (1) | EP0918317B1 (fr) |
JP (1) | JPH11265198A (fr) |
DE (1) | DE69817507D1 (fr) |
FR (1) | FR2771542B1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7313518B2 (en) | 2001-01-30 | 2007-12-25 | France Telecom | Noise reduction method and device using two pass filtering |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6633842B1 (en) * | 1999-10-22 | 2003-10-14 | Texas Instruments Incorporated | Speech recognition front-end feature extraction for noisy speech |
FR2786308B1 (fr) * | 1998-11-20 | 2001-02-09 | Sextant Avionique | Procede de reconnaissance vocale dans un signal acoustique bruite et systeme mettant en oeuvre ce procede |
FI19992453A (fi) † | 1999-11-15 | 2001-05-16 | Nokia Mobile Phones Ltd | Kohinanvaimennus |
AU2607601A (en) * | 1999-12-30 | 2001-07-16 | Comlink 3000 | Electromagnetic matched filter based multiple access communications systems |
EP1132896A1 (fr) * | 2000-03-08 | 2001-09-12 | Motorola, Inc. | Procédé de filtrage fréquentiel appliqué au débruitage de signaux acoustiques mettant en oeuvre un filtre de Wiener |
US6766292B1 (en) * | 2000-03-28 | 2004-07-20 | Tellabs Operations, Inc. | Relative noise ratio weighting techniques for adaptive noise cancellation |
FR2808917B1 (fr) * | 2000-05-09 | 2003-12-12 | Thomson Csf | Procede et dispositif de reconnaissance vocale dans des environnements a niveau de bruit fluctuant |
JP4560899B2 (ja) * | 2000-06-13 | 2010-10-13 | カシオ計算機株式会社 | 音声認識装置、及び音声認識方法 |
EP1170728A1 (fr) * | 2000-07-05 | 2002-01-09 | Alcatel | Dispositif de réduction adaptive du bruit dans des signaux de parole |
US6990446B1 (en) * | 2000-10-10 | 2006-01-24 | Microsoft Corporation | Method and apparatus using spectral addition for speaker recognition |
US6931138B2 (en) * | 2000-10-25 | 2005-08-16 | Matsushita Electric Industrial Co., Ltd | Zoom microphone device |
US7289626B2 (en) * | 2001-05-07 | 2007-10-30 | Siemens Communications, Inc. | Enhancement of sound quality for computer telephony systems |
EP1278185A3 (fr) * | 2001-07-13 | 2005-02-09 | Alcatel | Procédé pour améliorer la reduction de bruit lors de la transmission de la voix |
DE10137348A1 (de) * | 2001-07-31 | 2003-02-20 | Alcatel Sa | Verfahren und Schaltungsanordnung zur Geräuschreduktion bei der Sprachübertragung in Kommunikationssystemen |
US6959276B2 (en) * | 2001-09-27 | 2005-10-25 | Microsoft Corporation | Including the category of environmental noise when processing speech signals |
FR2842064B1 (fr) * | 2002-07-02 | 2004-12-03 | Thales Sa | Systeme de spatialisation de sources sonores a performances ameliorees |
AU2002950530A0 (en) * | 2002-08-01 | 2002-09-12 | Lake Technology Limited | Approximation sequence processing |
US7295250B2 (en) * | 2003-07-31 | 2007-11-13 | Broadcom Corporation | Apparatus and method for restoring DC spectrum for analog television reception using direct conversion turners |
DE60333133D1 (de) * | 2003-11-12 | 2010-08-05 | Telecom Italia Spa | Verfahren und schaltung zur rauschschätzung, darauf bezogener filter, dieses benutzendes endgerät und kommunikationsnetzwerk, sowie computer-programm-produkt hierfür |
US7725314B2 (en) * | 2004-02-16 | 2010-05-25 | Microsoft Corporation | Method and apparatus for constructing a speech filter using estimates of clean speech and noise |
GB2414646B (en) * | 2004-03-31 | 2007-05-02 | Meridian Lossless Packing Ltd | Optimal quantiser for an audio signal |
US7516069B2 (en) * | 2004-04-13 | 2009-04-07 | Texas Instruments Incorporated | Middle-end solution to robust speech recognition |
WO2006032760A1 (fr) * | 2004-09-16 | 2006-03-30 | France Telecom | Procede de traitement d'un signal sonore bruite et dispositif pour la mise en œuvre du procede |
US7760887B2 (en) * | 2004-10-15 | 2010-07-20 | Lifesize Communications, Inc. | Updating modeling information based on online data gathering |
WO2007130766A2 (fr) * | 2006-05-04 | 2007-11-15 | Sony Computer Entertainment Inc. | Suppression de bruit pour dispositif électronique équipé d'un microphone de champ lointain sur console |
US7912567B2 (en) * | 2007-03-07 | 2011-03-22 | Audiocodes Ltd. | Noise suppressor |
JP5152800B2 (ja) * | 2008-07-09 | 2013-02-27 | 国立大学法人 奈良先端科学技術大学院大学 | 雑音抑圧評価装置およびプログラム |
JP5152799B2 (ja) * | 2008-07-09 | 2013-02-27 | 国立大学法人 奈良先端科学技術大学院大学 | 雑音抑圧装置およびプログラム |
EP2151821B1 (fr) * | 2008-08-07 | 2011-12-14 | Nuance Communications, Inc. | Procédé de réduction de bruit de signaux vocaux |
JP5376635B2 (ja) * | 2009-01-07 | 2013-12-25 | 国立大学法人 奈良先端科学技術大学院大学 | 雑音抑圧処理選択装置,雑音抑圧装置およびプログラム |
US9886968B2 (en) * | 2013-03-04 | 2018-02-06 | Synaptics Incorporated | Robust speech boundary detection system and method |
US11335312B2 (en) | 2016-11-08 | 2022-05-17 | Andersen Corporation | Active noise cancellation systems and methods |
EP3788619A1 (fr) | 2018-05-04 | 2021-03-10 | Andersen Corporation | Ciblage de fréquence multibande pour atténuation de bruit |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0525408A3 (en) * | 1991-07-01 | 1993-12-22 | Eastman Kodak Co | Method for multiframe wiener restoration of noisy and blurred image sequences |
FR2681715B1 (fr) * | 1991-09-25 | 1994-02-11 | Matra Communication | Procede de traitement de la parole en presence de bruits acoustiques: procede de soustraction spectrale non lineaire . |
WO1995016259A1 (fr) * | 1993-12-06 | 1995-06-15 | Philips Electronics N.V. | Systeme et dispositif de reduction du bruit et unite de radiotelephone mobile |
SE505156C2 (sv) * | 1995-01-30 | 1997-07-07 | Ericsson Telefon Ab L M | Förfarande för bullerundertryckning genom spektral subtraktion |
CN1135753C (zh) * | 1995-12-15 | 2004-01-21 | 皇家菲利浦电子有限公司 | 自适应噪声抵消装置、减噪系统及收发机 |
FR2744277B1 (fr) | 1996-01-26 | 1998-03-06 | Sextant Avionique | Procede de reconnaissance vocale en ambiance bruitee, et dispositif de mise en oeuvre |
-
1997
- 1997-11-21 FR FR9714641A patent/FR2771542B1/fr not_active Expired - Fee Related
-
1998
- 1998-11-20 DE DE69817507T patent/DE69817507D1/de not_active Expired - Lifetime
- 1998-11-20 US US09/196,138 patent/US6445801B1/en not_active Expired - Fee Related
- 1998-11-20 EP EP98402894A patent/EP0918317B1/fr not_active Expired - Lifetime
- 1998-11-24 JP JP10333319A patent/JPH11265198A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7313518B2 (en) | 2001-01-30 | 2007-12-25 | France Telecom | Noise reduction method and device using two pass filtering |
Also Published As
Publication number | Publication date |
---|---|
JPH11265198A (ja) | 1999-09-28 |
FR2771542B1 (fr) | 2000-02-11 |
FR2771542A1 (fr) | 1999-05-28 |
US6445801B1 (en) | 2002-09-03 |
EP0918317A1 (fr) | 1999-05-26 |
DE69817507D1 (de) | 2003-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0918317B1 (fr) | Procédé de filtrage fréquentiel appliqué au débruitage de signaux sonores mettant en oeuvre un filtre de Wiener | |
EP0993671B1 (fr) | Procede de recherche d'un modele de bruit dans des signaux sonores bruites | |
EP1789956B1 (fr) | Procede de traitement d'un signal sonore bruite et dispositif pour la mise en oeuvre du procede | |
EP1154405B1 (fr) | Procédé et dispositif de reconnaissance vocale dans des environnements a niveau de bruit fluctuant | |
EP1356461B1 (fr) | Procede et dispositif de reduction de bruit | |
EP1016072B1 (fr) | Procede et dispositif de debruitage d'un signal de parole numerique | |
EP0594480B1 (fr) | Procédé de détection de la parole | |
EP2772916B1 (fr) | Procédé de débruitage d'un signal audio par un algorithme à gain spectral variable à dureté modulable dynamiquement | |
FR3012928A1 (fr) | Modificateurs reposant sur un snr estime exterieurement pour des calculs internes de mmse | |
EP1131813B1 (fr) | Procede de reconnaissance vocale dans un signal acoustique bruite et systeme mettant en oeuvre ce procede | |
EP1016071B1 (fr) | Procede et dispositif de detection d'activite vocale | |
FR3012927A1 (fr) | Estimation precise du rapport signal a bruit par progression reposant sur une probabilite de la presence de la parole mmse | |
EP1016073B1 (fr) | Procede et dispositif de debruitage d'un signal de parole numerique | |
FR3086451A1 (fr) | Filtrage d'un signal sonore acquis par un systeme de reconnaissance vocale | |
EP2515300B1 (fr) | Procédé et système de réduction du bruit | |
EP1021805B1 (fr) | Procede et disposition de conditionnement d'un signal de parole numerique | |
WO1999027523A1 (fr) | Procede de reconstruction, apres debruitage, de signaux sonores | |
WO2022207994A1 (fr) | Estimation d'un masque optimise pour le traitement de donnees sonores acquises | |
EP4163866A1 (fr) | Procédé, programme d'ordinateur et dispositif de traitement d'images par extraction de composante(s) principale(s) d'une représentation d'images | |
CA2389785A1 (fr) | Procede et systeme de pre et de post-traitement d'un signal audio pour la transmission sur un canal fortement perturbe | |
WO2002093553A1 (fr) | Estimation de periodes fondamentales de sources concurrentes multiples notamment de son |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19990723 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THOMSON-CSF SEXTANT |
|
AKX | Designation fees paid |
Free format text: DE FR GB NL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THALES AVIONICS S.A. |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7G 10L 21/02 A |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030827 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030827 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 69817507 Country of ref document: DE Date of ref document: 20031002 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031128 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20030827 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040528 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20151023 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |