EP0915960A1 - Waschmittelzusammensetzung und verfahren - Google Patents

Waschmittelzusammensetzung und verfahren

Info

Publication number
EP0915960A1
EP0915960A1 EP97936189A EP97936189A EP0915960A1 EP 0915960 A1 EP0915960 A1 EP 0915960A1 EP 97936189 A EP97936189 A EP 97936189A EP 97936189 A EP97936189 A EP 97936189A EP 0915960 A1 EP0915960 A1 EP 0915960A1
Authority
EP
European Patent Office
Prior art keywords
acid
surfactant
detergent
alkyl
preferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97936189A
Other languages
English (en)
French (fr)
Other versions
EP0915960A4 (de
Inventor
Robin Gibson Hall
Christian Leo Marie Vermote
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP0915960A1 publication Critical patent/EP0915960A1/de
Publication of EP0915960A4 publication Critical patent/EP0915960A4/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/042Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0086Laundry tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38609Protease or amylase in solid compositions only

Definitions

  • the present invention relates to a process for preparing a detergent composition and a detergent composition which is suitable for use in laundry and dish washing methods.
  • phosphate builders which have generally been replaced with zeolite (crystalline aluminosilicate).
  • Detergents containing zeolite builders have been found to be poorer dispensers than detergents containing phosphate builders.
  • EP-A-0 578 871 describes a process which seeks to make a high bulk density detergent composition which dissolves rapidly and dispenses effectively.
  • the process involves formulating a base powder with a particle size distribution between 150 microns and 1700 microns in combination with additional filler ingredients whereby at least 20% by weight of the filler particles is less than 150 microns.
  • the filler particles include salts of citrate, sulphate, (bi-)carbonate and silicates.
  • WO95/ 14767 relates to the poor dispensing of high density, non-spray-dried detergent powders, and discloses the use of a citric acid salt which has a Rosin Rammler particle size of less than 800 microns.
  • WO94/28098 discloses a non-spray-dried detergent powder comprising a combination of an ethoxylated primary C8-18 alcohol, an alkali metal aluminosilicate builder and 5 to 40 wt% of a water-soluble salt of a citric acid.
  • EP-A-0 639 637 discloses the replacement of perborate bleach with an alkali metal percarbonate to improve the dispensing profile and dissolution rate of a detergent. Citrate or mixtures of citrate with sulphate or carbonate can be used to coat the percarbonate bleach.
  • EP-A-0 639 639 contains a similar disclosure in this respect.
  • effervescence to improve the dispersibility of granular materials has been used extensively in pharmaceutical preparations.
  • the use of this simple effervescent system has also been described for improving the dispersibility of pesticidal compositions for controlling water-borne pests, e.g. GB-A-2, 184,946.
  • US-A-4,414,130 discloses the use of a readily disintegratable builder particle with a zeolite-based detergent. It also discloses the use of an effervescence material to improve the dissolving and dissolution of the particles.
  • Sodium carbonate or sodium bicarbonate may be combined with the zeolite binder mix and the balance of the detergent may include citric acid, monosodium phosphate, boric acid or other suitable acidifying material, preferably encapsulated or agglomerated with bicarbonate, for reaction with it to generate carbon dioxide.
  • WO92/ 18596 discloses that improved solubility /dispersion for granular detergents can be achieved by admixing sodium carbonate and citric acid in a specified weight ratio of from 2:1 to 15:1.
  • EP-A-0 534 525 discloses the use of citric acid with a specified particle size range of 350 to 1500 microns.
  • US-A-5,1 14,647 disclosesa method for producing a sanitizing composition in compressed form which includes: a) admixing an alkali metal carbonate with a solid water soluble aliphatic carboxylic acid to form an acidic mixture, b) compressing the acidic mixture to produce a compressed form of the acidic mixture, c) crushing the compressed form to produce granules of the acidic mixture, and d) admixing granules of the acidicmixture with an alkali metal chloroisocyanurate and an alklai metal bicarbinate to produce a sanitizing composition.
  • the problem with such an appraoch is that it is unlikely that you will obtain a combination of the components in the same particle.
  • citric acid results in a reduction in alkalinity.
  • Such an alkaline pH promotes cleaning, stain removal and soil suspension, there is need to minimize the level of citric acid used.
  • citric acid is a relatively expensive ingredient which further reinforces the need to keep the level of citric acid very low.
  • the present invention provides a method which produces a detergent composition which allows low levels of the acid to be satisfactorily used in it.
  • a process for making a detergent composition comprising : i) admixing a detergent surfactant and an acid source to form a surfactant/acid mixture; and ii) forming an agglomerated surfactant/acid mix.
  • a detergent composition comprising a particulate base composition comprising a mixture of a detergent surfactant and an acid source.
  • the present invention thus relates to an intimate admixture of the surfactant and acid source, and a process for producing it.
  • the detergent composition further comprises an alkaline source, which may form part of the particulate base composition and hence be mixed with the detergent surfactant and acid source in the present process, or it may be added as a separate component.
  • an alkaline source which may form part of the particulate base composition and hence be mixed with the detergent surfactant and acid source in the present process, or it may be added as a separate component.
  • the present invention includes a detergent composition.
  • Such compositions comprise a base composition containing one or more surfactant, acid source and preferably a builder material.
  • the base composition may be prepared by agglomeration.
  • the base composition may also comprise the alkaline source.
  • the alkaline source may be added as a separate component to the detergent base composition, preferably in a granular form.
  • the alkaline source is preferably present at an amount of about 5% or less by weight of the particle.
  • the surfactant is preferably an anionic or nonionic surfactant.
  • An anionic surfactant is especially preferred-
  • the surfactant is present in the particulate base material at a level of at least about 15% by weight of the particle.
  • the acid source is preferably an organic acid, or derivative thereof, and is preferably present at an amount is the range of about 5% to about 60% by weight of the particle.
  • the composition also contains a builder, which is preferably part of the base composition, and is present in an amount in the range of about 20% to 80% by weight of the particle.
  • the builder is preferably zeolite.
  • Other optional ingredients may be present and are each added at an amount of about 10% or less by weight of the particle.
  • the essential and optional ingredients of the detergent composition, and processes for making the detergents, are described in detail below.
  • This ingredient is preferably present in an amount of from 1% to 90%, preferably 3% to 70%, more preferably 5% to 40%, even more preferably 10% to 30%, most preferably 12% to 25% by weight of the detergent composition.
  • the detergent is selected from anionics, nonionics, zwitterionics, ampholytics, amphoteric, cationics and mixtures thereof.
  • the surfactant is anionic, nonionic or a mixture thereof.
  • the additional surfactant is preferably present at a level of from 0.1% to 50%, more preferably from 1% to 40%, most preferably from 5% to 30% by weight of the total surfactant present.
  • ampholytic, amphoteric and zwitterionic surfactants are generally used in combiantion with one or more anionic and/or nonionic surfactants.
  • the surfactant system may include an anionic surfactant.
  • anionic surfactants useful for detersive purposes are suitable. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants. Anionic sulfate surfactants are preferred.
  • anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C , - -C - ,-, monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C fi -C , . diesters), N-acyl sarcosinates.
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
  • Anionic sulfate surfactants suitable for use herein include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C5-C17 acyl-N-(C 1 -C4 alkyl) and -N-(C j - C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
  • Alkyl sulfate surfactants are preferably selected from the linear and branched primary C'o-Cig alkyl sulfates, more preferably the C ⁇ 1-C15 branched chain alkyl sulfates and the C12- 14 linear chain alkyl sulfates.
  • Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C- fj-C- g alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C j 1 -C 1 g, most preferably C j 1 -C 15 alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
  • a particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT Patent Application No. WO 93/18124.
  • Anionic sulfonate surfactant Anionic sulfonate surfactant
  • Anionic sulfonate surfactants suitable for use herein include the salts of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, Cg-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
  • Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
  • Suitable alkyl ethoxy carboxylates include those with the formula RO(CH2CH2 ⁇ ) x CH2COO-M "1" wherein R is a C5 to C ⁇ g alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation.
  • Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR * -CHR2-O) -R3 wherein R is a C6 to Cjg alkyl group, x is from 1 to 25, R * and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
  • Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon.
  • Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water- soluble salts of 2-methyl-l-undecanoic acid, 2-ethyl-l -decanoic acid, 2-propyl-l- nonanoic acid, 2-butyl-l -octanoic acid and 2-pentyl-l -heptanoic acid. Certain soaps may also be included as suds suppressors.
  • alkali metal sarcosinates of formula R-CON (Ri) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, Ri is a Cj-C4 alkyl group and M is an alkali metal ion.
  • R is a C5-C17 linear or branched alkyl or alkenyl group
  • Ri is a Cj-C4 alkyl group
  • M is an alkali metal ion.
  • any alkoxylated nonionic surfactants are suitable herein.
  • the ethoxylated and propoxylated nonionic surfactants are preferred.
  • Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxy lated/propoxylated fatty alcohols, nonionic ethoxy late/propoxy late condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.
  • Nonionic alkoxylated alcohol surfactant The condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms.
  • Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
  • Nonionic polvhvdroxy fatty acid amide surfactant Nonionic polvhvdroxy fatty acid amide surfactant
  • Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R 2 CONR!Z wherein : RI is H, C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C1-C4 alkyl, more preferably C * or C2 alkyl, most preferably C ⁇ alkyl (i.e., methyl); and R2 is a C5-C3- hydrocarbyl, preferably straight-chain C5-C 1 alkyl or alkenyl, more preferably straight-chain C9-C17 alkyl or alkenyl, most preferably straight-chain C ⁇ * -C j 7 alkyl or alkenyl, or mixture thereof; .and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxyl
  • Nonionic fatty acid amide surfactant Nonionic fatty acid amide surfactant
  • Suitable fatty acid amide surfactants include those having the formula: R ⁇ CON(R ⁇ )2 wherein R > is an alkyl group containing from 7 to 21 , preferably from 9 to 17 carbon atoms and each R? is selected from the group consisting of hydrogen, C ⁇ -C4 alkyl, C ⁇ - C4 hydroxyalkyl, and -(C2H4O) x H, where x is in the range of from 1 to 3.
  • Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
  • Preferred alkylpolyglycosides have the formula R2 ⁇ (C n H 2n O)t(glycosyl) x
  • R ⁇ is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8.
  • the glycosyl is preferably derived from glucose.
  • Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
  • R ⁇ is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R ⁇ is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups.
  • a suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Cone, manufactured by Miranol, Inc., Dayton, NJ.
  • Zwitterionic surfactants can also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
  • Suitable betaines are those compounds having the formula R(R')2N + R2COO ⁇ wherein R is a C6-C] hydrocarbyl group, each R* is typically C1-C3 alkyl, and R ⁇ is a C- -C5 hydrocarbyl group.
  • Preferred betaines are C 12- 1 g dimethyl-ammonio hexanoate and the c 10-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines.
  • Complex betaine surfactants are also suitable for use herein.
  • Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C6-C16, preferably C -C ⁇ Q N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • the surfactant system may include a cationic ester surfactant. That is, a preferably water dispersible compound having surfactant properties comprising at least one ester (ie - COO-) linkage and at least one cationically charged group.
  • Suitable cationic ester surfactants including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
  • Preferred water dispersible cationic ester surfactants are the choline esters having the formula:
  • Rj is a C 1 j -C 19 linear or branched alkyl chain.
  • the cationic ester surfactant is hydrolysable under the conditions of a laundry wash method.
  • the source of acidity is present in the detergent composition such that the it is capable of reacting with the source of alkali to produce a gas.
  • the source of acidity is preferably present at a level of about to about 15% by weight of the composition. Preferably up to about 10%, more preferably up to about 7% by weight. As previously mentioned it is advantageous to use as little of the source of acidity as possible, we have found that the present invention allows the use of levels as low as about 0.25% to about 5%. In a preferred embodiment of the present invention the source of acidity is present in the range of about 1 % to about 3%, most preferably about 3% by weight of the composition.
  • the source of acidity may be any suitable organic, mineral or inorganic acid, or a derivative thereof, or a mixture thereof.
  • the source of acidity may be a mono-, bi- or tri- protonic acid.
  • Preferred derivatives include a salt or ester of the acid.
  • the source of acidity is preferably non-hygroscopic, in order to improve storage stability.
  • Organic acids and their derivatives are preferred.
  • the acid is preferably water-soluble. Suitable acids include citric, glutaric, succinic or adipic acid, monosodium phosphate, sodium hydrogen sulfate, boric acid, or a salt or an ester thereof. Citric acid is especially preferred.
  • an alkalinity system may be present in the detergent composition such that it has the capacity to react with the source of acidity to produce a gas.
  • this gas is carbon dioxide, and therefore the alkali is a carbonate, or a suitable derivative thereof.
  • the detergent composition of the present invention preferably contains from about 2% to about 75%, preferably from about 5% to about 60%, most preferably from about 10% to about 30% by weight of the alkali source.
  • the agglomerate preferably contains from about 10% to about 60% of the alkali source.
  • the alkalinity source is a carbonate.
  • preferred carbonates are the alkaline earth and alkali metal carbonates, including sodium carbonate, bicarbonate and sesqui -carbonate and any mixtures thereof with ultra-fine calcium carbonate such as are disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
  • Alkali metal percarbonate salts are also suitable sources of carbonate species and are described in more detail in the section 'inorganic perhydrate salts' herein.
  • the alkalinity source may include other components, such as a silicate.
  • Suitable silicates include the water soluble sodium silicates with an Si ⁇ 2: Na2 ⁇ ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.0 being preferred, and 2.0 ratio being most preferred.
  • the silicates may be in the form of either the anhydrous salt or a hydrated salt.
  • Sodium silicate with an Si ⁇ 2: Na2 ⁇ ratio of 2.0 is the most preferred silicate.
  • Alkali metal persilicates are also suitable sources of silicate herein.
  • Preferred crystalline layered silicates for use herein have the general formula
  • M is sodium or hydrogen
  • x is a number from 1.9 to 4 and y is a number from 0 to 20.
  • Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043.
  • x in the general formula above preferably has a value of 2, 3 or 4 and is preferably 2.
  • the most preferred material is ⁇ -Na2Si2 ⁇ 5, available from Hoechst AG as NaSKS-6.
  • detergent compositions of the invention may also contain additional detergent components.
  • additional detergent components and levels of incorporation thereof will depend on the physical form of the composition, and the precise nature of the washing operation for which it is to be used.
  • compositions of the invention preferably contain one or more additional detergent components selected from additional surfactants, bleaches, builders, organic polymeric compounds, enzymes, suds suppressers, lime soap dispersants, soil suspension and anti- redeposition agents and corrosion inhibitors.
  • the detergent compositions of the present invention preferably contain a water-soluble builder compound, typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% by weight of the composition.
  • Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, phosphates, and mixtures of any of the foregoing.
  • the carboxylate or polycarboxylate builder can be monomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
  • Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof.
  • Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid,
  • polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the caiboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No.
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1 ,261 ,829, 1 , 1 ,2,2-ethane tetracarboxylates, 1 , 1 ,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
  • Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
  • Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • the parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
  • Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21 , and salts of phytic acid.
  • Partially soluble or insoluble builder compound Partially soluble or insoluble builder compound
  • the detergent compositions of the present invention may contain a partially soluble or insoluble builder compound, typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% weight of the composition.
  • Examples of largely water insoluble builders include the sodium aluminosilicates.
  • Suitable aluminosilicate zeolites have the unit cell formula Na z [(AlO2) z (SiO2)y]- XH2O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264.
  • the aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
  • the aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula
  • Zeolite X has the formula Nagg [(AlO 2 )86(SiO2)i06J- 276 H 2 O.
  • a preferred feature of detergent compositions of the invention is an organic peroxyacid bleaching system.
  • the bleaching system contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound.
  • the production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide.
  • Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches.
  • a preformed organic peroxyacid is incorporated directly into the composition.
  • Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged.
  • Inorganic perhydrate salts are a preferred source of hydrogen peroxide. These salts are normally incorporated in the form of the alkali metal, preferably sodium salt at a level of from 1% to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions. Examples of inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts. The inorganic perhydrate salts are normally the alkali metal salts. The inorganic perhydrate salt may be included as the crystalline solid without additional protection.
  • Suitable executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product.
  • Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
  • Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal formula NaB ⁇ 2H2 ⁇ 2 or the tetrahydrate NaB ⁇ 2H2 ⁇ 2-3H2 ⁇ .
  • Alkali metal percarbonates particularly sodium percarbonate are preferred perhydrates herein.
  • Sodium percarbonate is an addition compound having a formula corresponding to 2Na2CO3.3H2O2, and is available commercially as a crystalline solid.
  • Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
  • Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid.
  • peroxyacid bleach precursors may be represented as
  • L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is
  • OOH Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15% by weight, most preferably from 1.5% to 10% by weight of the detergent compositions.
  • Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O- acyl groups, which precursors can be selected from a wide range of classes.
  • Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A- 1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1 147871, 2143231 and EP-A-0170386.
  • L group The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
  • Preferred L groups are selected from the group consisting of:
  • R is an alkyl, aryl, or alkaryl group containing from 1 to
  • R is an alkyl chain containing from 1 to 8 carbon atoms, R is H or
  • R 3 , and Y is H or a solubilizing group.
  • Any of R 1 , R3 and R 4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammmonium groups
  • the preferred solubilizing groups are -SO, ⁇ M , -CO ⁇ ' M , -SO M , -N (R ).X ⁇ and
  • R is an alkyl chain containing from 1 to 4 carbon atoms
  • M is a cation which provides solubility to the bleach activator
  • X is an anion which provides solubility to the bleach activator.
  • M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide. hydroxide, methylsulfate or acetate anion.
  • Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis.
  • Preferred precursors of this type provide peracetic acid on perhydrolysis.
  • Preferred alkyl percarboxylic precursor compounds of the imide type include the N- ,N,N'N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
  • TAED Tetraacetyl ethylene diamine
  • alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
  • Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae:
  • Ri is an alkyl group with from 1 to 14 carbon atoms
  • R ⁇ is an alkylene group containing from 1 to 14 carbon atoms
  • R ⁇ is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group.
  • Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
  • Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis.
  • Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas.
  • Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole.
  • Other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
  • Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis.
  • cationic peroxyacid precursors are formed by substituting the peroxyacid part of a suitable peroxyacid precursor compound with a positively charged functional group, such as an ammonium or alkyl ammmonium group, preferably an ethyl or methyl ammonium group.
  • Cationic peroxyacid precursors are typically present in the solid detergent compositions as a salt with a suitable anion, such as a halide ion.
  • the peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore.
  • the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor compound or an amide substituted alkyl peroxyacid precursor as described hereinafter
  • Cationic peroxyacid precursors are described in U.S. Patents 4,904,406; 4,751,015; 4,988,451; 4,397,757; 5,269,962; 5,127,852; 5,093,022; 5,106,528; U.K. 1 ,382,594; EP 475,512, 458,396 and 284,292; and in JP 87-318,332.
  • Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or benzoyl oxybenzene sulfonates, N-acylated caprolactams, and monobenzoyltetraacetyl glucose benzoyl peroxides.
  • Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benzoyl caprolactams and the trialkyl ammonium methylene alkyl caprolactams.
  • precursor compounds of the benzoxazin-type as disclosed for example in EP-A-332,294 and EP-A-482,807, particularly those having the formula:
  • R is H, alkyl, alkaryl, aryl, or arylalkyl.
  • the organic peroxyacid bleaching system may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1% to 15% by weight, more preferably from 1% to 10% by weight of the composition.
  • a preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
  • R ⁇ is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms
  • R ⁇ is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms
  • R ⁇ is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms.
  • Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
  • organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid.
  • diacyl and tetraacylperoxides especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid.
  • Mono- and diperazelaic acid, mono- and diperbrassylic acid and N- phthaloylaminoperoxicaproic acid are also suitable herein.
  • compositions optionally contain a transition metal containing bleach catalyst.
  • a transition metal containing bleach catalyst is a catalyst system comprising a heavy metal cation of defined bleach catalytic activity, such as copper, iron or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
  • ethylenediaminetetraacetic acid ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
  • bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246,621 and U.S. Pat. 5,244,594. Preferred examples of these catalysts include Mn IV 2(u-O)3( 1 ,4,7-trimethyl- 1 ,4,7-triazacyclononane)2-(PF6)2, Mn i 2 (u-O)i (u- O Ac)2( 1 ,4,7-trimethyl- 1 ,4,7-triazacyclononane)2-(Cl ⁇ 4)2, Mn 1 V 4(u-O)s( 1 ,4,7- triazacyclononane)4-(ClO4)2, Mn ⁇ Mn 1 V 4(u-O) ⁇ (u-OAc)2_( 1 ,4,7-trimethyl- 1 ,4,7- triazacyclononane)2-(Cl ⁇ 4)3, and mixtures thereof.
  • ligands suitable for use herein include l ,5,9-trimethyl-l,5,9-triazacyclododecane, 2-methyl-l,4,7-triazacyclononane, 2-methyl- 1 ,4,7-triazacyclononane, 1 ,2,4,7-tetramethy 1- 1 ,4,7-triazacyclononane, and mixtures thereof.
  • bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat. 5,227,084. See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn( 1 ,4,7-trimethyl- 1 ,4,7-triazacyclononane)(OCH3)3_(PF6).
  • Still another type of bleach catalyst, as disclosed in U.S. Pat. 5,1 14,606, is a water-soluble complex of manganese (III), and/or (IV) with a ligand which is a non-carboxylate polyhydroxy compound having at least three consecutive C-OH groups.
  • binuclear Mn complexed with tetra-N-dentate and bi-N-dentate ligands including N 4 Mn ⁇ (u-O)2Mn IV N4) + and [Bipy2Mn m (u-O) 2 Mn Iv bipy2]-(ClO 4 )3.
  • bleach catalysts are described, for example, in European patent application No. 408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-porphyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (manganese/ligand catalyst), U.S. 4,1 19,557 (ferric complex catalyst), German Pat.
  • the detergent compositions of the invention preferably contain as an optional component a heavy metal ion sequestrant.
  • heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
  • Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%, preferably from 0.1% to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the compositions.
  • Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1 -hydroxy disphosphonates and nitrilo trimethylene phosphonates.
  • Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1 ,1 di phosphonate.
  • Suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2- hydroxypropylenediamine disuccinic acid or any salts thereof.
  • Suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133.
  • iminodiacetic acid-N-2- hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3- sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein.
  • EP-A-509,382 The ⁇ - alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
  • EP-A-476,257 describes suitable amino based sequestrants.
  • EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein.
  • EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane- 1,2,4-tricarboxylic acid are alos suitable.
  • Glycinamide-N,N'-disuccinic acid Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2-hydroxypropylenediamine-N-N'- disuccinic acid (HPDDS) are also suitable.
  • Another preferred ingredient useful in the detergent compositions is one or more additional enzymes.
  • Preferred additional enzymatic materials include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, esterases, cellulases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
  • protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist- Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes.
  • Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 4% active enzyme by weight of the composition.
  • Preferred amylases include, for example, ⁇ -amylases obtained from a special strain of B licheniformis, described in more detail in GB- 1,269,839 (Novo).
  • Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl and BAN by Novo Industries A/S.
  • Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001% to 2% active enzyme by weight of the composition.
  • Lipolytic enzyme may be present at levels of active Iipolytic enzyme of from 0.0001% to 2% by weight, preferably 0.001% to 1% by weight, most preferably from 0.001% to 0.5% by weight of the compositions.
  • the lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain of Humicola sp., Thermomyces sp. or Pseudomonas sp. including Pseudomonas pseudoalcaligenes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein.
  • a preferred lipase is derived from Pseudomonas pseudoalcaligenes. which is described in Granted European Patent, EP-B-0218272.
  • Another preferred lipase herein is obtained by cloning the gene from Humicola lanuginosa and expressing the gene in Aspergillus orvza. as host, as described in
  • EP-A-0258 068 which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S. Patent 4,810,414, Huge- Jensen et al, issued March 7, 1989.
  • Organic polymeric compounds are preferred additional components of the detergent compositions in accord with the invention, and are preferably present as components of any particulate components where they may act such as to bind the particulate component together.
  • organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein.
  • Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.1% to 30%, preferably from 0.5% to 15%, most preferably from 1% to 10% by weight of the compositions.
  • organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of the latter type are disclosed in GB-A- 1,596,756.
  • salts are polyacrylates of MWt 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 100,000, especially 40,000 to 80,000.
  • the polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
  • Terpolymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000, are also suitable herein.
  • organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose and hydroxyethylcellulose.
  • organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
  • the detergent compositions of the invention when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a level of from 0.01 % to 15%, preferably from 0.05% to 10%, most preferably from 0.1 % to 5% by weight of the composition.
  • Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
  • antifoam compound any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
  • Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component.
  • silicone antifoam compounds as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
  • Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
  • Suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
  • the monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms.
  • Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
  • Suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic l 8" 40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa- alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
  • high molecular weight fatty esters e.g. fatty acid triglycerides
  • fatty acid esters of monovalent alcohols e.g. fatty acid esters of monovalent alcohols
  • a preferred suds suppressing system comprises
  • antifoam compound preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination
  • silica at a level of from 1% to 50%, preferably 5% to 25% by weight of the silicone/silica antifoam compound
  • silica/silicone antifoam compound is incorporated at a level of from 5% to 50%, preferably 10% to 40% by weight;
  • a dispersant compound most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1 :0.9 to 1 : 1.1 , at a level of from 0.5% to 10%, preferably 1% to 10% by weight;
  • a particularly preferred silicone glycol rake copolymer of this type is DCO544, commercially available from DOW Corning under the tradename DCO544;
  • an inert carrier fluid compound most preferably comprising a C ⁇ ( ,-C ⁇ g ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to
  • a highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms.
  • EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point offrom 45°C to 80°C.
  • the detergent compositions may contain a clay softening system comprising a clay mineral compound and optionally a clay flocculating agent.
  • the clay mineral compound is preferably a smectite clay compound.
  • Smectite clays are disclosed in the US Patents No.s 3.862,058, 3,948,790, 3,954,632 and 4,062,647.
  • European Patents No.s EP-A-299,575 and EP-A-313,146 in the name of the Procter and Gamble Company describe suitable organic polymeric clay flocculating agents.
  • the detergent compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
  • the polymeric dye transfer inhibiting agents are preferably selected from polyamine N- oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof.
  • Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula :
  • A is NC, CO, C, -O-, -S-, -N-; x is O or 1 ;
  • R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
  • the N-O group can be represented by the following general structures :
  • RI, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N- O group can be attached or wherein the nitrogen of the N-O group forms part of these groups.
  • the N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
  • Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
  • R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
  • One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R- group.
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
  • polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit.
  • a preferred class of these polyamine N-oxides comprises the polyamine N-oxides having the general formula (I) wherein R is an aromaticheterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
  • R is an aromaticheterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
  • examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
  • the polyamine N-oxides can be obtained in almost any degree of polymerisation.
  • the degree of polymerisation is not critical provided the material has the desired water- solubility and dye-suspending power.
  • the average molecular weight is within the range of 500 to 1000,000.
  • Suitable herein are coploymers of N-vinylimidazole and N-vinylpyrrolidone having an average molecular weight range of from 5,000 to 50,000.
  • the preferred copolymers have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2.
  • the detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from 2,500 to 400,000.
  • PVP polyvinylpyrrolidone
  • Suitable polyvinylpyrrolidones are commercially vailable from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K- 15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000).
  • PVP K-15 is also available from ISP Corporation.
  • Other suitable polyvinylpyrrolidones which are commercially available from BASF Cooperation include Sokalan HP 165 and Sokalan HP 12.
  • polyvinyloxazolidones as polymeric dye transfer inhibiting agents.
  • Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000.
  • the detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent.
  • Said polyvinylimidazoles preferably have an average molecular weight of from 2,500 to 400,000.
  • the detergent compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
  • Hydrophilic optical brighteners useful herein include those having the structural formula:
  • Rj is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl
  • R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino
  • M is a salt-forming cation such as sodium or potassium.
  • Rj is anilino
  • R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium
  • the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine- 2-yI)amino]-2,2'-stilbenedisulfonic acid and disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba- Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
  • Rj is anilino
  • R2 is N-2-hydroxyethyl-N-2-methylamino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-( -2-hydroxyethyl- N-methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation.
  • R * is anilino
  • R2 is morphilino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-mo ⁇ hilino-s-triazine-2-yI)amino]2,2'- stilbenedisulfonic acid, sodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Co ⁇ oration.
  • Cationic fabric softening agents can also be inco ⁇ orated into compositions in accordance with the present invention.
  • Suitable cationic fabric softening agents include the water insoluble tertiary amines or dilong chain amide materials as disclosed in GB-A- 1 514 276 and EP-B-0 011 340.
  • Cationic fabric softening agents are typically inco ⁇ orated at total levels of from 0.5% to 15% by weight, normally from 1 % to 5% by weight.
  • compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
  • compositions preferably have a pH measured as a 1% solution in distilled water of at least 10.0, preferably from 10.0 to 12.5, most preferably from 10.5 to 12.0.
  • compositions in accordance with the invention can take a variety of physical forms including granular, tablet, bar and liquid forms.
  • the compositions are particularly the so-called concentrated granular detergent compositions adapted to be added to a washing machine by means of a dispensing device placed in the machine drum with the soiled fabric load.
  • the mean particle size of the base composition of granular compositions in accordance with the invention should preferably be such that no more that 5% of particles are greater than 1.7mm in diameter and not more than 5% of particles are less than 0.15mm in diameter.
  • mean particle size as defined herein is calculated by sieving a sample of the composition into a number of fractions (typically 5 fractions) on a series of Tyler sieves. The weight fractions thereby obtained are plotted against the aperture size of the sieves. The mean particle size is taken to be the aperture size through which 50% by weight of the sample would pass.
  • the bulk density of granular detergent compositions in accordance with the present invention typically have a bulk density of at least 600 g/litre, more preferably from 650 g/litre to 1200 g/litre.Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrical cup disposed below the funnel.
  • the funnel is 130 mm high and has internal diameters of 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base.
  • the cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
  • the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup.
  • the filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement eg; a knife, across its upper edge.
  • the filled cup is then weighed and the value obtained for the weight of powder doubled to provide a bulk density in g/litre. Replicate measurements are made as required.
  • the composition is preferably soluble in cold or cool water, i.e. the composition readily dissolves/disperses in water at a temperature between about 0°C and 32.2°C, preferably between about 1.6°C and 10°C.
  • Surfactant agglomerate particles are preferably soluble in cold or cool water, i.e. the composition readily dissolves/disperses in water at a temperature between about 0°C and 32.2°C, preferably between about 1.6°C and 10°C.
  • the surfactant system herein is preferably present in granular compositions in the form of surfactant agglomerate particles, which may take the form offtakes, prills, marumes, noodles, ribbons, but preferably take the form of granules.
  • the most preferred way to process the particles is by agglomerating powders (e.g. aluminosilicate, carbonate) with high active surfactant pastes and to control the particle size of the resultant agglomerates within specified limits.
  • Such a process involves mixing an effective amount of powder with a high active surfactant paste in one or more agglomerators such as a pan agglomerator, a Z-blade mixer or more preferably an in-line mixer such as those manufactured by Schugi (Holland) BV, 29 Chroomstraat 8211 AS, Lelystad, Netherlands, and Gebruder Lodige Maschinenbau GmbH, D-4790 Paderborn 1, Elsenerstrasse 7-9, Postfach 2050, Germany. Most preferably a high shear mixer is used, such as a Lodige CB (Trade Name).
  • a high active surfactant paste in one or more agglomerators such as a pan agglomerator, a Z-blade mixer or more preferably an in-line mixer such as those manufactured by Schugi (Holland) BV, 29 Chroomstraat 8211 AS, Lelystad, Netherlands, and Gebruder Lodige Maschinenbau GmbH, D-4790 Paderborn 1, Elsenerstrasse
  • a high active surfactant paste comprising a mix of, typically, from 50% by weight to 95% by weight, preferably 70% by weight to 85% by weight of surfactant, and an appropriate acid source.
  • the paste may be pumped into the agglomerator at a temperature high enough to maintain a pumpable viscosity, but low enough to avoid degradation of the anionic surfactants used.
  • An operating temperature of the paste of 50°C to 80°C is typical.
  • the detergent composition has a density of greater than about 600 g 1 and is in the form of powder or a granulate containing more than about 5% by weight of the alkaline source, preferably (bi-)carbonate or percarbonate.
  • the carbonate material is either dry-added or delivered via agglomerates.
  • Machine laundry methods herein typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective .amount of a machine laundry detergent composition in accord with the invention.
  • an effective amount of the detergent composition it is meant from 40g to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
  • a dispensing device is employed in the washing method.
  • the dispensing device is charged with the detergent product, and is used to introduce the product directly into the drum of the washing machine before the commencement of the wash cycle. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method.
  • the dispensing device containing the detergent product is placed inside the drum.
  • water is introduced into the drum and the drum periodically rotates.
  • the design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its contact with the wash water.
  • the device may possess a number of openings through which the product may pass.
  • the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product.
  • the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of product in the drum of the washing machine at this stage of the wash cycle.
  • Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle.
  • Especially preferred dispensing devices for use with the composition of the invention have been described in the following patents; GB-B-2, 157, 717, GB-B-2, 157, 718, EP-A-0201376, EP-A-0288345 and EP-A-0288346.
  • An article by J.Bland published in Manufacturing Chemist, November 1989, pages 41-46 also describes especially preferred dispensing devices for use with granular laundry products which are of a type commonly know as the "granulette”.
  • Another preferred dispensing device for use with the compositions of this invention is disclosed in PCT Patent Application No.
  • WO94/1 1562 Especially preferred dispensing devices are disclosed in European Patent Application Publication Nos. 0343069 & 0343070.
  • the latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficient product for one washing cycle in a washing process. A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium.
  • the support ring is provided with a masking arrangemnt to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
  • the dispensing device may be a flexible container, such as a bag or pouch.
  • the bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678.
  • it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos. 001 1500, 0011501, 0011502, and 0011968.
  • a convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
  • Ci4_i5 predominantly linear primary alcohol condensed with an average of 7 moles of ethylene oxide
  • Ci4_i5 predominantly linear primary alcohol condensed with an average of 7 moles of ethylene oxide
  • Ci4_i5 predominantly linear primary alcohol condensed with an average of 7 moles of ethylene oxide
  • C25E3 A C i2-l 5 branched primary alcohol condensed with an average of 3 moles of ethylene oxide
  • Nai2(A102Si ⁇ 2)i2- 27H2O having a primary particle size in the range from 0.1 to 10 micrometers
  • Citric acid Anhydrous citric acid Carbonate Anhydrous sodium carbonate with a particle size between 200 ⁇ m and 900 ⁇ m
  • Bicarbonate Anhydrous sodium bicarbonate with a particle size distribution between 400 ⁇ m and 1200 ⁇ m
  • NOVO Industries A S Cellulase Cellulytic enzyme of activity 1000 CEVU/g sold by NOVO Industries A/S under the tradename
  • Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl
  • Brightener 2 Disodium 4,4'-bis(4-anilino-6-mo ⁇ holino- 1.3.5- triazin-2-yI)amino) stilbene-2:2'-disulfonate.
  • SRP 1 Sulfobenzoyl end capped esters with oxyethylene oxy and terephtaloyl backbone
  • SRP 2 Diethoxylated poly (1, 2 propylene terephtalate) short block polymer
  • Silicone antifoam Polydimethylsiloxane foam controller with siloxane-oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10: 1 to 100: 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
EP97936189A 1996-07-31 1997-07-23 Waschmittelzusammensetzung und verfahren Withdrawn EP0915960A4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9616113 1996-07-31
GB9616113A GB2315763A (en) 1996-07-31 1996-07-31 Preparation of an agglomerated detergent composition comprising a surfactant a an acid source
PCT/US1997/012965 WO1998004672A1 (en) 1996-07-31 1997-07-23 A process and composition for detergents

Publications (2)

Publication Number Publication Date
EP0915960A1 true EP0915960A1 (de) 1999-05-19
EP0915960A4 EP0915960A4 (de) 2001-09-19

Family

ID=10797812

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97936189A Withdrawn EP0915960A4 (de) 1996-07-31 1997-07-23 Waschmittelzusammensetzung und verfahren

Country Status (7)

Country Link
EP (1) EP0915960A4 (de)
CN (1) CN1230983A (de)
AR (1) AR008117A1 (de)
BR (1) BR9710898A (de)
CA (1) CA2261948C (de)
GB (1) GB2315763A (de)
WO (1) WO1998004672A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9823468D0 (en) * 1998-10-28 1998-12-23 Secr Defence Novel enzyme
US7053040B2 (en) 1999-11-10 2006-05-30 Eco-Safe Technologies, L.L.C. Autonomous cleaning composition and method
US20050130868A1 (en) 1999-11-10 2005-06-16 Evans K D. Multiuse, solid cleaning device and composition
US6403551B1 (en) 1999-11-10 2002-06-11 Eco-Safe, L.L.C. Autonomous cleaning apparatus and method
US6262004B1 (en) * 1999-11-10 2001-07-17 Eco-Safe, L.L.C. Cleaning composition for autonomous cleaning system
GB2376692A (en) * 2001-06-22 2002-12-24 Reckitt Benckiser Nv Fabric softening laundry tablet
WO2008040151A1 (fr) * 2006-09-01 2008-04-10 Tao Wang Détergent synthétique et son procédé de préparation
EP2598620B1 (de) 2010-07-27 2014-10-22 Unilever N.V. Reinigungsmittelzusammensetzung
CA3160403A1 (en) * 2020-04-03 2021-10-07 Syed Humza Naqvi Stable anhydrous laundry detergent concentrate and method of making same
US11359168B2 (en) 2020-04-03 2022-06-14 One Home Brands, Inc. Stable anhydrous laundry detergent concentrate and method of making same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753571A1 (de) * 1995-07-10 1997-01-15 The Procter & Gamble Company Verfahren zur Herstellung einer granulierten Waschmittelzusammensetzung
WO1997024423A1 (en) * 1995-12-28 1997-07-10 Rhone-Poulenc Surfactants & Specialties, L.P. Processes for producing solid surfactant compositions with enhanced dissolution rates
WO1997024424A1 (en) * 1995-12-28 1997-07-10 Rhone-Poulenc Surfactants & Specialties, L.P. Processes for producing solid surfactant compositions with decreased dissolution rates
WO1997033959A1 (en) * 1996-03-15 1997-09-18 Amway Corporation Free-flowing agglomerated nonionic surfactant detergent composition and process for making same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091544A (en) * 1977-02-11 1978-05-30 The Procter & Gamble Company Drying process
US4473485A (en) * 1982-11-05 1984-09-25 Lever Brothers Company Free-flowing detergent powders
JPS6230197A (ja) * 1985-07-31 1987-02-09 ライオン株式会社 タブレツト洗剤組成物
JPH02140300A (ja) * 1988-11-21 1990-05-29 Pola Chem Ind Inc 洗浄錠剤
US5114647A (en) * 1991-02-01 1992-05-19 Olin Corporation Effervescent tablets having increased disintegration rates
HUT65887A (en) * 1991-04-19 1994-07-28 Procter & Gamble Granular laundry detergent compositions having improved solubility and process for preparing the compositions
GB9120657D0 (en) * 1991-09-27 1991-11-06 Unilever Plc Detergent powders and process for preparing them
US5610131A (en) * 1993-04-30 1997-03-11 The Procter & Gamble Company Structuring liquid nonionic surfactants prior to granulation process
US5458799A (en) * 1993-08-03 1995-10-17 Amway Corporation Mix process for formulating detergents
US5478502A (en) * 1994-02-28 1995-12-26 The Procter & Gamble Company Granular detergent composition containing hydrotropes and optimum levels of anoionic surfactants for improved solubility in cold temperature laundering solutions
JPH07286199A (ja) * 1994-04-15 1995-10-31 Lion Corp タブレット洗剤組成物の製造方法
US5633224A (en) * 1994-07-14 1997-05-27 The Procter & Gamble Company Low pH granular detergent composition
ES2109858B1 (es) * 1994-11-23 1998-08-16 Menarini Lab Nuevos derivados del acido (+)-(s)-2-(3-benzoilfenil) propionico con accion analgesica y procedimiento para su obtencion.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753571A1 (de) * 1995-07-10 1997-01-15 The Procter & Gamble Company Verfahren zur Herstellung einer granulierten Waschmittelzusammensetzung
WO1997024423A1 (en) * 1995-12-28 1997-07-10 Rhone-Poulenc Surfactants & Specialties, L.P. Processes for producing solid surfactant compositions with enhanced dissolution rates
WO1997024424A1 (en) * 1995-12-28 1997-07-10 Rhone-Poulenc Surfactants & Specialties, L.P. Processes for producing solid surfactant compositions with decreased dissolution rates
WO1997033959A1 (en) * 1996-03-15 1997-09-18 Amway Corporation Free-flowing agglomerated nonionic surfactant detergent composition and process for making same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9804672A1 *

Also Published As

Publication number Publication date
BR9710898A (pt) 2000-10-24
GB2315763A (en) 1998-02-11
GB9616113D0 (en) 1996-09-11
CA2261948A1 (en) 1998-02-05
AR008117A1 (es) 1999-12-09
WO1998004672A1 (en) 1998-02-05
CN1230983A (zh) 1999-10-06
EP0915960A4 (de) 2001-09-19
CA2261948C (en) 2002-10-15

Similar Documents

Publication Publication Date Title
US6610312B2 (en) Cosmetic effervescent cleansing pillow
CA2255594C (en) Detergent composition
GB2303150A (en) Laundry washing method
EP0843715A1 (de) Wassermittelzusammensetzungen.
US6093218A (en) Detergent composition comprising an acid source with a specific particle size
US6191100B1 (en) Detergent composition having effervescent generating ingredients
GB2303145A (en) Detergent compositions
CA2261609C (en) A detergent composition comprising an acid source with a specific particle size
CA2261948C (en) A process and composition for detergents
WO1998004662A9 (en) A detergent composition comprising an acid source with a specific particle size
EP0866118A2 (de) Waschmittelteilchen
CA2261349C (en) A detergent composition
WO1997043367A1 (en) Detergent composition
GB2303144A (en) Detergent compositions
EP0970171A1 (de) Waschmittelgranulat
EP0915954A1 (de) Waschmittelzusammensetzung
EP0915949A1 (de) Waschmittelzusammensetzungen
US6380144B1 (en) Detergent composition
CA2261348C (en) A process and composition for detergents
US6096703A (en) Process and composition for detergents
US6162784A (en) Process and composition for detergents
GB2303142A (en) Detergent compositions
GB2303141A (en) Detergent compositions
GB2303140A (en) Detergent compositions
GB2323372A (en) An effervescent laundry detergent composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

A4 Supplementary search report drawn up and despatched

Effective date: 20010803

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 11D 11/00 A, 7C 11D 17/06 B, 7C 11D 3/10 B

17Q First examination report despatched

Effective date: 20020314

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030718