GB2303140A - Detergent compositions - Google Patents

Detergent compositions Download PDF

Info

Publication number
GB2303140A
GB2303140A GB9513955A GB9513955A GB2303140A GB 2303140 A GB2303140 A GB 2303140A GB 9513955 A GB9513955 A GB 9513955A GB 9513955 A GB9513955 A GB 9513955A GB 2303140 A GB2303140 A GB 2303140A
Authority
GB
United Kingdom
Prior art keywords
weight
surfactant
detergent composition
alkalinity
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB9513955A
Other versions
GB9513955D0 (en
Inventor
Gerard Marcel Baillely
Robin Gibson Hall
Christian Leo Marie Vermote
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to GB9513955A priority Critical patent/GB2303140A/en
Publication of GB9513955D0 publication Critical patent/GB9513955D0/en
Priority to AU64032/96A priority patent/AU6403296A/en
Priority to JP9505858A priority patent/JPH11508946A/en
Priority to MX9800269A priority patent/MX9800269A/en
Priority to BR9609630A priority patent/BR9609630A/en
Priority to PCT/US1996/011104 priority patent/WO1997003159A1/en
Priority to CA 2226577 priority patent/CA2226577A1/en
Priority to EP96923550A priority patent/EP0863969A4/en
Priority to ARP960103495A priority patent/AR002781A1/en
Publication of GB2303140A publication Critical patent/GB2303140A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0026Low foaming or foam regulating compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/86Mixtures of anionic, cationic, and non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/046Insoluble free body dispenser
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/525Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain two or more hydroxy groups per alkyl group, e.g. R3 being a reducing sugar rest
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

A detergent composition suitable for use in laundry and dishwashing methods comprises (a) a foaming surfactant system comprising surfactant selected from anionic, non-ester cationic, nonionic, ampholytic, amphoteric and zwitterionic surfactants and any mixtures thereof; (b) a hydrolysable cationic ester surfactant; (c) an alkalinity system having the capacity to deliver alkalinity to a wash solution as measured by the alkalinity release test method described herein such that the % weight NaOH equivalent of the composition is greater than 5% by weight of the composition; and (d) an antifoam compound wherein the weight ratio of foaming surfactant to cationic ester surfactant is from 100:1 to 2:1 and the weight ratio of cationic ester surfactant to antifoam compound is from 50:1 to 1:5.

Description

Deterrent comnositions Technical field The present invention relates to detergent compositions containing certain hydrolysable cationic esters which have the capability to provide suds suppression when used in laundry and dish washing methods.
Background to the invention The satisfactory removal of greasy soils/stains, that is soils/stains having a high proportion of triglycerides or fatty acids, is a challenge faced by the formulator of detergent compositions for use in machine laundry and dishwashing methods. Surfactant components have traditionally been employed in detergent products to facilitate the removal of such greasy soils/stains. In particular, surfactant systems comprising cationic esters have been described for use in greasy soil/stain removal.
For example, EP-B-21,491 discloses detergent compositions containing a nonionic/cationic surfactant mixture and a builder mixture comprising aluminosilicate and polycarboxylate builder. The cationic surfactant may be a cationic ester. Improved particulate and greasy/oily soil removal is described.
US-AX,228,042 discloses biodegradable cationic surfactants, including cationic ester surfactants for use in detergent compositions to provide greasy/oily soil removal. The combination of these cationic surfactants with nonionic surfactants in compositions designed for particulate soil removal is also described. Anionic surfactants are disclosed as optional components of the compositions, but are present at low levels relative to the cationic surfactant component.
US-AX,239,660 discloses laundry detergent compositions containing cationic ester surfactant and nonionic surfactant at defined weight ratios and an alkalinity source. The alkalinity source enables a wash solution having a pH of from 8 to 10 to be formed within 3 minutes of dissolution of the composition in water at 1 00OF (37OC) at a solution concentration of 0.15%.
US-AX,260,529 discloses laundry detergent compositions having a pH of no greater than 11 containing cationic ester surfactant and nonionic surfactant at defined weight ratios. Anionic surfactants are disclosed as optional components of the compositions, but are present at low levels relative to the cationic ester surfactant component.
The suppression of suds is a well known problem faced by the formulator of a detergent composition for use in a machine washing method. Certain surfactant systems tend to give rise to the problem more than others, particularly those including alkyl sulfate, alkyl ethoxysulfate and polyhydroxy fatty acid amide surfactants and most especially when these surfactants are used at high levels as is often desirable from a stain/soil removal point ofview.
Traditionally, components have been added to detergent compositions specifically for the purpose of suppressing suds. Hereinafter, such components are referred to as antifoam compounds. Silicone antifoam compounds have found particular favour with the detergent formulator. The disadvantage of using such antifoam compounds is that they typically contribute no detergent (i.e. cleaning) ability to the composition, and are often expensive, particularly if based on silicones.
The Applicants have now found that certain cationic ester surfactants, which are hydrolysable under the alkaline conditions of a laundry wash method, have utility as bifunctional detergent components. Prior to hydrolysis of the ester linkage the cationic esters contribute surfactancy. Subsequently, the fatty acid portions which are liberated on hydrolysis contribute suds suppressing capability. Overall, lower levels of traditional antifoam compounds are thus required.
It has also been found that careful balancing of the levels of cationic ester surfactant, alkalinity and traditional antifoam compounds can achieve the desired suds control profile throughout the full extent of the wash cycle.
All documents cited in the present description are, in relevant part, incorporated herein by reference.
Summarv of the Invention According to the present invention there is provided a detergent composition comprising (a) a foaming surfactant system comprising one or more surfactants selected from anionic, non-ester cationic, nonionic, amphoteric and zwitterionic surfactants and any mixtures thereof; (b) a a hydrolysable cationic ester surfactant; (c) an alkalinity system having the capacity to deliver alkalinity to a wash solution as measured by the alkalinity release test method described herein such that the % weight NaOH equivalent of the composition is greater than 3% by weight of the composition; and (d) an antifoam compound wherein the weight ratio of foaming surfactant to cationic ester surfactant is from 100:1 to 2:1 and the weight ratio of cationic ester surfactant to antifoam compound is from 50:1 to 1:5.
In a preferred aspect, the cationic ester surfactant is selected from those having the formula:
wherein R1 is a Cg-C31 linear or branched alkyl, alkenyl or alkaryl chain or M-. N+(R6R7R8)(CH2)S; X and Y, independently, are selected from the group consisting of COO, OCO, O, CO, OCOO, CONH, NHCO, OCONH and NHCOO wherein at least one of X or Y is a COO, OCO, OCOO, OCONH or NHCOO group;R2, R3, R4, R6, R7, and R8 are independently selected from the group consisting of alkyl, alkenyl, hydroxyalkyl, hydroxyalkenyl and alkaryl groups having from 1 to 4 carbon atoms; and Rs is independently H or a C1-C3 alkyl group; wherein the values of m, n, s and t independently lie in the range of from 0 to 8, the value of b lies in the range from 0 to 20, and the values of a, u and v independently are either 0 or 1 with the proviso that at least one of u or v must be 1; and wherein M is a counter union.
In another preferred aspect, the alkalinity system is present such that the weight ratio in the composition of anionic surfactant to weight NaOH equivalent is preferably from 4:1 to 1:8. The alkalinity system preferably comprises alkaline salts selected from alkali metal or alkaline earth carbonate or silicate salts and any mixtures thereof.
Detailed description of the invention Foaming surfactant svstem The first essential element of the detergent compositions of the invention is a foaming surfactant system comprising one or more surfactants selected from anionic, non-ester cationic, nonionic, amphoteric and zwitterionic surfactants and any mixtures thereof.
A typical listing of anionic, nonionic, ampholytic, and zwitterionic classes, and species of surfactants, is given in U.S.P. 3,929,678 issued to Laughlin and Heuring on December 30, 1975. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A list of suitable cationic surfactants is given in U.S.P. 4,259,217 issued to Murphy on March 31, 1981.
The weight ratio of foaming surfactant to cationic ester surfactant is from 100:1 to 2:1, preferably from 50:1 to 3:1, most preferably from 20:1 to 4:1.
The suds suppression system of the invention is most suitable for use in detergent compositions having a relatively high level of surfactant system, especially those having more than 5% of surfactant system (excluding cationic ester), more preferably from 8% to 90%, most preferably from 9% to 60% by weight of the composition.
The suds suppression system of the invention is also most suitable for use in detergent compositions containing particularly high foaming surfactants, especially those selected from the group consisting of anionic sulfate surfactants, polyhydroxy fatty acid amide surfactants and any mixtures thereof.
Anionic surfactant Essentially any anionic surfactants useful for detersive purposes are suitable.
These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants. Anionic sulfate surfactants are preferred.
Other anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C1 2-C18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6-C14 diesters), N-acyl sarcosinates.
Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
Anionic sulfate surfactant Anionic sulfate surfactants suitable for use herein include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C5- C17 acyl-N-(Cl-C4 alkyl) and -N-(C 1 -C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
Alkyl sulfate surfactants are preferred herein. These are preferably selected from the linear and branched primary C10-C18 alkyl sulfates, more preferably the C 11-C1 5 branched chain alkyl sulfates and the C12-C1 4 linear chain alkyl sulfates. One preferred aspect of the invention has C 10- C 18 alkyl sulfate as the only anionic sulfate component.
Alkyl ethoxysulfate surfactants are also preferred herein. These are preferably selected from the group consisting of the C10-C18 alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C1 1 - Clog, most preferably C11-C15 alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
A preferred aspect of the invention employs mixtures of alkyl sulfate and alkyl ethoxysulfate surfactants at a weight ratio of from 2:1 to 19:1, preferably from 3:1 to 15:1, most preferably from 5:1 to 10:1.
The anionic sulfate surfactant is typically present as a salt, such as a sodium, potassium, ammonium, or substituted ammonium salt such as the mono-, diand triethanolamine salts.
Anionic sulfonate surfactant Anionic sulfonate surfactants suitable for use herein include the salts of C- C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
Anionic carboxvlate surfactant Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
Suitable alkyl ethoxy carboxylates include those with the formula RO(CH2CH20)X CH2COO-M+ wherein R is a C6 to C18 alkyl group, x ranges from 0 to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation. Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR1-CHR2-O)-R3 wherein R is a C6 to C18 alkyl group, x is from 1 to 25, R1 and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-i - undecanoic acid, 2-ethyl-l-decanoic acid, 2-propyl-l-nonanoic acid, 2butyl-l-octanoic acid and 2-pentyl-l -heptanoic acid.
Alkali metal sarcosinate surfactant Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (R1) CH2 COOM, wherein R is a Cg-C17 linear or branched alkyl or alkenyl group, R1 is a C1-C4 alkyl group and M is an alkali metal ion. Preferred examples are the myristyl and oleoyl methyl sarcosinates in the form of their sodium salts.
Alkoxvlated nonionic surfactant Essentially any alkoxylated nonionic surfactants are suitable herein. The ethoxylated and propoxylated nonionic surfactants are preferred.
Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.
Nonionic alkoxvlated alcohol surfactant The condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
Nonionic polyhydroxy fattv acid amide surfactant Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R2CONR1Z wherein: R1 is H, C1-C4 hydrocarbyl, 2hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C1-C4 alkyl, more preferably C1 or C2 alkyl, most preferably C1 alkyl (i.e., methyl); and R2 is a C5-C31 hydrocarbyl, preferably straightchain CS-C19 alkyl or alkenyl, more preferably straight-chain Cg-C17 alkyl or alkenyl, most preferably straight-chain C u-Cl 7 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
Nonionic fattv acid amide surfactant Suitable fatty acid amide surfactants include those having the formula: R6CON(R7)2 wherein R6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R7 is selected from the group consisting of hydrogen, C1-C4 alkyl, Cl-C4 hydroxyalkyl, and (C2H4O)XH, where x is in the range of from 1 to 3.
Nonionic alkvlolvsaccharide surfactant Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
Preferred alkylpolyglycosides have the formula R20(CnH2nO)t(glYCoSYl)x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8. The glycosyl is preferably derived from glucose.
Amphoteric surfactant Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
Suitable amine oxides include those compounds having the formula R3(0R4)XN0(R5)2 wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R5 is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups. Preferred are Cl o-Cl g alkyl dimethylamine oxide, and C10-l8 acylamido alkyl dimethylamine oxide.
A suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Conc. manufactured by Miranol, Inc., Dayton, NJ.
Zwitterionic surfactant Zwitterionic surfactants can also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quatemary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
Suitable betaines are those compounds having the formula R(R')2N+R2COO- wherein R is a C6-C18 hydrocarbyl group, each R1 is typically C1-C3 alkyl, and R2 is a Cl-Cs hydrocarbyl group. Preferred betaines are C 12-l 8 dimethyl-ammonio hexanoate and the C 10-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines. Complex betaine surfactants are also suitable for use herein.
Cationic surfactants Additional cationic surfactants can also be used in the detergent compositions herein. Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C6-C16, preferably C6-C 10 Nalkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
Cationic ester surfactant An essential component of the detergent compositions is a hydrolysable cationic ester surfactant. That is, a compound having surfactant properties comprising at least one hydrolysable ester (ie -COO-) linkage and at least one cationically charged group.
The hydrolysable cationic ester surfactant is preferably present at a level of from 0.05% to 30%, more preferably from 0.2% to 20%, most preferably from 0.5% to 10% by weight of the detergent composition.
Suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
Preferred hydrolysable cationic ester surfactants are those having the formula:
wherein R1 is a C5-C31, preferably C11-C21, linear or branched alkyl, alkenyl or alkaryl chain or M-. N+(R6R7Rg)(CH2)s; X and Y, independently, are selected from the group consisiting of COO, OCO, O, CO, OCOO, CONH, NHCO, OCONH and NHCOO wherein at least one of X or Y is a COO, OCO, OCOO, OCONH or NHCOO group;R2, R3, R4, R6, R7, and R8 are independently selected from the group consisting of alkyl, alkenyl, hydroxyalkyl, hydroxy-alkenyl and alkaryl groups having from 1 to 4 carbon atoms; and R5 is independently H or a C1-C3 alkyl group; wherein the values of m, n, s and t independently lie in the range of from 0 to 8, the value of b lies in the range from 0 to 20, and the values of a, u and v independently are either 0 or 1 with the proviso that at least one of u or v must be 1; and wherein M is a counter union.
Preferably R2,R3 and R4 are independently selected from CH3 and -CH2CH2OH.
Preferably M is selected from the group consisting of halide, methyl sulfate, sulfate, and nitrate, more preferably methyl sulfate, chloride, bromide or iodide.
Preferred water dispersible cationic ester surfactants are the choline esters having the formula:
wherein R1 is a C1 l-Clg linear or branched alkyl chain.
Particularly preferred choline esters of this type include the stearoyl choline ester quaternary methylammonium halides (Rl=C17 alkyl), palmitoyl choline ester quaternary methylammonium halides (R1=C15 alkyl), myristoyl choline ester quaternary methylammonium halides (Ri =C 13 alkyl), lauroyl choline ester methylammonium halides (R1=Ci 1 alkyl), cocoyl choline ester quaternary methylammonium halides (Ri =C 11 C 13 alkyl), tallowyl choline ester quaternary methylammonium halides (Ri =C 15- C17 alkyl), and any mixtures thereof.
Most preferred choline ester compounds among the above disclosed are cocoyl choline ester quaternary methylammonium halides.
The particularly preferred choline esters, given above, may be prepared by the direct esterification of a fatty acid of the desired chain length with dimethylaminoethanol, in the presence of an acid catalyst. The reaction product is then quaternized with a methyl halide, forming the desired cationic material. They may also be prepared by the direct esterification of a long chain fatty acid of the desired chain length together with 2-haloethanol, optionally in the presence of an acid catalyst material. The reaction product is then quaternized with trimethylamine, forming the desired cationic material.
Other suitable cationic ester surfactants have the structural formulas below, wherein d may be from 0 to 20.
The ester linkage of the cationic ester surfactant is hydrolysable under the conditions of a laundry wash method. Most preferably complete hydrolysis of the ester linkage will occur before the end of the wash cycle. Typical laundry wash method conditions are described hereinafter.
A simple, but representative beaker test can be used to assess whether a cationic ester is hydrolysable under laundry wash method conditions. In the test 1 g of detergent product containing the cationic ester surfactant is added to 100 ml of distilled water at 30OC with stirring using a 2 cm 'pea-shaped' magnetic stirrer of size 2 cm. After 45 minutes 3 separate 10 ml aliquots of the solution are removed and quenched by cooling using dry ice. Each aliquot is analysed for the presence of the cationic ester surfactant. Where full ester linkage hydrolysis has occurred no unhydrolysed cationic ester will be detected.
A more complex full scale laundry wash method test can alternatively be used. In this test a Miele 820 automatic washing machine is charged with a ballast load comprising 2Kg of lightly soiled polyester, polycotton and cotton fabrics. 1 00g of detergent product containing cationic ester surfactant is placed in a granulette dispensing device which is itself placed in the drum of the washing machine on top of the ballast load. The 400C wash cycle programme is selected. Feed water of 10 Clark hardness (= 1.5 mmol Ca2+/litre) is used. A 100 ml sample of the wash water expelled during the first drain step, prior to the first rinse, is taken. The sample is quenched by cooling using dry ice, and 3 separate 10 ml aliquots of the solution are analysed for the presence of the cationic ester surfactant.Where full ester linkage hydrolysis has occurred during the course of the wash no cationic ester will be detected.
Alkalinity system In an essential aspect the compositions contain an alkalinity system comprising components capable of providing alkalinity species in solution.
By alkalinity species it is meant for the purposes of this invention: carbonate, bicarbonate, hydroxide and the various silicate anions. Such alkalinity species can be formed for example, when alkaline salts selected from alkali metal or alkaline earth carbonate, bicarbonate, hydroxide or silicate, including crystalline layered silicate, salts and any mixtures thereof are dissolved in water. Alkali metal percarbonate and persilicate salts are also suitable sources of alkalinity species.
The alkalinity system is preferably present at a level of from 1.5% to 95%, most preferably from 5% to 60%, most preferably from 10% to 40% by weight of the detergent composition.
The amount of alkalinity which a detergent composition is capable of delivering to a wash solution is critical to the present invention in that the cationic ester component is particuclarly subject to hydrolysis under alkaline conditions. To enable practical comparison of the relative capacity of compositions containing different alkaline components to deliver alkalinity to a wash solution it is useful to express the alkalinity released on addition of the compositions to the wash solution in terms of % weight equivalent of NaOH. That is, in terms of the % weight of NaOH which would have equivalent 'alkaline effect', e. g. in neutralising acid species, to that of the alkalinity species actually released when the composition is added to the wash. For uniform comparison it is also then useful to define standard wash solution characteristics.Thus, the capacity to deliver alkalinity to a wash solution is herein characterized by reference to a representative test method now described.
Alkalinity release test method A 1 g sample of detergent composition is added to 100 ml of distilled water at a temperature of 30OC with stifling at 150 rpm using a magnetic stirrer of size 2cm, thus providing a 1 % detergent solution, as would be a typical concentration of a laundry wash solution. The solution is titrated against a standard HCl solution using any suitable titration method. Commonly known acid-base titration methods employing colorimetric end-point determination methods, for example using chemical end-point indicators are particularly suitable. Thus, the number of moles of HC1 which the detergent solution is capable of neutralising is obtained.For the avoidance of doubt, 'neutralising' in this context is defined to mean titrating to pH 7. This number will be equivalent to the number of moles of alkalinity, expressed as NaOH equivalent, present in the detergent solution. Thus, the % weight equivalent NaOH present in the sample of the detergent composition may be calculated as: % weight equivalent NaOH = 100 x number of moles NaOH equivalent in solution x Mw ofNaOH Theoretical maximum alkalinitv Where the compositional make up of a detergent product is known, it is possible to calculate the theoretical maximum alkalinity, expressed as % weight equivalent of NaOH, which the product could provide to a solution as the sum over each alkaline species of: % weight (alkaline species) . Mw (NaOH . n / Mw(alkaline species) where n is the formal negative charge carried by the alkaline species.
As an example, a composition containing 1% sodium carbonate is equivalent to a theoretical maximum of 0.756% NaOH, obtained as (1 x 40 x 2)/106, since this amount of NaOH in the composition would theoretically neutralise the same amount of acid as the 1% sodium carbonate alkaline component.
In reality, however detergent compositions also tend to comprise acidic species e. g. carboxylate builders whose presence will tend to reduce the alkalinity delivery capacity of a composition from its maximum theoretical value.
Alkalinitv requirement In accord with the present invention, the alkalinity system is present in the detergent composition such that the capacity to deliver alkalinity to a wash solution measured by the given test method is such that the % weight NaOH equivalent of the composition is greater than 3%, preferably greater than 5%, most preferably greater than 7% by weight of the composition.
The weight ratio in the composition of anionic surfactant to weight NaOH equivalent is preferably from 4:1 to 1:8, more preferably from 2:1 to 1:5, most preferably from 1:1 to 1 :3.
Examples of carbonate builders are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and any mixtures thereof with ultra-fine calcium carbonate such as are disclosed in German Patent Application No. 2,321,001 published on November 15, 1973. Alkali metal percarbonate salts are also suitable sources of carbonate species and are described in more detail in the section 'inorganic perhydrate salts' herein.
Suitable silicates include the water soluble sodium silicates with an Si02: Na20 ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.0 being preferred, and 2.0 ratio being most preferred. The silicates may be in the form of either the anhydrous salt or a hydrated salt. Sodium silicate with an SiO2: Na20 ratio of 2.0 is the most preferred silicate. Alkali metal persilicates are also suitable sources of silicate herein.
Preferred crystalline layered silicates for use herein have the general formula NaMSix02x+l.yH20 wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20. Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043. Herein, x in the general formula above preferably has a value of 2, 3 or 4 and is preferably 2. The most preferred material is 8-Na2Si20s, available from Hoechst AG as NaSKS-6.
The crystalline layered silicate material is preferably present in granular detergent compositions as a particulate in intimate admixture with a solid, water-soluble ionisable material. The solid, water-soluble ionisable material is selected from organic acids, organic and inorganic acid salts and mixtures thereof.
Antifoam compound The detergent compositions of the invention contain an antifoam compound preferably present at a level of from 0.01% to 15%, more preferably from 0.05% to 10%, most preferably from 0.1% to 5% by weight of the composition.
The weight ratio of cationic ester surfactant to antifoam compound is from 50:1 to 1:5, preferably from 30:1 to 1:3, most preferably from 20:1 to 2:1.
Essentially any known antifoam compounds are suitable, including, for example silicone antifoam compounds and 2alkyl alcanol antifoam compounds. Detergent compositions containing two or more antifoam compounds, for example the combination of a silicone and fatty acid antifoam are envisaged herein.
By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly upon agitation of that solution.
Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component. The term "silicone" as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types. Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking unites.
Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
Other suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C1 8-C40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiarnine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
A preferred antifoam system comprises (a) antifoam compound, preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination (i) polydimethyl siloxane, at a level of from 50% to 99%, preferably 75% to 95% by weight of the silicone antifoam compound; and (ii) silica, at a level of from 1% to 50%, preferably 5% to 25% by weight of the silicone/silica antifoam compound; wherein said silica/silicone antifoam compound is incorporated at a level of from 5% to 50%, preferably 10% to 40% by weight; (b) a dispersant compound, most preferably comprising a silicone glycol copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0.5% to 10%, preferably 1% to 10% by weight; a particularly preferred silicone glycol rake copolymer of this type is DCO544, commercially available from DOW Corning under the tradename DCO544; (c) an inert carrier fluid compound, most preferably comprising a C16 C18 ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight; A highly preferred particulate antifoam system is described in EP-A0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50"C to 85"C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms.EP-A0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45"C to 800C.
Additional detergent components The detergent compositions of the invention may also contain additional detergent components. The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition, and the precise nature of the washing operation for which it is to be used.
The compositions of the invention preferably contain one or more additional detergent components selected from bleaches, builders, organic polymeric compounds, enzymes, lime soap dispersants, soil suspension and antiredeposition agents and corrosion inhibitors.
Water-soluble builder compound The detergent compositions of the present invention preferably contain a water-soluble builder compound, typically present at a level of from 1 % to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% by weight of the composition.
Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, phosphates, and mixtures of any of the foregoing.
The carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof.
Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and arninosuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.
Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000. Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions are useful water-soluble builders herein.
Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
Partiallv soluble or insoluble builder compound The detergent compositions of the present invention may contain a partially soluble or insoluble builder compound, typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% weight of the composition.
Examples of largely water insoluble builders include the sodium aluminosilicates.
Suitable aluminosilicate zeolites have the unit cell formula Naz[(AlO2)z(SiO2)y]. XM2O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and xis at least 5, preferably from 7.5 to 276, more preferably from 10 to 264. The alunimosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
The aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula Na 12 [A102) 12 (SiO2)12]. xH20 wherein x is from 20 to 30, especially 27. Zeolite X has the formula Na86 [(AlO2)86(SiO2)1 06]. 276 H20.
Organic peroxyacid bleaching system A preferred feature of detergent compositions of the invention is an organic peroxyacid bleaching system. In one preferred execution the bleaching system contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound. The production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide. Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches. In an alternative preferred execution a preformed organic peroxyacid is incorporated directly into the composition.
Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged.
Organic perhvdrate bleaches Inorganic perhydrate salts are a preferred source of hydrogen peroxide.
These salts are normally incorporated in the form of the alkali metal, preferably sodium salt at a level of from 1% to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
Examples of inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts. The inorganic perhydrate salts are normally the alkali metal salts. The inorganic perhydrate salt may be included as the crystalline solid without additional protection. For certain perhydrate salts however, the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product. Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal formula NaB02H202 or the tetrahydrate NaB02H202.3H20.
Alkali metal percarbonates, particularly sodium percarbonate are preferred perhydrates herein. Sodium percarbonate is an addition compound having a formula corresponding to 2Na2C03.3H202, and is available commercially as a crystalline solid.
Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
Peroxvacid bleach precursor Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid. Generally peroxyacid bleach precursors may be represented as
where L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is
Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15% by weight, most preferably from 1.5% to 10% by weight of the detergent compositions.
Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O-acyl groups, which precursors can be selected from a wide range of classes. Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP A-0170386.
Leaving groups The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
Preferred L groups are selected from the group consisting of:
and mixtures thereof, wherein R1 is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms, R3 is an alkyl chain containing from 1 to 8 carbon atoms, R4 is H or R3, and Y is H or a solubilizing group.Any of R1, R3 and R4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammonium groups The preferred solubilizing ,groups are -SO3+, -C02u+, run -N+(R3)4X3 and O < --N(R )3 and most preferably -SO3-M and wherein R3 is an alkyl chain containing from 1 to 4 carbon atoms, M is a cation which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator. Preferably, M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
Alkyl percarboxvlic acid bleach precursors Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis. Preferred precursors of this type provide peracetic acid on perhydrolysis.
Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,N1N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
Other preferred alkyl percarboxylic acid precursors include sodium 3,5,5-trimethyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
Amide substituted alkyl peroxvacid precursors Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae:
wherein R1 is an alkyl group with from 1 to 14 carbon atoms, R2 is an alkylene group containing from 1 to 14 carbon atoms, and R5 is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
Perbenzoic acid precursor Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis. Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas. Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole. Other useful N-acyl groupcontaining perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
Cationic Deroxvacid precursors Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis.
Typically, cationic peroxyacid precursors are formed by substituting the peroxyacid part of a suitable peroxyacid precursor compound with a positively charged functional group, such as an ammonium or alkyl ammonium group, preferably an ethyl or methyl ammonium group.
Cationic peroxyacid precursors are typically present in the solid detergent compositions as a salt with a suitable anion, such as a halide ion.
The peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore. Alternatively, the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor compound or an amide substituted alkyl peroxyacid precursor as described hereinafter Cationic peroxyacid precursors are described in U.S. Patents 4,904,406; 4,751,015; 4,988,451; 4,397,757; 5,269,962; 5,127,852; 5,093,022; 5,106,528; U.K. 1,382,594; EP 475,512, 458,396 and 284,292; and in JP 87-318,332.
Examples of preferred cationic peroxyacid precursors are described in UK Patent Application No. 9407944.9 and US Patent Application Nos.
08/298903, 08/298650, 08/298904 and 08/298906.
Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or benzoyl oxybenzene sulfonates, Nacylated caprolactams, and monobenzoyltetraacetyl glucose benzoyl peroxides. Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benzoyl caprolactams and the triallcyl ammonium methylene alkyl caprolactams.
Benzoxazin organic peroxvacid precursors Also suitable are precursor compounds of the benzoxazin-type, as disclosed for example in EP-A-332,294 and EP-A-482,807, particularly those having the formula:
wherein R1 is H, alkyl, alkaryl, aryl, or arylalkyl.
Preformed organic peroxvacid The organic peroxyacid bleaching system may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1% to 15% by weight, more preferably from 1% to 10% by weight of the composition.
A preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
wherein R1 is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and R5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms. Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
Other organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid. Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
Bleach catalvst The compositions optionally contain a transition metal containing bleach catalyst. One suitable type of bleach catalyst is a catalyst system comprising a heavy metal cation of defined bleach catalytic activity, such as copper, iron or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediarninetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof. Such catalysts are disclosed in U.S. Pat. 4,430,243.
Other types of bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246,621 and U.S. Pat. 5,244,594. Preferred examples of these catalysts include MnIV2(u-O)3(1,4,7-tnmethyl-1 ,4,7 triazacyclononane)2-(PF6)2, MnIII2(u-O)1(u-OAc)2(1,4,7-trimethyl-1,4,7- triazacyclononane)2-(C104)2, MnIV4(u-0)6(1,4,7-triazacyclononane)4- (ClO4)2, Mn111Mn1(u-O)1(u-OAc)2-(1,4,7-trimethyl-1,4,7triazacyclononane)2-(C104)3, and mixtures thereof. Others are described in European patent application publication no. 549,272. Other ligands suitable for use herein include 1,5,9-trimethyl-1,5,9-triazacyclododecane, 2-methyl 1 ,4,7-triazacyclononane, 2-methyl-l ,4,7-triazacyclononane, 1,2,4,7 tetramethyl-1 ,4,7-triazacyclononane, and mixtures thereof.
For examples of suitable bleach catalysts see U.S. Pat. 4,246,612 and U.S.
Pat. 5,227,084. See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(1,4,7-trimethyl-1,4,7- triazacyclononane)(OCH3)3 (PF6). Still another type of bleach catalyst, as disclosed in U.S. Pat. 5,114,606, is a water-soluble complex of manganese (III), and/or (IV) with a ligand which is a non-carboxylate polyhydroxy compound having at least three consecutive C-OH groups. Other examples include binuclear Mn complexed with tetra-N-dentate and bi-N-dentate ligands, including N4MnIII(u-0)2MnIVN4)+and [Bipy2MnIII(u- O)2MnIVbipy2] -(C104)3.
Further suitable bleach catalysts are described, for example, in European patent application No. 408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-porphyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S.
4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S.
4,626,373 (manganese/ligand catalyst), U.S. 4,119,557 (ferric complex catalyst), German Pat. specification 2,054,019 (cobalt chelant catalyst) Canadian 866,191 (transition metal-containing salts), U.S. 4,430,243 (chelants with manganese cations and non-catalytic metal cations), and U.S.
4,728,455 (manganese gluconate catalysts).
Heavv metal ion sequestrant The detergent compositions of the invention preferably contain as an optional component a heavy metal ion sequestrant. By heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%, preferably from 0.1% to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the compositions.
Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1 hydroxy disphosphonates and nitrilo trimethylene phosphonates.
Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate.
Other suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2hydroxypropylenediamine disuccinic acid or any salts thereof. Especially preferred is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
Other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133. The iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid Ncarboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein. The -alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
EP-AA76,257 describes suitable amino based sequestrants. EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein. EP A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant.
Dipicolinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid are alos suitable. Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'- diglutaric acid (EDDG) and 2-hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.
Enzvme Another preferred ingredient useflil in the detergent compositions is one or more additional enzymes.
Preferred additional enzymatic materials include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, esterases, cellulases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
Preferred commercially available protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes. Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 4% active enzyme by weight of the composition.
Preferred amylases include, for example, amylases obtained from a special strain of B licheniformis, described in more detail in GB-1,269,839 (Novo). Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl and BAN by Novo Industries A/S. Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001% to 2% active enzyme by weight of the composition.
Lipolytic enzyme may be present at levels of active lipolytic enzyme of from 0.0001% to 2% by weight, preferably 0.001% to 1% by weight, most preferably from 0.001% to 0.5% by weight of the compositions.
The lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain of Humicola sp., Thermomvces sp. or Pseudomonas sp. including Pseudomonas pseudoalcaligenes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein. A preferred lipase is derived from Pseudomonas pseudoalcaligenes, which is described in Granted European Patent, EP-B-0218272.
Another preferred lipase herein is obtained by cloning the gene from Humicola lanusa and expressing the gene in Aspergillus oryza, as host, as described in European Patent Application, EP-A-0258 068, which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S. Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989.
Organic polvmeric compound Organic polymeric compounds are preferred additional components of the detergent compositions in accord with the invention, and are preferably present as components of any particulate components where they may act such as to bind the particulate component together. By organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein.
Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.1% to 30%, preferably from 0.5% to 15%, most preferably from 1% to 10% by weight of the compositions.
Examples of organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of MWt 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 100,000, especially 40,000 to 80,000.
The polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-35 1629.
Terpolymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000, are also suitable herein.
Other organic polymeric compounds suitable for incorporation in the detergent compositions herein include essentially any charged and non charged cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, and ethylhydroxyethylcellulose.
Further useful organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
Clav softening svstem The detergent compositions may contain a clay softening system comprising a clay mineral compound and optionally a clay flocculating agent.
The clay mineral compound is preferably a smectite clay compound.
Smectite clays are disclosed in the US Patents No.s 3,862,058, 3,948,790, 3,954,632 and 4,062,647. EuropeanPatents No.s EP-A-299,575 and EP-A313,146 in the name of the Procter and Gamble Company describe suitable organic polymeric clay flocculating agents.
Polvmeric dve transfer inhibiting agents The detergent compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
The polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and Nvinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof.
a) Polvamine N-oxide polvmers Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula:
wherein P is a polymerisable unit, and A is
-O-, -S-, -N-; xis O or 1; R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
The N-O group can be represented by the following general structures:
wherein R1, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups. The N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups. One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen ofthe N-O group forms part of the R-group. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrndine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
Other suitable polyamine N-oxides are the polyamine oxides whereto the N O group is attached to the polymerisable unit. A preferred class of these polyamine N-oxides comprises the polyamine N-oxides having the general formula (I) wherein R is an aromatic,heterocyclic or alicyclic groups wherein the nitrogen ofthe N-O functional group is part of said R group.
Examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
The polyamine N-oxides can be obtained in almost any degree of polymerisation. The degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power.
Typically, the average molecular weight is within the range of 500 to 1000,000.
b) Copolvmers of N-vinvlvvrrolidone and N-vinvlimidazole Suitable herein are coploymers of N-vinylimidazole and N-vinylpyrrolidone having an average molecular weight range of from 5,000 to 50,000. The preferred copolymers have a molar ratio of N-vmylimidazole to Nvinylpyrrolidone from 1 to 0.2.
c) Polvvmvlpvrrolidone The detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from 2,500 to 400,000.
Suitable polyvinylpyrrolidones are commercially vailable from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000). PVP K15 is also available from ISP Corporation. Other suitable polyvinylpyrrolidones which are commercially available from BASF Cooperation include Sokalan HP 165 and Sokalan HP 12.
d) Polvvinyloxaaolidone The detergent compositions herein may also utilize polyvinyloxazolidones as polymeric dye transfer inhibiting agents. Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000.
e) Polvvinvlimidazole The detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent. Said polyvinylimidazoles preferably have an average molecular weight of from 2,500 to 400,000.
Optical brightener The detergent compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
Hydrophilic optical brighteners useful herein include those having the structural formula:
wherein R1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
When in the above formula, R1 is anilino, R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4',-bis[(4-anilino-6-(N-2- bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation.
Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
When in the above formula, R1 is anilino, R2 is N-2-hydroxyethyl-N-2methylamino and M is a cation such as sodium, the brightener is 4,4'-bis[(4 ai:iiiino-6 -(N-2 -hydroxyethyl-N-methylamino)-s-triazine-2 -yl)amino]2,2'stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba Geigy Corporation.
When in the above formula, R1 is anilino, R2 is morphilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation.
Cationic fabric softening agents Cationic fabric softening agents can also be incorporated into compositions in accordance with the present invention. Suitable cationic fabric softening agents include the water insoluble tertiary amines or dilong chain amide materials as disclosed in GB-A-1 514 276 and EP-B-0 011 340.
Cationic fabric softening agents are typically incorporated at total levels of from 0.5% to 15% by weight, normally from 1% to 5% by weight.
Other optional ingredients Other optional ingredients suitable for inclusion in the compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
pH of the compositions The present compositions preferably have a pH measured as a 1% solution in distilled water of at least 10.0, preferably from 10.0 to 12.5, most preferably from 10.5 to 12.0.
Form of the compositions The solid compositions in accordance with the invention can take a variety of physical forms. The compositions are particularly the so-called concentrated detergent compositions adapted to be added to a washing machine by means of a dispensing device placed in the machine drum with the soiled fabric load.
The mean particle size of the components of granular compositions in accordance with the invention should preferably be such that no more that 5% of particles are greater than 1 .7mm in diameter and not more than 5% of particles are less than 0.15mum in diameter.
The term mean particle size as defined herein is calculated by sieving a sample of the composition into a number of fractions (typically 5 fractions) on a series of Tyler sieves. The weight fractions thereby obtained are plotted against the aperture size of the sieves. The mean particle size is taken to be the aperture size through which 50% by weight of the sample would pass.
The bulk density of granular detergent compositions in accordance with the present invention typically have a bulk density of at least 600 g/litre, more preferably from 650 g/litre to 1200 g/litre.Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the flannel to be emptied into an axially aligned cylindrical cup disposed below the funnel. The funnel is 130 mm high and has internal diameters of 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base. The cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm.
Its nominal volume is 500 ml.
To carry out a measurement, the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup.
The filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement eg; a knife, across its upper edge. The filled cup is then weighed and the value obtained for the weight of powder doubled to provide a bulk density in g/litre. Replicate measurements are made as required.
Surfactant agglomerate particles The surfactant system herein is preferably present in granular compositions in the form of surfactant agglomerate particles, which may take the form of flakes, prills, marumes, noodles, ribbons, but preferably take the form of granules. The most preferred way to process the particles is by agglomerating powders (e.g. aluminosilicate, carbonate) with high active surfactant pastes and to control the particle size of the resultant agglomerates within specified limits.Such a process involves mixing an effective amount of powder with a high active surfactant paste in one or more agglomerators such as a pan agglomerator, a Z-blade mixer or more preferably an in-line mixer such as those manufactured by Schugi (Holland) BY, 29 Chroomstraat 8211 AS, Lelystad, Netherlands, and Gebruder Lodige Maschinenbau GmbH,D-4790 Paderbom 1, Elsenerstrasse 7-9, Postfach 2050, Germany. Most preferably a high shear mixer is used, such as a Lodige CB (Trade Name).
A high active surfactant paste comprising from 50% by weight to 95% by weight, preferably 70% by weight to 85% by weight of surfactant is typically used. The paste may be pumped into the agglomerator at a temperature high enough to maintain a pllmpable viscosity, but low enough to avoid degradation of the anionic surfactants used. An operating temperature of the paste of 50"C to 800C is typical.
Laundry washing method Machine laundry methods herein typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention. By an effective amount of the detergent composition it is meant from 20g to 300g of product dissolved or dispersed in a wash solution of volume from 3 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
In a preferred use aspect a dispensing device is employed in the washing method. The dispensing device is charged with the detergent product, and is used to introduce the product directly into the drum of the washing machine before the commencement of the wash cycle. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method.
Once the washing machine has been loaded with laundry the dispensing device containing the detergent product is placed inside the drum. At the commencement of the wash cycle of the washing machine water is introduced into the drum and the drum periodically rotates. The design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its contact with the wash water.
To allow for release of the detergent product during the wash the device may possess a number of openings through which the product may pass.
Alternatively, the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product. Preferably, the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of product in the drum of the washing machine at this stage of the wash cycle.
Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle. Especially preferred dispensing devices for use with the composition of the invention have been described in the following patents; GB-B-2, 157, 717, GB-B-2, 157, 718, EP-A-0201376, EP-A-0288345 and EP-A-0288346. An article by J.Bland published in Manufacturing Chemist, November 1989, pages 41-46 also describes especially preferred dispensing devices for use with granular laundry products which are of a type commonly know as the "granulette". Another preferred dispensing device for use with the compositions of this invention is disclosed in PCT Patent Application No. WO94/11562.
Especially preferred dispensing devices are disclosed in European Patent Application Publication Nos. 0343069 & 0343070. The latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficient product for one washing cycle in a washing process. A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium. The support ring is provided with a masking arrangemnt to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
Alternatively, the dispensing device may be a flexible container, such as a bag or pouch. The bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678.
Alternatively it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos.
0011500,0011501, 0011502, and 0011968. A convenient form ofwater frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
Packaging for the compositions Commercially marketed executions of the bleaching compositions can be packaged in any suitable container including those constructed from paper, cardboard, plastic materials and any suitable laminates. A preferred packaging execution is described in European Application No. 94921505.7.
Abbreviations used in Examples In the detergent compositions, the abbreviated component identifications have the following meanings: LAS Sodium linear C12 alkyl benzene sulfonate TAS Sodium tallow alkyl sulfate C45AS Sodium C14-Cls linear alkyl sulfate CxyEzS Sodium Clx-Cly branched alkyl sulfate condensed with z moles of ethylene oxide C45E7 A C14-15 predominantly linear primary alcohol condensed with an average of 7 moles of ethylene oxide C25E3 A C12-15 branched primary alcohol condensed with an average of 3 moles of ethylene oxide C25E5 A C12-15 branched primary alcohol condensed with an average of 5 moles of ethylene oxide CEQ R1COOCH2CH2.N+(CH3)3 with R1 = Cl 1-Cl3 QAS R2.N+(CH3)2(C2H40K) with R2 = C12 - C14 Soap Sodium linear alkyl carboxylate derived from an 80/20 mixture of tallow and coconut oils.
TFAA C16-C18 alkyl N-methyl glucamide TPKFA C12-C14 topped whole cut fatty acids STPP Anhydrous sodium tnpolyphosphate Zeolite A Hydrated Sodium Aluminosilicate of formula Na12(Al02SiO2)12. 27H20 having a primary particle size in the range from 0.1 to 10 micrometers NaSKS-6 Crystalline layered silicate of formula 8 -Na2Si2O5 Citric acid Anhydrous citric acid Carbonate Anhydrous sodium carbonate with a particle size between 200pun and 900 m Bicarbonate Anhydrous sodium bicarbonate with a particle size distribution between 400 m and 1200 m Silicate Amorphous Sodium Silicate (SiO2:Na2O; 2.0 ratio) Sodium sulfate : Anhydrous sodium sulfate Citrate .Tri-sodium citrate dihydrate of activity 86.4% with a particle size distribution between 425;ism and 850 Sun MA/AA Copolymer of 1:4 maleic/acrylic acid, average molecular weight about 70,000.
CMC Sodium carboxymethyl cellulose Protease Proteolytic enzyme of activity 4KNPU/g sold by NOVO Industries A/S under the tradename Savinase Alcalase Proteolytic enzyme of activity 3AU/g sold by NOVO Industries A/S Cellulase Cellulytic enzyme of activity 1000 CEVU/g sold by NOVO Industries A/S under the tradename Carezyme Amylase Amylolytic enzyme of activity 60KNU/g sold by NOVO Industries A/S under the tradename Teamyl 60T Lipase Lipolytic enzyme of activity 100kLU/g sold by NOVO Industries A/S under the tradename Lipolase Endolase Endoglunase enzyme of activity 3000 CEYU/g sold by NOVO Industries A/S PB4 Sodium perborate tetrahydrate of nominal formula NaB02 .3H2O.H2O2 PB 1 Anhydrous sodium perborate monohydrate bleach of nominal formula NaBO2.H2O2 Percarbonate Sodium Percarbonate of nominal formula 2Na2C03 .3H202 NOBS Nonanoyloxybenzene sulfonate in the form of the sodium salt.
TAED Tetraacetylethylenediamine DTPMP Diethylene triamine penta (methylene phosphonate), marketed by Monsanto under the Trade name Dequest 2060 Photoactivated : Sulfonated Zinc Phthlocyanine encapsulated in bleach dextrin soluble polymer Brightener 1 Disodium 4,4 '-bis(2-sulphostyryl)biphenyl Brightener 2 Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5- triazin-2-yl)amino) stilbene-2 :2'-disulfonate.
HEDP 1,1-hydroxyethane diphosphonic acid PVNO Polyvinylpyridine N-oxide PVPVI Copolymer of polyvinylpyrolidone and vinylimidazole SRP 1 Sulfoberzoyl end capped esters with oxyethylene oxy and terephtaloyl backbone SRP 2 Diethoxylated poly 2 propylene terephtalate) short block polymer Silicone antifoam: Polydimethylsiloxane foam controller with siloxane-oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1.
Alkalinity % weight equivalent of NaOH, as obtained using the alkalinity release test method described herein.
In the following Examples all levels are quoted as % by weight of the composition: Example 1 The following laundry detergent compositions A to F were prepared, A to D and F are comparative compositions E is in accord with the invention:
A B C D E F LAS 8.0 8.0 8.0 - - - C45AS - 20.8 20.8 20.8 C25AE3S - - - 5.2 5.2 5.2 tC25E3 4.1 4.1 4.1 32 3.2 1.7 TFAA - - - L 3.2 1.7
CEQ - 0.7 - - 3.0 3.0 QAS = - 0.7 - - Zeolite A 18.1 18.1 18.1 7.0 7.0 7.0 Carbonate 22.5 22.5 22.5 21.4 21.4 21.4 Silicate 2.0 2.0 2.0 - Na-SKS-6/citric - - - 10.6 10.6 10.6 acid (79:21) Sodium sulfate 26.1 26.1 26.1 PB4 9.0 9.0 9.0 - - Percarbonate - - - 11.0 11.0 11.0 TAED 1.5 1.5. 1.5 3.1 3.1 3.1 DETPMP 0.25 0.25 0.25 0.2 0.2 0.2 HEDP 0.3 0.3 0.3 0.3 0.3 0.3 Protease 0.26 0.26 0.26 0.85 0.85 0.85 Amylase 0.1 0.1 0.1 0.1 0.1 0.1 Cellulase - - - 0.28 0.28 0.28 MA/AA 0.3 0.3 0.3 1.6 1.6 1.6 CMC 0.2 0.2 0.2 0.4 0.4 0.4
Photoactivated 15 15 15 27 27 27 bleach (ppm) ppm ppm ppm ppm ppm ppm Brightener 1 0.09 0.09 0.09 0.19 0.19 0.19 PerfUme 0.3 0.3 0.3 0.3 0.3 0.3 Silicone antifoam 0.06 0.06 0.06 0.35 0.35 0.20 Misc/minors to 100% Densityingllitre 670 670 670 850 850 850 Alkalinity 6.3 6.3 6.3 6.7 6.7 6.7 Comparative Performance Testine The following sudsing test protocol was followed in comparing the sudsing obtained for the six different Compositions A to F: A Miele 701 automatic washing machine was employed, and the 950C short cycle programme selected. Water of 30 Clark hardness ( = 0.45 mmol Ca2+/litre) was used. For products A to C, 200g of detergent dispensed from the dispensing drawer of the washing machine was employed.For products D to F 1 00g of detergent product, dispensed from a granulette dispensing device was employed. The laundry load comprised 2.4Kg of 60/40 mixture of lightly soiled synthetic and cotton fabrics.
The level of sudsing obtained for each detergent product was measured as a % of the washing machine porthole height, at defined time intervals after the commencement of the wash process.
The results were as follows:
Time min A B C -- D E F 0 0 0 0 0 0 0 5 0 0 0 50 30 35 10 0 0 0 100 55 60 20 30 0 30 100 80 75 30 97 70 45 100 100 100 70 35 100 85 100 100 100 75 Example 2 The following granular laundry detergent compositions G to I of bulk density 750 g/litre were prepared in accord with the invention::
G H I LAS 5.25 5.61 4.76 TAS 1.25 1.86 1.57 C45AS 2.24 3.89 C25AE3S 0.76 1.18 C45E7 3.25 - 5.0 C25E3 5.5 CEQ 0.8 2.0 2.0 STPP 10.7 Zeolite A 19.5 19.5 NaSKS-6/citric acid 10.6 10.6 (79::21) Carbonate 16.1 21.4 21.4 Bicarbonate 2.0 2.0 Silicate 6.8 Sodium sulfate 39.8 14.3
PB4 5.0 12.7 TAED 0.5 3.1 DETPMP 0.25 0.2 0.2 HEDP 0.3 0.3 Protease 0.26 0.85 0.85 Lipase 0.15 0.15 0.15 Cellulase 0.28 0.28 0.28 Amylase 0.1 0.1 0.1 MA/AA 0.8 1.6 1.6 CMC 0.2 0.4 0.4 Photoactivated bleach 15 ppm 27 ppm 27 ppm (ppm) Brightener 1 0.08 0.19 0.19 Brightener 2 0.04 0.04 PerfUme 0.3 0.3 0.3 Silicone antifoam 0.5 2.4 2.4 Minors/mise to 100% Example 3 The following detergent formulations, according to the present invention were prepared, where J is a phosphorus-containing detergent composition, K is a zeolite-containing detergent composition and L is a compact detergent composition::
J K L Blown Powder STPP 14.0 - 14.0 Zeolite A 20.0 C45AS 9.0 6.0 1 8.0 MA/AA 2.0 4.0 2.0 LAS 6.0 8.0 9.0 TAS 2.0 CE 1.5 3.0 3.5 Silicate 7.0 8.0 8.0 CMC 1.0 1.0 0.5 Brightener 2 0.2 0.2 0.2 Soap 1.0 1.0 1.0 DTPMP 0.4 0.4 0.2 Spray On C45E7 2.5 2.5 2.0 C25E3 2.5 2.5 2.0 Silicone antifoam 0.3 0.3 0.3 PerfUme 0.3 0.3 0.3 additives Carbonate 26.0 23.0 25.0 PB4 18.0 18.0 10 PBl 4.0 4.0 0 TAED 3.0 3.0 1.0 Photoactivated bleach 0.02 0.02 0.02 Protease 1.0 1.0 1.0 Lipase 0.4 0.4 0.4 Amylase 0.25 0.30 0.15 Dry mixed sodium sulfate 3.0 3.0 5.0
Balance (Moisiure & &verbar; 100.0 &verbar; 100.0 &verbar; 100.0 Miscellaneous) Densi tre 630 670 670 Example 4 The following nil bleach-containing detergent formulations of particular use in the washing of colored clothing, according to the present invention were prepared::
M N O Blown Powder Zeolite A 15.0 15.0 Sodium sulfate 0.0 5.0 LAS 3.0 3.0 CE 2.0 1.5 1.3 DTPMP 0.4 0.5 CMC 0.4 0.4 MA/AA 4.0 4.0 Agglomerates C45AS - 11.0 LAS 6.0 5.0 TAS 3.0 2.0 Silicate 4.0 4.0 Zeolite A 10.0 15.0 13.0 CMC - 0.5 MA/AA - 2.0 Carbonate 9.0 7.0 7.0 Spray On Perfume 0.3 0.3 0.5 C45E7 4.0 4.0 4.0 C25E3 2.0 2.0 2.0 Dry additives MA/AA - 3.0 NaSKS-6 12.0 Citrate 10.0 - 8.0 Bicarbonate 7.0 3.0 5.0 Carbonate 8.0 5.0 7.0 PVPVI/PVNO 0.5 0.5 0.5 Alcalase 0.5 0.3 0.9 Lipase 0.4 0.4 0.4 Amylase 0.6 0.6 0.6
Cellulase 0.6 0.6 0.6 Silicone antifoam 5.0 5.0 5.0 Dry additives Sodium sulfate 0.0 9.0 0.0 Balance (Moisture and 100.0 100.0 100.0 Miscellaneous) Densitv (litre) 700 700 700 Example 5 The following detergent formulations, according to the present invention were prepared:
P Q | R S LAS 12.0 12.0 12.0 10.0 QAS 0.7 1.0 - 0.7 TFAA - 1.0 - C25E5/C45E7 - 2.0 - 0.5 C45E35 - 2.5 - - CEQ 2.0 1.5 1.0 0.5 STPP 30.0 18.0 15.0 Silicate 9.0 7.0 10.0 Carbonate 15.0 10.5 15.0 25.0 Bicarbonate - 10.5 - DTPMP 0.7 1.0 - SRP 1 0.3 0.2 - 0.1 MA/AA 2.0 1.5 2.0 1.0 CMC 0.8 0A 0.4 0.2 Protease 0.8 1.0 0.5 0.5 Amylase 0.8 0.4 - 0.25 Lipase 0.2 0.1 0.2 0.1 Cellulase 0.15 0.05 - Photoactivated 70ppm 45ppm 1 Oppm bleach (ppm) m Trightenter 1 0.2 0.2 0.08 0.2 P B 1 6.0 2.0 - NOBS 2.0 1.0 - Silicone 1.0 1.5 2.0 1.5 antifoam Balance 100 100 100 100 (Moisture and Miscellaneous ExamDle 6 The following detergent formulations, according to the present invention were prepared:
T U V Blown Powder Zeolite A 10.0 15.0 6.0 Sodium sulfate 19.0 5.0 7.0 MA/AA 3.0 3.0 6.0 LAS 10.0 8.0 10.0 C45AS 4.0 5.0 7.0 CE 2.0 2.0 2.0 Silicate - 1.0 7.0 Soap 2.0 Brightener 1 0.2 0.2 0.2 Carbonate 28.0 26.0 20.0 DTPMP - 0.4 0.4 Spray On C45E7 1.0 1.0 1.0 Dry additives PVPYI/PVNO 0.5 0.5 0.5 Protease 1.0 1.0 1.0 Lipase 0.4 0.4 0.4 Amylase 0.1 0.1 0.1 Cellulase 0.1 0.1 0.1 NOBS - 6.1 4.5 PB1 1.0 5.0 6.0 Silicone antifoam 1.0 2.0 1.5 Sodium sulfate - 6.0 Balance (Moisture 100 100 100 and Miscellaneous) Example 7 The following high density and bleach-containing detergent formulations, according to the present invention were prepared::
w x Y Blown Powder Zeolite A 15.0 15.0 15.0 Sodim sulfate 0.0 5.0 15.0 LAS 3.0 2.0 3.0 QAS - 1.5 1.5 CEQ 2.0 1.5 2.0 DTPMP 0.4 0.4 0.4 CMC 0.4 0.4 0.4 MA/AA 4.0 2.0 2.0 Agglomerates LAS 4.0 4.0 4.0 TAS 2.0 2.0 1.0 Silicate 3.0 3.0 4.0 Zeolite A 8.0 8.0 8.0 Carbonate 8.0 8.0 6.0 Spray On PerfUme 0.3 0.3 0.3 C45E7 2.0 2.0 2.0 C25E3 2.0 - Dry additives Citrate 5.0 - 2.0 Bicarbonate - 3.0 Carbonate 8.0 15.0 10.0 TAED 6.0 2.0 5.0 PB1 14.0 7.0 10.0 Polyethylene oxide of MW 0.2 5,000,000 Bentonite clay 10.0 Protease 1.0 1.0 1.0 Lipase 0.4 0.4 0.4 Amylase 0.6 0.6 0.6
Cellulase 0.6 0.6 0.6 Silicone antifoam 5.0 5.0 5.0 Dry additives Sodium sulfate 0.0 3.0 0.0 Balance (Moisture and 100.0 100.0 100.0 Miscellaneous) Density (g/litre) 850 850 850 Example 8 The following high density detergent formulations, according to the present invention were prepared::
Z AA Agglomerate C45AS 11.0 14.0 CE 3.0 3.5 Zeolite A 15.0 6.0 Carbonate 4.0 ~ 8.0 MA/AA 4.0 2.0 cMC 0.5 0.5 DTPMP 0.4 0.4 Spray On C25E5 5.0 5.0 Perfilme 0.5 0.5 Dry Adds HEDP 0.5 0.3 SKS 6 13.0 10.0 Citrate 3.0 1.0 TAED 5.0 7.0 Percarbonate 20.0 20.0 SRP 1 0.3 0.3 Protease 1.4 1.4 Lipase 0.4 0.4 Cellulase 0.6 0.6 Amylase 0.6 0.6 Silicone antifoam 5.0 5.0 Brightener 1 0.2 0.2 Brightened 2 0.2 - Balance (Moisture and 100 100 Miscellaneous Density (g/litre) 850 850

Claims (13)

  1. CLAIMS 1. A detergent composition comprising (a) a foaming surfactant system comprising one or more surfactants selected from anionic, non-ester cationic, nonionic, amphoteric and zwitterionic surfactants and any mixtures thereof; (b) a a hydrolysable cationic ester surfactant; (c) an alkalinity system having the capacity to deliver alkalinity to a wash solution as measured by the alkalinity release test method described herein such that the % weight NaOH equivalent of the composition is greater than 3% by weight of the composition; and (d) an antifoam compound wherein the weight ratio of foaming surfactant to cationic ester surfactant is from 100:1 to 2:1 and the weight ratio of cationic ester surfactant to antifoam compound is from 50:1 to 1:5.
  2. 2. A detergent composition according to Claim 1 wherein said foaming surfactant system is present at a level of more than 5% by weight of the detergent composition.
  3. 3. A detergent composition according to either Claims 1 or 2 wherein the foaming surfactant system is present at a level of from comprises surfactants selected from the group consisting of anionic sulfate surfactants, polyhydroxy fatty acid amide surfactants and any mixtures thereof.
  4. 4. A detergent composition according to any of Claims 1 to 3 wherein said hydrolysable cationic ester surfactant is present at a level of from 0.05% to 30% by weight of the detergent composition and is selected from those having the formula:
    wherein R1 is a C11-C21 linear or branched alkyl, alkenyl or alkaryl chain or M-. N+(R6R7R8)(CH2)S; X and Y, independently, are selected from the group consisting of COO, OCO, O, CO, OCOO, CONH, NHCO, OCONH and NHCOO wherein at least one of X or Y is a COO, OCO, OCOO, OCONH or NHCOO group;R2, R3, R4, R6, R7, and R8 are independently selected from the group consisting of alkyl, alkenyl, hydroxyalkyl, hydroxyalkenyl and alkaryl groups having from 1 to 4 carbon atoms; and Rs is independently H or a C1-C3 alkyl group; wherein the values of m, n, s and t independently lie in the range of from 0 to 8, the value of b lies in the range from 0 to 20, and the values of a, u and v independently are either 0 or 1 with the proviso that at least one of u or v must be 1; and wherein M is a counter anion.
  5. 5. A detergent composition according to Claim 4 wherein R2,R3 and R4 are independently selected from the group consisting of CH3 and -CH2CH20H.
  6. 6. A detergent composition according to Claim 4 wherein the cationic ester is selected from the choline esters having the formula:
    wherein R1 is a C1 l-Clg linear or branched alkyl chain.
  7. 7. A detergent composition according to any of Claims 1 to 6 wherein said alkalinity system comprises alkaline salts selected from the group consisting of alkali metal or alkaline earth carbonate, bicarbonate, hydroxide or silicate, including crystalline layered silicate, salts and any mixtures thereof.
  8. 8. A detergent composition according to any of Claims 1 to 7 wherein the alkalinity system is present in an amount of from 10% to 40% by weight of the detergent composition.
  9. 9. A detergent composition according to any of Claims 1 to 8 wherein said surfactant system contains anionic surfactant and the alkalinity system is present at a weight ratio of anionic surfactant to alkalinity, expressed as % weight NaOH equivalent of from 4:1 to 1:8.
  10. 10. A detergent composition according to any of Claims 1 to 9 wherein said antifoam compound is present at a level of from 0.01% to 15% by weight of the composition.
  11. 11. A detergent composition according to any of Claims 1 to 10 wherein said antifoam compound is a silicone antifoam compound.
  12. 12. A method of washing laundry in a domestic washing machine in which a dispensing device containing an effective amount of a solid detergent composition according to any of Claims 1 to 11 is introduced into the drum of the washing machine before the commencement of the wash, wherein said dispensing device permits progressive relase of said detergent composition into the wash liquor during the wash.
  13. 13. Use in a machine washing method of a composition comprising (a) a hydrolysable cationic ester surfactant; and (b) an alkalinity system having the capacity to deliver alkalinity to a wash solution as measured by the alkalinity release test method described herein such that the % weight NaOH equivalent of the composition is greater than 5% by weight of the composition as a suds controlling system.
GB9513955A 1995-07-08 1995-07-08 Detergent compositions Withdrawn GB2303140A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
GB9513955A GB2303140A (en) 1995-07-08 1995-07-08 Detergent compositions
EP96923550A EP0863969A4 (en) 1995-07-08 1996-07-03 Detergent compositions
BR9609630A BR9609630A (en) 1995-07-08 1996-07-03 Detergent compositions
JP9505858A JPH11508946A (en) 1995-07-08 1996-07-03 Detergent composition
MX9800269A MX9800269A (en) 1995-07-08 1996-07-03 Detergent compositions.
AU64032/96A AU6403296A (en) 1995-07-08 1996-07-03 Detergent compositions
PCT/US1996/011104 WO1997003159A1 (en) 1995-07-08 1996-07-03 Detergent compositions
CA 2226577 CA2226577A1 (en) 1995-07-08 1996-07-03 Detergent compositions
ARP960103495A AR002781A1 (en) 1995-07-08 1996-08-07 DETERGENT COMPOSITIONS CONTAINING HYDROLYSABLE CATIONIC ESTERS AND WASHING METHOD WITH SUCH COMPOSITIONS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB9513955A GB2303140A (en) 1995-07-08 1995-07-08 Detergent compositions

Publications (2)

Publication Number Publication Date
GB9513955D0 GB9513955D0 (en) 1995-09-06
GB2303140A true GB2303140A (en) 1997-02-12

Family

ID=10777342

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9513955A Withdrawn GB2303140A (en) 1995-07-08 1995-07-08 Detergent compositions

Country Status (9)

Country Link
EP (1) EP0863969A4 (en)
JP (1) JPH11508946A (en)
AR (1) AR002781A1 (en)
AU (1) AU6403296A (en)
BR (1) BR9609630A (en)
CA (1) CA2226577A1 (en)
GB (1) GB2303140A (en)
MX (1) MX9800269A (en)
WO (1) WO1997003159A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0934391A1 (en) * 1996-10-18 1999-08-11 The Procter & Gamble Company Detergent composition comprising lipase enzyme and cationic surfactant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239660A (en) * 1978-12-13 1980-12-16 The Procter & Gamble Company Detergent composition comprising a hydrolyzable cationic surfactant and specific alkalinity source

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260529A (en) * 1978-06-26 1981-04-07 The Procter & Gamble Company Detergent composition consisting essentially of biodegradable nonionic surfactant and cationic surfactant containing ester or amide
US4808321A (en) * 1987-05-01 1989-02-28 The Procter & Gamble Company Mono-esters as fiber and fabric treatment compositions
US5205960A (en) * 1987-12-09 1993-04-27 S. C. Johnson & Son, Inc. Method of making clear, stable prespotter laundry detergent
US4840738A (en) * 1988-02-25 1989-06-20 The Procter & Gamble Company Stable biodegradable fabric softening compositions containing 2-hydroxypropyl monoester quaternized ammonium salts
US5441541A (en) * 1989-07-19 1995-08-15 Colgate Polmolive Co. Anionic/cationic surfactant mixtures
US5207933A (en) * 1991-08-28 1993-05-04 The Procter & Gamble Company Liquid fabric softener with insoluble particles stably suspended by soil release polymer
US5466394A (en) * 1994-04-25 1995-11-14 The Procter & Gamble Co. Stable, aqueous laundry detergent composition having improved softening properties

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239660A (en) * 1978-12-13 1980-12-16 The Procter & Gamble Company Detergent composition comprising a hydrolyzable cationic surfactant and specific alkalinity source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0934391A1 (en) * 1996-10-18 1999-08-11 The Procter & Gamble Company Detergent composition comprising lipase enzyme and cationic surfactant
EP0934391A4 (en) * 1996-10-18 1999-12-08 Procter & Gamble Detergent composition comprising lipase enzyme and cationic surfactant

Also Published As

Publication number Publication date
AU6403296A (en) 1997-02-10
EP0863969A1 (en) 1998-09-16
CA2226577A1 (en) 1997-01-30
MX9800269A (en) 1998-04-30
AR002781A1 (en) 1998-04-29
GB9513955D0 (en) 1995-09-06
EP0863969A4 (en) 1999-09-15
JPH11508946A (en) 1999-08-03
BR9609630A (en) 1999-04-06
WO1997003159A1 (en) 1997-01-30

Similar Documents

Publication Publication Date Title
CA2255594C (en) Detergent composition
GB2303150A (en) Laundry washing method
EP0843715A1 (en) Detergent compositions
EP0883600B1 (en) Cationic detergent compounds
GB2303145A (en) Detergent compositions
CA2261609C (en) A detergent composition comprising an acid source with a specific particle size
WO1998004662A9 (en) A detergent composition comprising an acid source with a specific particle size
EP0915960A1 (en) A process and composition for detergents
WO1997043367A1 (en) Detergent composition
CA2261349C (en) A detergent composition
GB2303144A (en) Detergent compositions
WO1998004667A1 (en) A detergent composition
GB2310851A (en) Cationic detergent compounds
GB2313601A (en) Detergent compositions
GB2315764A (en) Detergent comprising surfactant, acid source and alkaline source
GB2303141A (en) Detergent compositions
GB2303140A (en) Detergent compositions
GB2303147A (en) Detergent compositions
GB2313602A (en) Detergent compositions
GB2303142A (en) Detergent compositions
GB2318363A (en) Detergent compositions
EP0968266A1 (en) Detergent composition
GB2318362A (en) Detergent compositions
GB2323380A (en) A detergent composition
GB2323383A (en) Perborate containing effervescent laundry and dish washing detergent composition

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)