EP0914587B1 - Thin layer igniter element for active pyrotechnic materials and method for the production thereof - Google Patents

Thin layer igniter element for active pyrotechnic materials and method for the production thereof Download PDF

Info

Publication number
EP0914587B1
EP0914587B1 EP98929356A EP98929356A EP0914587B1 EP 0914587 B1 EP0914587 B1 EP 0914587B1 EP 98929356 A EP98929356 A EP 98929356A EP 98929356 A EP98929356 A EP 98929356A EP 0914587 B1 EP0914587 B1 EP 0914587B1
Authority
EP
European Patent Office
Prior art keywords
ignition
layer
accordance
thin
hafnium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98929356A
Other languages
German (de)
French (fr)
Other versions
EP0914587A1 (en
Inventor
Horst Laucht
Heinz-Wilhelm Ehlbeck
Horst Reichardt
Viktor Tiederle
Uwe Weiss
Markus Scholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nico Pyrotechnik Hanns Juergen Diederichs GmbH and Co KG
Conti Temic Microelectronic GmbH
ZF Airbag Germany GmbH
Original Assignee
Nico Pyrotechnik Hanns Juergen Diederichs GmbH and Co KG
Conti Temic Microelectronic GmbH
TRW Airbag Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1997121929 external-priority patent/DE19721929C1/en
Priority claimed from DE1997132380 external-priority patent/DE19732380B4/en
Application filed by Nico Pyrotechnik Hanns Juergen Diederichs GmbH and Co KG, Conti Temic Microelectronic GmbH, TRW Airbag Systems GmbH filed Critical Nico Pyrotechnik Hanns Juergen Diederichs GmbH and Co KG
Publication of EP0914587A1 publication Critical patent/EP0914587A1/en
Application granted granted Critical
Publication of EP0914587B1 publication Critical patent/EP0914587B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/195Manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/12Bridge initiators
    • F42B3/13Bridge initiators with semiconductive bridge

Definitions

  • the invention relates to a thin-layer ignition element for pyrotechnic active materials according to the preamble of claim 1 and method for its production according to the preamble of claim 11.
  • a thin wire bridge is reduced Resistor (2 ⁇ ) heated and evaporated by a current pulse. Through this one thermal impulse is then ignited the pyrotechnic active mass.
  • Resistor (2 ⁇ ) heated and evaporated by a current pulse Through this one thermal impulse is then ignited the pyrotechnic active mass.
  • DE 42 22. 223 C1 becomes a thin-film ignition bridge made of titanium, titanium nitride or one Alloy containing predominantly titanium is proposed as titanium or titanium nitride due to their high thermal conductivity and their compared to conventional ignition bridge materials higher electrical resistance when melting one Ensure large and uniform heating of the pyrotechnic active mass.
  • the ignition energy required for this is very high because titanium has a melting point over 1660 ° Celsius; Titanium nitride over 2900 ° Celsius and common titanium alloys are still above.
  • the object of the present invention is to develop a thin-layer ignition element, which can be ignited by a low initialization energy and this with the lowest possible loss of efficiency passes on to the pyrotechnic ignition compound.
  • the thin-layer ignition element should also be simple and in large numbers be producible.
  • Characteristic of the present invention is the coupling of physical, chemical and thermal energy input from the hafnium hydride directly into the pyrotechnic active mass with significantly smaller amounts of initialization energy.
  • a mixture with titanium is also available Linking their positive properties.
  • hafnium hydride or hafnium / titanium hydride mixture is decomposed atomic hydrogen released, resulting in a significant increase in pressure between Ignition bridge layer and pyrotechnic active mass leads.
  • the atomic also works Hydrogen itself as an igniter (chemical reaction with oxygen and Constituents of the pyrotechnic active mass). It can also be used for training of a plasma.
  • the metallic component titanium which is preferably used in a supplementary manner, can be used easy to master in terms of process technology and has the basic mode of operation, so that in addition to the effect of the reactive hydrogen released during the decomposition as well as the effect of the resulting plasma and the energy input by the heated metal atoms is high, which accelerates the ignition process.
  • the metallic component hafnium used is characterized by a higher specific atomic weight, so that in addition to the effect of the decomposition released reactive hydrogen as well as the effect of the resulting plasma also the energy input through the heavy metal atoms is particularly high, which Ignition process accelerated. More advantageous compared to other metal hydride layers is the high thermal stability with regard to the out diffusion of the hafnium hydride Hydrogen and the even higher compared to the already quite good titanium Decomposition temperature of the metal hydride layer, which has a favorable effect on the stability against thermal environmental influences and on the overall service life of the Ignition element affects.
  • the thermal insulation layer under the ignition bridge layer reduces energy losses through the heat dissipation into the carrier substrate and thus increases the direction of the pyrotechnic active mass flowing and thus effective amount of energy.
  • Variation of the structure geometry and in particular thickness of the thermal Insulation layer can therefore also the ignition time and the minimum required Ignition voltage can be influenced.
  • the ignition bridge layer In order to minimize the contact resistance between the ignition bridge and the Ensuring contacts are first across from the ignition bridge layer the ignition bridge formed large-area contact surfaces and these as completely as possible touch the metallization layers of the contacts. In addition to the separation of the Metallization layer on the ignition bridge layer is also a face-down contact possible from interconnect areas integrated in the carrier substrate, the ignition bridge layer to contact from the opposite side. The ignition bridge layer can then on the carrier substrate surface or optionally also on the interposed structured metallization layer is deposited.
  • a spark plug layer between 0.2 and 2 ⁇ m allows for a specific one Resistance of the titanium hydride of approx. 0.50 ⁇ m is a quite large surface area of the Ignition bridge and good variation possibilities by length and width of the ignition bridge in the preferred range of total electrical resistance of the ignition bridge layer of 0.5 to approx. 200 ⁇ .
  • the further training according to claim 13 should also be considered, after which the ignition bridge layer is cooled when the metallization layer is deposited so that the local temperature does not exceed 350 ° Celsius.
  • FIG. 1 shows an ignition element with a deposited, structured and hydrogenated ignition bridge layer 2 made of hafnium hydride HfH x; (0.025 ⁇ x ⁇ 2) or a mixture of hafnium hydride with TiH x; (0.2 ⁇ x ⁇ 2) on a carrier substrate 4 with a thermal insulation layer 3.
  • the thermal insulation layer 3 is designed as a closed epitaxially deposited SiO 2 layer. In principle, however, this can also be produced by oxidation of a silicon substrate surface. In addition, other materials for thermal insulation are also suitable. It is essential for the function, however, that it is neither electrically short-circuited by the thermal insulation layer 3 nor by the carrier substrate 4, if the thermal insulation layer 3 is dispensed with.
  • the contact surfaces 21 (see FIG. 1a) of the ignition bridge layer are widened designed to have the lowest possible contact resistance to the To reach contacts 1. Accordingly, the contacts 1 as an Al layer or another layer made of a highly conductive material realized (see Fig.1b and Fig.1c) to facilitate contacting.
  • the Dimensions of the contact surfaces 21 depend on the respective required contacting conditions.
  • the Sequence of layers on average clearly, the variable thickness d of thermal insulation layer 3 the ignition timing and the at least required ignition voltage affects. Namely, the ignition bridge layer 2 flowed through by the current, so is the time to reach the critical decomposition temperature essentially from the thermal conductivity the insulation layer 3 dependent. Can a larger amount of heat flow off over the insulation layer 3 to the carrier substrate 4, so delayed the ignition point or a higher power must be implemented what a higher ignition voltage means.
  • the hafnium and / or Titanium hydride layer 2 also directly on the carrier substrate 4 be deposited if there is a delay in the ignition timing desired or the ignition voltage is selected to be correspondingly high and in addition, the carrier substrate is not electrically conductive.
  • the contacts 1 are again on the structured ignition bridge layer 2 deposited (see. Fig. 2b and 2c).
  • FIG 4 shows the basic circuit diagram of the ignition circuit.
  • the ignition takes place by applying an electrical voltage U in the low-voltage range to the metallized contacts 1.
  • U electrical voltage
  • U electrical voltage
  • metallized contacts 1 metallized contacts 1
  • a Joule heating of the ignition bridge 2 which then through their warming and chemical decomposition (Release of reactive hydrogen) and a plasma discharge Ignition process in the directly lying pvrotechnical active mass 5 (cf. Fig. 5) initiated.
  • the hot metal atoms and the pressure lead to one widespread inflammation.
  • the arrangement of the pyrotechnic active mass 5 can on the one hand directly of the ignition bridge layer 2 (see FIG. 5) in addition to the hydrogen reaction and plasma effects also use direct heat conduction. Or it becomes an ignition bridge layer by means of distance-determining intermediate layers 6 2 realizes a small distance 7 (see FIG. 6) in order primarily to use the pure plasma effect.
  • FIG. 7 now shows yet another embodiment in which the ignition bridge layer 2 in the area of the contact surfaces 21 from the lower one opposite pyrotechnic active mass is contacted.
  • the Contacts 1 are embedded in the top of the carrier substrate, for example. Between contacts 1 and under the effective area of the ignition bridge layer 2, the thermal insulation layer 3 is provided, which the Ignition bridge layer 2 thermally and electrically from the carrier substrate 4 isolated.
  • the carrier substrate points toward interconnect regions toward the contacts 1 4.1, which are made, for example, of highly doped carrier substrate material (Si).
  • the two interconnect areas 4.1 are separated by an isolation trench 4.2 Carrier substrate 4 isolated from each other.
  • Advantage of this embodiment is the omission of an Al layer and external connections to the Contacts.
  • the contact between pyrotechnic Active mass and ignition bridge layer simplified and improved.
  • Embodiments are particularly other, for example circular configurations of the ignition bridge layer are conceivable.
  • FIG 8 in turn, an embodiment of another Further development of the invention is shown, after which on the ignition bridge layer 2 in the effective area of the ignition bridge between contacts 1 an insulation layer 7 is deposited.
  • an insulation layer 7 is deposited.
  • Oxide material existing insulation layer 7 can the heating process of the ignition bridge layer to the temperature required for the decomposition a pressure increase can be accelerated.
  • the thickness of the layer and its Structure (local tapering of the insulation layer 7 as a predetermined breaking point ect.) Is chosen so that after the release of the reactive hydrogen and the beginning of expansion, the insulation layer 7 at a previously defined Pressure opens and the hot hydrogen gas as well as the hot particles of the Ignition bridge layer and, if developing, the plasma on or in the pyrotechnic active mass 5 can reach.
  • the insulation layer 7 is only so thick that it directly at Beginning of the reaction of the ignition bridge layer 2 is destroyed.
  • the Insulation layer 7 can consist of a material or a sequence of layers exist in which at least the directly on the ignition bridge layer 2 lying must be electrically insulating so that the ignition bridge layer 2 is not bridged.
  • a partial metal deposition as the top layer of the Insulation layer 7 is conceivable, however, because of the reflection on the metallized top layer the heat before the destruction of the insulation layer 7 is reflected back into the ignition bridge layer 2 and thus this heated faster.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Air Bags (AREA)

Abstract

The thin layer igniter elements used to ignite active pyrotechnic materials generally have high ignition voltages or involve very high amounts of initialization energy. Said elements are mainly based on a purely thermal coupling of a hot material and a volatile material forming a bridging material for ignition. By using hafnium hydride and/or titanium hydride as a bridging material for ignition (2) and by employing a method of production which is compatible with semi-conductors, large quantities of ignition elements requiring low-range initialization voltages can be produced in an extremely simple manner. A hafnium hydride and/or titanium hydride decomposition process is activated at a low heating temperature, resulting in the release of reactive hydrogen and the formation of plasma. The inventive igniter elements provide simplified control circuits for passenger protection devices such as airbags in motor vehicles.

Description

Die Erfindung betrifft ein Dünnschichtanzündelement für pyrotechnische Wirkmassen gemäß dem Oberbegriff des Patentanspruchs 1 und Verfahren zu dessen Herstellung gemäß dem Oberbegriff des Patentanspruchs 11.The invention relates to a thin-layer ignition element for pyrotechnic active materials according to the preamble of claim 1 and method for its production according to the preamble of claim 11.

Aus der DE 42 22 223 C1 ist ein elektrisches Anzündmittel gemäß dem Oberbegriff des Patentanspruchs 1 bekannt.From DE 42 22 223 C1 is an electrical igniter according to the preamble of Claim 1 known.

In herkömmlichen Anzündelementen wird eine dünne Drahtbrücke geringen Widerstandes (2Ω) durch einen Stromimpuls erhitzt und verdampft. Durch diesen rein thermischen Impuls wird dann die pyrotechnische Wirkmasse entzündet. In der DE 42 22. 223 C1 wird dabei eine Dünnschicht-Zündbrücke aus Titan, Titannitrid oder einer überwiegend Titan enthaltenden Legierung vorgeschlagen, da Titan oder Titannitrid aufgrund ihrer hohen Wärmeleitfähigkeit und ihres gegenüber herkömmlichen Zündbrückenmaterialien höheren elektrischen Widerstandes beim Schmelzen eine großflächige und gleichmäßige Erhitzung der pyrotechnischen Wirkmasse gewährleisten. Die dafür erforderliche Zündenergie ist jedoch sehr hoch, da Titan einen Schmelzpunkt über 1660° Celsius aufweist ; Titannitrid über 2900° Celsius und übliche Titanlegierungen liegen noch darüber.In conventional ignition elements, a thin wire bridge is reduced Resistor (2Ω) heated and evaporated by a current pulse. Through this one thermal impulse is then ignited the pyrotechnic active mass. In DE 42 22. 223 C1 becomes a thin-film ignition bridge made of titanium, titanium nitride or one Alloy containing predominantly titanium is proposed as titanium or titanium nitride due to their high thermal conductivity and their compared to conventional ignition bridge materials higher electrical resistance when melting one Ensure large and uniform heating of the pyrotechnic active mass. However, the ignition energy required for this is very high because titanium has a melting point over 1660 ° Celsius; Titanium nitride over 2900 ° Celsius and common titanium alloys are still above.

Eine andere Variante unter Verwendung vorzugsweise des Halbleitermaterials Polysilizium, dessen Wirkungsprinzip ebenfalls thermischer Natur ist, wird in US 4,708,060 beschrieben. Hierbei wird der ab einer erhöhten Temperatur auftretende negative Temperaturkoeffizient des Widerstandsmaterials ausgenutzt. Dies führt im Zündmoment neben der Hitzeübertragung zur Bildung eines dünnen Plasmas und einem konvektiven Druckeffekt. Der Aufbau ist dabei vergleichbar mit einer Widerstandsbrücke.Another variant, preferably using the semiconductor material Polysilicon, the principle of which is also thermal in nature, is described in US 4,708,060. Here, the one that occurs at an elevated temperature negative temperature coefficient of the resistance material exploited. This leads to Ignition moment in addition to the heat transfer to form a thin plasma and one convective pressure effect. The structure is comparable to a resistance bridge.

Ein anderes Zündprinzip, beschrieben in US 5,080,016, basiert auf der Verwendung einer Metallhydridfolie. Auf dieser freitragenden Folie ist ein Kunststoffstreifen aufgebracht, der durch die thermische Zersetzung der Hydridschicht (Gasdruckentwicklung) infolge eines Spannungsimpulses zerteilt und Teile des Kunststoffstreifens (Flyer) beschleunigt werden und auf die in einigem Abstand angeordnete pyrotechnische Wirkmasse treffen, wobei diese durch die Druckwirkung (Schockwelle) des auftreffenden Kunststoffteils gezündet wird. Die zugeführte elektrische Energie wird somit zunächst in thermische Energie und Druck umgesetzt, was wiederum zu einer kinetischen Energie des Flyers führt, welche dieser beim Auftreffen auf die pyrotechnische Wirkmasse in Druck und Wärme umsetzt. Durch diese mehrfache Energieumwandlung treten jedoch erhebliche Wirkungsgradverluste auf, so daß die zur Zündung verwendete Spannung dabei im kV-Bereich liegen muß. Das Patent US 5,080,016 benennt die Elemente Titan, Zirkonium, Nickel und Palladium als geeignete Metalle, um entsprechend Wasserstoff einzulagern.Another ignition principle, described in US 5,080,016, is based on the use of a Metallhydridfolie. A plastic strip is applied to this self-supporting film due to the thermal decomposition of the hydride layer (gas pressure development) as a result of Voltage pulse and parts of the plastic strip (flyer) are accelerated and meet the pyrotechnic active mass arranged at a distance, whereby this is ignited by the pressure effect (shock wave) of the impacting plastic part becomes. The electrical energy supplied is thus initially converted into thermal energy and Pressure implemented, which in turn leads to a kinetic energy of the flyer, which this converts into pressure and heat when it hits the pyrotechnic active material. Due to this multiple energy conversion, however, considerable Efficiency losses, so that the voltage used for ignition is in the kV range must lie. The patent US 5,080,016 names the elements titanium, zirconium, Nickel and palladium are suitable metals for storing hydrogen accordingly.

Generell ist auch die Wasserstoffspeicherung in Metallhydriden als bekannt anzusehen, was jedoch meist als negativer Effekt auf die Festigkeit des Metalls (Wasserstoff-Krankheit) unerwünscht ist. Dieser Effekt kann auch zur gezielten Speicherung von Wasserstoff eingesetzt werden (vgl. Bergmann/ Schäfer : Lehrbuch der Experimentalphysik, Bd. 6 1992, S. 452 f.).In general, hydrogen storage in metal hydrides can also be regarded as known, however, which is mostly a negative effect on the strength of the metal (hydrogen disease) is undesirable. This effect can also be used for the targeted storage of Hydrogen can be used (see Bergmann / Schäfer: Textbook der Experimental Physics, Vol. 6 1992, p. 452 f.).

Aufgabe der vorliegenden Erfindung ist es, ein Dünnschichtanzündelement zu entwickeln, welches durch eine geringe Initialisierungsenergie gezündet werden kann und diese mit möglichst geringen Wirkungsgradverlusten an die pyrotechnischen Zündmasse weitergibt. Das Dünnschichtanzündelement soll des weiteren einfach und in großen Stückzahlen herstellbar sein.The object of the present invention is to develop a thin-layer ignition element, which can be ignited by a low initialization energy and this with the lowest possible loss of efficiency passes on to the pyrotechnic ignition compound. The thin-layer ignition element should also be simple and in large numbers be producible.

Diese Aufgabe wird mit den Merkmalen des ersten Patentanspruches sowie durch das Verfahren zur Herstellung gemäß den Merkmalen des Patentanspruchs 15 gelöst.This object is achieved with the features of the first claim and by Method for manufacturing according to the features of claim 15 solved.

Kennzeichnend für die vorliegende Erfindung ist die Kopplung von physikalischem, chemischem und thermischem Energieeintrag aus dem Hafniumhydrid direkt in die pyrotechnische Wirkmasse bei wesentlich - kleineren Initialisierungsenergiemengen. Neben Zündbrückenschichten aus Hafnium bietet sich auch ein Gemisch mit Titan zur Verknüpfung ihrer jeweils positiven Eigenschaften an.Characteristic of the present invention is the coupling of physical, chemical and thermal energy input from the hafnium hydride directly into the pyrotechnic active mass with significantly smaller amounts of initialization energy. In addition to ignition bridge layers made of hafnium, a mixture with titanium is also available Linking their positive properties.

So reichen Niedervoltspannungen < 50 V und eine Initialisierungsenergie im Bereich einiger Millijoule aus, um die Zündung in Gang zu setzen. Wesentlich für die Energieeinsparung ist dabei die Eigenschaft des Hafniumhydrids, welches sich bereits bei einer Lokaltemperatur ca. 450° bis 800 Grad Celsius zersetzt, währenddessen bisher eine Schmelztemperatur von ca. 1660° Celsius aufgebracht werden mußte. Mit zunehmendem Hafniumanteil erhöht sich bei Gemischen aus Hafnium- und Titanhydrid dabei jeweils die Zersetzungstemperatur. Low-voltage voltages <50 V and an initialization energy in the range are sufficient a few millijoules to start the ignition. Essential for that Energy saving is the property of the hafnium hydride, which is already at a local temperature about 450 ° to 800 degrees Celsius, meanwhile one Melting temperature of about 1660 ° Celsius had to be applied. With increasing The proportion of hafnium increases with mixtures of hafnium and titanium hydride Decomposition temperature.

Beim Zersetzen des Hafniumhydrids oder Hafnium-/Titan-hydrid-Gemischs wird aber atomarer Wasserstoff frei, was zu einem erheblichen Druckanstieg zwischen Zündbrückenschicht und pyrotechnischer Wirkmasse führt. Außerdem wirkt der atomare Wasserstoff selbst als Zündmittel (chemische Reaktion mit dem Sauerstoff und Bestandteilen der pyrotechnischen Wirkmasse). Dabei kann es auch zur Ausbildung eines Plasmas kommen.However, when the hafnium hydride or hafnium / titanium hydride mixture is decomposed atomic hydrogen released, resulting in a significant increase in pressure between Ignition bridge layer and pyrotechnic active mass leads. The atomic also works Hydrogen itself as an igniter (chemical reaction with oxygen and Constituents of the pyrotechnic active mass). It can also be used for training of a plasma.

Der vorzugsweise ergänzend anteilig verwendete metallische Bestandteil Titan läßt sich prozeßtechnisch einfach beherrschen und weist die grundlegende Wirkungsweise auf, so daß neben der Wirkung des bei der Zersetzung freiwerdenden reaktiven Wasserstoffs sowie der Wirkung des entstehenden Plasmas auch der Energieeintrag durch die erhitzten Metallatome hoch ist, was den Zündvorgang beschleunigt.The metallic component titanium, which is preferably used in a supplementary manner, can be used easy to master in terms of process technology and has the basic mode of operation, so that in addition to the effect of the reactive hydrogen released during the decomposition as well as the effect of the resulting plasma and the energy input by the heated metal atoms is high, which accelerates the ignition process.

Der verwendete metallische Bestandteil Hafnium zeichnet sich durch ein höheres spezifisches Atomgewicht aus, so daß neben der Wirkung des bei der Zersetzung freiwerdenden reaktiven Wasserstoff sowie der Wirkung des entstehenden Plasmas auch der Energieeintrag durch die schweren Metallatome besonders hoch ist, was den Zündvorgang beschleunigt. Vorteilhafter im Vergleich zu anderen Metallhydridschichten ist die bei Hafniumhydrid hohe thermische Stabilität hinsichtlich der Ausdiffusion des Wasserstoffs sowie die gegenüber dem bereits recht guten Titan noch höhere Zersetzungstemperatur der Metallhydridschicht, was sich für günstig auf die Stabilität gegenüber thermischen Umwelteinflüssen und auf die Gesamtlebensdauer des Zündelementes auswirkt.The metallic component hafnium used is characterized by a higher specific atomic weight, so that in addition to the effect of the decomposition released reactive hydrogen as well as the effect of the resulting plasma also the energy input through the heavy metal atoms is particularly high, which Ignition process accelerated. More advantageous compared to other metal hydride layers is the high thermal stability with regard to the out diffusion of the hafnium hydride Hydrogen and the even higher compared to the already quite good titanium Decomposition temperature of the metal hydride layer, which has a favorable effect on the stability against thermal environmental influences and on the overall service life of the Ignition element affects.

Diese Kopplung von Energieeinträgen führt zu einer sehr schnellen, im Mikrosekundenbereich liegenden Zündung der pyrotechnischen Wirkmasse, was bei nahezu allen praktischen Anwendungen von Zündelementen äußerst vorteilhaft ist.This coupling of energy inputs leads to a very fast, in Ignition of the pyrotechnic active mass, which is at microsecond range almost all practical applications of ignition elements is extremely advantageous.

Durch die geringe Zündspannung und Initialisierungsenergie reichen bereits Autobatterien o.ä. direkt und ohne aufwendige Spannungsverstärker zur Spannungsversorgung aus. Deshalb können diese Anzündelemente besonders vorteilhaft als Zünder für Airbags und andere Insassenschutzeinrichtungen verwendet werden.Due to the low ignition voltage and initialization energy, car batteries are sufficient etc. directly and without complex voltage amplifiers for power supply. Therefore, these ignition elements can be used particularly advantageously as igniters for airbags and other occupant protection devices are used.

Die thermische Isolationsschicht unter der Zündbrückenschicht verringert Energieverluste durch die Wärmeableitung in das Trägersubstrat hinein und erhöht somit die in Richtung der pyrotechnischen Wirkmasse fließende und somit wirksame Energiemenge. Durch Variation der Strukturgeometrie und insbesondere Dicke der thermischen Isolationsschicht kann daher auch die Zündzeit und die minimal erforderliche Zündspannung beeinflußt werden.The thermal insulation layer under the ignition bridge layer reduces energy losses through the heat dissipation into the carrier substrate and thus increases the direction of the pyrotechnic active mass flowing and thus effective amount of energy. By Variation of the structure geometry and in particular thickness of the thermal Insulation layer can therefore also the ignition time and the minimum required Ignition voltage can be influenced.

Durch die Anwendung eines halbleiterprozeßkompatiblen Herstellungsprozesses sowie die Verwendung eines Halbleitersubstrates als Trägersubstrat wird die Integration von Sensoren zur Überwachung der Funktionstüchtigkeit (z.B, Feuchtigkeits- und Temperatursensoren) sowie von Ansteuer- und Überwachungselektronik in einer mikroelektronischen Schaltung auf kleinstem Raum möglich. Schaltungstechnische Maßnahmen zur Absicherung des Anzündelements gegen hochfrequente Störimpulse und EMV-Einflüsse können ebenso vorteilhaft realisiert werden.By using a semiconductor process compatible manufacturing process as well the use of a semiconductor substrate as a carrier substrate is the integration of Sensors for monitoring the functionality (e.g., moisture and Temperature sensors) as well as control and monitoring electronics in one microelectronic switching possible in the smallest space. circuit engineering Measures to protect the ignition element against high-frequency interference pulses and EMC influences can also be realized advantageously.

Um einen möglichst geringen Übergangswiderstand zwischen Zündbrücke und den Kontakten zu gewährleisten, werden zunächst aus der Zündbrückenschicht gegenüber der Zündbrücke großflächige Kontaktflächen ausgeformt und diese möglichst vollständig die Metallisierungsschichten der Kontakte berühren. Neben der Abscheidung der Metallisierungsschicht auf der Zündbrückenschicht ist auch eine Face-Down-Kontaktierung aus im Trägersubstrat integrierte Leitbahnbereiche denkbar, die Zündbrückenschicht von der entgegengesetzten Seite zu kontaktieren. Die Zündbrückenschicht kann dann auf die Trägersubstratoberfläche oder gegebenenfalls auch auf die zwischengeschobene strukturierte Metalllisierungsschicht abgeschieden wird.In order to minimize the contact resistance between the ignition bridge and the Ensuring contacts are first across from the ignition bridge layer the ignition bridge formed large-area contact surfaces and these as completely as possible touch the metallization layers of the contacts. In addition to the separation of the Metallization layer on the ignition bridge layer is also a face-down contact possible from interconnect areas integrated in the carrier substrate, the ignition bridge layer to contact from the opposite side. The ignition bridge layer can then on the carrier substrate surface or optionally also on the interposed structured metallization layer is deposited.

Eine Zündbrückenschicht zwischen 0,2 und 2 µm erlaubt bei einem spezifischen Widerstand des Titanhydrids von ca 0,50 µΩ m eine recht große Oberfläche der Zündbrücke und gute Variationsmöglichkeiten durch Länge und Breite der Zündbrücke im bevorzugten Bereich des elektrischen Gesamtwiderstands der Zündbrückenschicht von 0,5 bis ca. 200 Ω.A spark plug layer between 0.2 and 2 µm allows for a specific one Resistance of the titanium hydride of approx. 0.50 µΩ m is a quite large surface area of the Ignition bridge and good variation possibilities by length and width of the ignition bridge in the preferred range of total electrical resistance of the ignition bridge layer of 0.5 to approx. 200 Ω.

Das zur Herstellung eines erfindungsgemäßen Anzündelements erforderliche Verfahren wird in Patentanspruch 11 beschrieben, wobei insbesondere die gegenüber herkömmlichen Temperungsprozessen recht niedrige Temperatur von etwa 350° Celsius für die Wasserstoffeinlagerung sehr vorteilhaft ist. Während die Prozeßdauer bei niedrigeren Temperaturen (unter 300° Celsius) erheblich ansteigt, setzt bei höheren Temperaturen (über 400° Celsius) bereits der Zersetzungsprozeß des Titanhydrids ein, so daß eine Einlagerung von Wasserstoff nicht oder nur unter erheblich schwierigeren Prozeßbedingungen (Druck ect.) möglich wird. Bei hohem Hafniumanteil steigt die Temperaturfestigkeit. The method required to manufacture an ignition element according to the invention is described in claim 11, in particular the opposite conventional tempering processes quite low temperature of about 350 ° Celsius is very advantageous for hydrogen storage. During the process time at lower temperatures (below 300 ° Celsius) rise significantly, higher temperatures Temperatures (over 400 ° Celsius) already the process of decomposition of the titanium hydride, so that the storage of hydrogen is not or only under considerably more difficult Process conditions (printing ect.) Becomes possible. With a high proportion of hafnium the Temperature strength.

In Zusammenhang damit ist auch die Weiterbildung gemäß Anspruch 13 zu betrachten, wonach beim Abscheiden der Metallisierungsschicht die Zündbrückenschicht gekühlt wird, so daß die lokale Temperatur die 350° Celsius nicht übersteigt.In connection with this, the further training according to claim 13 should also be considered, after which the ignition bridge layer is cooled when the metallization layer is deposited so that the local temperature does not exceed 350 ° Celsius.

Alle Herstellungsschritte sind dabei kompatibel für die Fertigung in Halbleiterfabriken ausgestaltet und können somit für eine Vielzahl von Anzündelementen gleichzeitig realisiert werden, indem als Trägersubstrat ein Siliziumwafer verwendet wird, der erst nach allen Herstellungsschritten zersägt wird.All manufacturing steps are compatible for manufacturing in semiconductor factories designed and can thus for a variety of igniter elements simultaneously can be realized by using a silicon wafer as the carrier substrate is sawn after all manufacturing steps.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und zugehörigen Zeichnungen näher erläutert.The invention is described below with the aid of exemplary embodiments and associated ones Drawings explained in more detail.

Es zeigen:

Fig. 1
Anzündelement mit abgeschiedender und strukturierter Zündbrückenschicht (0,2<x<2) auf einem Trägersubstrat mit einer thermischen Isolationsschicht,
Fig.1a
als Draufsicht ohne Kontaktmetallisierung,
Fig.1b
als Draufsicht mit Kontaktmetallisierung und
Fig.1c
als Schnittdarstellung
Fig.2
Anzündelement mit abgeschiedender und strukturierter Zündbrückenschicht (0,2<x<2) auf einem Trägersubstrat mit einer thermischen Isolationsschicht,
Fig.2a
als Draufsicht ohne Kontaktmetallisierung,
Fig.2b
als Draufsicht mit Kontaktmetallisierung und
Fig.2c
als Schnittdarstellung
Fig.3
thermodynamisch wirksame Länge I und Breite b der Zündstruktur
Fig.4
Prinzipschaltbild des Zündstromkreises
Fig.5
Anzündelement mit abgeschiedender und strukturierter Zündbrückenschicht (0,2<x<2) auf einem Trägersubstrat ohne eine thermische Isolationsschicht und mit einer direkt aufgebrachten pyrotechnischen Wirkmasse
Fig.6
Anzündelement mit abgeschiedender und strukturierter Zündbrückenschicht (0,2<x<2) auf einem Trägersubstrat mit einer thermischen Isolationsschicht sowie mit einer in geringem Abstand aufgebrachten pyrotechnischen Wirkmasse
Figur 7
Anzündelement mit aus dem Trägersubstrat herausgeführten Kontaktierung der Zündbrückenschicht
Figur 8
Anzündelement mit einer Dämmschicht auf der Zündbrücke
Show it:
Fig. 1
Ignition element with a deposited and structured ignition bridge layer (0.2 <x <2) on a carrier substrate with a thermal insulation layer,
1a
as a top view without contact metallization,
1b shows
as a top view with contact metallization and
Figure 1C
as a sectional view
Fig.2
Ignition element with a deposited and structured ignition bridge layer (0.2 <x <2) on a carrier substrate with a thermal insulation layer,
2a
as a top view without contact metallization,
2b
as a top view with contact metallization and
Figure 2c
as a sectional view
Figure 3
thermodynamically effective length I and width b of the ignition structure
Figure 4
Block diagram of the ignition circuit
Figure 5
Ignition element with a deposited and structured ignition bridge layer (0.2 <x <2) on a carrier substrate without a thermal insulation layer and with a directly applied pyrotechnic active compound
Figure 6
Ignition element with a deposited and structured ignition bridge layer (0.2 <x <2) on a carrier substrate with a thermal insulation layer and with a pyrotechnic active compound applied at a short distance
Figure 7
Ignition element with contacting of the ignition bridge layer led out of the carrier substrate
Figure 8
Ignition element with an insulation layer on the ignition bridge

Von grundlegender Bedeutung für alle im folgenden gezeigten Ausführungsbeispiele ist, daß alle Herstellungsschritte und Schichten durch halbleiterprozeßkompatibel sind. Es wird jeweils nur ein Dünnschichtanzündelement gezeigt ; dieses wird jedoch mit einer Vielzahl identischer Anzündelemente auf einer Halbleitersubstratwaferscheibe realisiert. Grundsätzlich ist es aber auch möglich, anstelle eines Halbleitersubstrates ein anderes Trägersubstrat, bspw. eine Glas- oder Keramikfläche zu verwenden. Die Darstellung der Schichtdicken, -breiten und -längen ist schematisch und nicht maßstäblich.Of fundamental importance for all of the exemplary embodiments shown below is that all manufacturing steps and layers are compatible with semiconductor processes. It only one thin-film ignition element is shown; however, this is done with a A large number of identical ignition elements are realized on a semiconductor substrate wafer. In principle, however, it is also possible to use another one instead of one semiconductor substrate Carrier substrate, for example. To use a glass or ceramic surface. The representation of the Layer thicknesses, widths and lengths are schematic and not to scale.

Die Figur 1 zeigt ein Anzündelement mit bereits abgeschiedender, strukturierter und hydrierter Zündbrückenschicht 2 aus Hafniumhydrid HfHx ; (0,025<x<2) oder einem Gemisch aus Hafniumhydrid mit TiHx ; (0,2<x<2) auf einem Trägersubstrat 4 mit einer thermischen Isolationsschicht 3.FIG. 1 shows an ignition element with a deposited, structured and hydrogenated ignition bridge layer 2 made of hafnium hydride HfH x; (0.025 <x <2) or a mixture of hafnium hydride with TiH x; (0.2 <x <2) on a carrier substrate 4 with a thermal insulation layer 3.

Die thermischen Isolationsschicht 3 ist in diesem Ausführungsbeispiel als geschlossene epitaktisch abgeschiedene SiO2-Schicht ausgestaltet. Grundsätzlich kann diese aber auch durch Oxidation einer Siliziumsubstratoberfläche hergestellt werden. Darüber hinaus sind auch andere Stoffe zur thermischen Isolation geeignet. Wesentlich für die funktion ist jedoch, daß es weder durch die thermische Isolationsschicht 3 noch durch das Trägersubstrat 4 ,falls auf die thermische Isolationsschicht 3 verzichtet wird, die Zündbrückenschicht 2 elektrisch kurzgeschlossen wird. In this exemplary embodiment, the thermal insulation layer 3 is designed as a closed epitaxially deposited SiO 2 layer. In principle, however, this can also be produced by oxidation of a silicon substrate surface. In addition, other materials for thermal insulation are also suitable. It is essential for the function, however, that it is neither electrically short-circuited by the thermal insulation layer 3 nor by the carrier substrate 4, if the thermal insulation layer 3 is dispensed with.

Die Kontaktflächen 21 (siehe Fig.1a) der zündbrückenschicht sind verbreitert ausgeführt, um einen möglichst geringen übergangswiderstand zu den Kontakten 1 zu erreichen. Entsprechend werden die Kontakte 1 als eine Al-Schicht oder eine andere Schicht aus einem hochleitfahigen Material realisiert (siehe Fig.1b und Fig.1c), um eine Kontaktierung zu erleichtern. Die Abmessungen der Kontaktflächen 21 richten sich nach den jeweils geforderten Kontaktierungsbedingungen. In Figur 1c wird noch einmal die Abfolge der Schichten im Schnitt deutlich, wobei die variable Dicke d der thermischen Isolationsschicht 3 den Zündzeitpunkt und die mindestens erforderliche Zündspannung beeinflußt. Wird nämlich die Zündbrückenschicht 2 vom Strom durchflossen, so ist die Zeit bis zum Erreichen der kritischen Zersetzungstemperatur im wesentlichen von der Wärmeleitfähigkeit der Isolationsschicht 3 abhängig. Kann eine größere Wärmemenge über die Isolationsschicht 3 an das Trägersubstrat 4 abfließen, so verzögert sich der Zündzeitpunkt oder aber es muß eine höhere Leistung umgesetzt werden, was eine höhere Zündspannung bedeutet.The contact surfaces 21 (see FIG. 1a) of the ignition bridge layer are widened designed to have the lowest possible contact resistance to the To reach contacts 1. Accordingly, the contacts 1 as an Al layer or another layer made of a highly conductive material realized (see Fig.1b and Fig.1c) to facilitate contacting. The Dimensions of the contact surfaces 21 depend on the respective required contacting conditions. In Figure 1c, the Sequence of layers on average clearly, the variable thickness d of thermal insulation layer 3 the ignition timing and the at least required ignition voltage affects. Namely, the ignition bridge layer 2 flowed through by the current, so is the time to reach the critical decomposition temperature essentially from the thermal conductivity the insulation layer 3 dependent. Can a larger amount of heat flow off over the insulation layer 3 to the carrier substrate 4, so delayed the ignition point or a higher power must be implemented what a higher ignition voltage means.

Wie Figur 2 als zweites Ausführungsbeispiel zeigt, kann die Hafniumund/oder Titanhydridschicht 2 auch direkt auf dem Trägersubstrat 4 abgeschieden werden, falls eine Verzögerung des Zündzeitpunktes gewünscht oder die Zündspannung entsprechend hoch gewählt wird und außerdem das Trägersubstrat nicht elektrisch leitfähig ist. Die Kontakte 1 sind dabei wieder auf der strukturierten Zündbrückenschicht 2 abgeschieden (vgl. Fig. 2b und 2c).As FIG. 2 shows as a second exemplary embodiment, the hafnium and / or Titanium hydride layer 2 also directly on the carrier substrate 4 be deposited if there is a delay in the ignition timing desired or the ignition voltage is selected to be correspondingly high and in addition, the carrier substrate is not electrically conductive. The contacts 1 are again on the structured ignition bridge layer 2 deposited (see. Fig. 2b and 2c).

Figur 3 verdeutlicht die letztlich wirksame Oberfläche der Zündbrückenschicht 2. Auch in dieser Figur 3 wurde eine rechteckfömige Struktur der Zündbrücke 2 der wirksamen Länge I und Breite b gewählt. Diese Struktur ist besonders einfach über die bekannten Gleichungen R=ρ I/A und P=U2/R theoretisch zu berechnen und außerdem fertigungstechnisch einfach zu dimensionieren. Die kritische Zündeigenschaften, wie Zündzeiten und Zündspannungen können dadurch angepaßt werden..FIG. 3 illustrates the ultimately effective surface of the ignition bridge layer 2. Also in this FIG. 3, a rectangular structure of the ignition bridge 2 with the effective length I and width b was selected. This structure is particularly easy to calculate theoretically using the known equations R = ρ I / A and P = U 2 / R and is also easy to dimension in terms of production technology. The critical ignition properties, such as ignition times and ignition voltages can be adjusted.

Figur 4 zeigt das Prinzipschaltbild des Zündstromkreises. Die Zündung erfolgt durch Anlegen einer elektrischen Spannung U im Niedervoltbereich an die metallisierten Kontakte 1. Infolge des einsetzenden Stromflusses kommt es zu einer joulschen Erwärmung der Zündbrücke 2 , welche daraufhin durch ihre Erwärmung und die chemische Zersetzung (Freisetzung von reaktivem Wasserstoff) und eine Plasmaentladung den Zündvorgang in der direkt aufliegenden pvrotechnischen Wirkmasse 5 ( vgl. Fig. 5) initiiert. Die heißen Metallatome und der Druck führen dabei zu einer großflächigen Entzündung.Figure 4 shows the basic circuit diagram of the ignition circuit. The ignition takes place by applying an electrical voltage U in the low-voltage range to the metallized contacts 1. As a result of the onset of current flow there is a Joule heating of the ignition bridge 2, which then through their warming and chemical decomposition (Release of reactive hydrogen) and a plasma discharge Ignition process in the directly lying pvrotechnical active mass 5 (cf. Fig. 5) initiated. The hot metal atoms and the pressure lead to one widespread inflammation.

Die Anordnung der pyrotechnischen Wirkmasse 5 kann einerseits direkt auf der Zündbrückenschicht 2 erfolgen (siehe Fig. 5), um neben der Wasserstoffreaktion und Plasmawirkung auch die direkte Wärmeleitung zu nutzen. Oder es wird mittels abstandsbestimmender Zwischenschichten 6 zur Zündbrückenschicht 2 ein geringer Abstand 7 realisiert (siehe Fig. 6), um vornehmlich die reine Plasmawirkung auszunutzen. The arrangement of the pyrotechnic active mass 5 can on the one hand directly of the ignition bridge layer 2 (see FIG. 5) in addition to the hydrogen reaction and plasma effects also use direct heat conduction. Or it becomes an ignition bridge layer by means of distance-determining intermediate layers 6 2 realizes a small distance 7 (see FIG. 6) in order primarily to use the pure plasma effect.

Figur 7 zeigt nun noch ein weiteres Ausführungsbeispiel, bei dem die Zündbrückenschicht 2 im Bereich der Kontaktflächen 21 von der unteren, der pyrotechnischen Wirkmasse entgegengesetzten Seite kontaktiert wird. Die Kontakte 1 sind bspw. in die Trägersubstratoberseite eingelassen. Zwischen den Kontakten 1 und unter dem wirksamen Bereich der Zündbrückenschicht 2 ist die thermische Isolationsschicht 3 vorgesehen, welche die Zündbrückenschicht 2 thermisch und elektrisch vom Trägersubstrat 4 isoliert. Zu den Kontakten 1 hin weist das Trägersubstrat Leitbahnbereiche 4.1 auf, die bspw. aus hochdotiertem Trägersubstratmaterial (Si) sind. Die beiden Leitbahnbereiche 4.1 sind durch einen Isolationsgraben 4.2 im Trägersubstrat 4 voneinander isoliert. Vorteil dieses Ausführungsbeispieles ist ggfs. der Verzicht auf eine Al-Schicht und externe Anschlüsse an die Kontakte. Außerdem wird die Berührung zwischen pyrotechnischer Wirkmasse und Zündbrückenschicht vereinfacht und verbessert.Figure 7 now shows yet another embodiment in which the ignition bridge layer 2 in the area of the contact surfaces 21 from the lower one opposite pyrotechnic active mass is contacted. The Contacts 1 are embedded in the top of the carrier substrate, for example. Between contacts 1 and under the effective area of the ignition bridge layer 2, the thermal insulation layer 3 is provided, which the Ignition bridge layer 2 thermally and electrically from the carrier substrate 4 isolated. The carrier substrate points toward interconnect regions toward the contacts 1 4.1, which are made, for example, of highly doped carrier substrate material (Si). The two interconnect areas 4.1 are separated by an isolation trench 4.2 Carrier substrate 4 isolated from each other. Advantage of this embodiment is the omission of an Al layer and external connections to the Contacts. In addition, the contact between pyrotechnic Active mass and ignition bridge layer simplified and improved.

Neben den vorangehend beschriebenen und in den Figuren gezeigten Ausführungsbeispielen sind insbesondere auch andere, zum Beispiel kreisförmige Ausgestaltungen der Zündbrückenschicht denkbar.In addition to those described above and shown in the figures Embodiments are particularly other, for example circular configurations of the ignition bridge layer are conceivable.

In Figur 8 wiederum im Schnitt ein Ausführungsbeispiel einer weitere Weiterbildung der Erfindung dargestellt, wonach auf der Zündbrückenschicht 2 im wirksamen Bereich der Zündbrücke zwischen den Kontakten 1 eine Dämmschicht 7 abgeschieden ist. Durch eine derartige, bspw.aus Oxidmaterial bestehende Dämmschicht 7 kann der Aufheizprozeß der Zündbrückenschicht auf die für die Zersetzung erforderliche Temperatur durch eine Druckerhöhung beschleunigt werden. Die Dicke der Schicht und ihre Struktur (lokale Verjüngung der Dämmschicht 7 als Soll-Bruchstelle ect.) ist dabei so gewählt, daß nach dem Freisetzen des reaktiven Wasserstoffs und der beginnenden Expansion die Dämmschicht 7 bei einem vorab definierten Druck öffnet und das heiße Wasserstoffgas sowie die heißen Partikel der Zündbrückenschicht und, falls sich ausbildend, auch das Plasma an bzw. in die pyrotechnische Wirkmasse 5 gelangen können.In Figure 8, in turn, an embodiment of another Further development of the invention is shown, after which on the ignition bridge layer 2 in the effective area of the ignition bridge between contacts 1 an insulation layer 7 is deposited. Through such, for example Oxide material existing insulation layer 7 can the heating process of the ignition bridge layer to the temperature required for the decomposition a pressure increase can be accelerated. The thickness of the layer and its Structure (local tapering of the insulation layer 7 as a predetermined breaking point ect.) Is chosen so that after the release of the reactive hydrogen and the beginning of expansion, the insulation layer 7 at a previously defined Pressure opens and the hot hydrogen gas as well as the hot particles of the Ignition bridge layer and, if developing, the plasma on or in the pyrotechnic active mass 5 can reach.

Vorzugsweise ist auch die Dämmschicht 7 nur so dick, daß diese direkt beim Beginn der Reaktion der Zündbrückenschicht 2 zerstört wird. Die Dämmschicht 7 kann aus einem Material oder einer Folge von Schichten bestehen, bei der zumindest die direkt an der zündbrückenschicht 2 liegende elektrisch isolierend seien muß, damit die Zündbrückenschicht 2 nicht überbrückt wird. Eine teilweise Metallabscheidung als Deckschicht der Dämmschicht 7 ist jedoch denkbar, da durch die Reflexion an der metallisierten Deckschicht die Wärme vor der Zerstörung der Dämmschicht 7 in die Zündbrückenschicht 2 zurück reflektiert wird und sich diese somit schneller erhitzt.Preferably, the insulation layer 7 is only so thick that it directly at Beginning of the reaction of the ignition bridge layer 2 is destroyed. The Insulation layer 7 can consist of a material or a sequence of layers exist in which at least the directly on the ignition bridge layer 2 lying must be electrically insulating so that the ignition bridge layer 2 is not bridged. A partial metal deposition as the top layer of the Insulation layer 7 is conceivable, however, because of the reflection on the metallized top layer the heat before the destruction of the insulation layer 7 is reflected back into the ignition bridge layer 2 and thus this heated faster.

Claims (19)

  1. A thin-film ignition element for igniting pyrotechnically active materials (5) consisting of a carrier substrate (4) upon which two electrical contacts (1) are interconnected via a chemically and thermally active ignition bridge layer (2) which is ignited as a result of a voltage (U) being applied to the contacts (1) thereof, characterised in that the ignition bridge layer (2) is a hydrogenated layer of hafnium or a titanium-hafnium mixture.
  2. A thin-film ignition element in accordance with Claim 1, characterised in that the ignition bridge layer (2) is ignited by means of a plasma discharge.
  3. A thin-film ignition element in accordance with Claim 1 or 2, characterised in that a thermally insulating layer (3) is located below the ignition bridge layer (2) towards the carrier substrate (4).
  4. A thin-film ignition element in accordance with any of the preceding Claims, characterised in that the contacts (1) are in the form of two metallised layers which make contact over a large surface area with contact surfaces (21) formed from the ignition bridge layer (2).
  5. A thin-film ignition element in accordance with any of the preceding Claims, characterised in that the ignition time and the minimum necessary ignition voltage (U) are set directly by varying the structural geometry and by varying the thickness of the ignition bridge layer (2).
  6. A thin-film ignition element in accordance with Claim 5, characterised in that the ignition bridge layer (2) has an approximately constant thickness of 0.2 to 2 µm.
  7. A thin-film ignition element in accordance with any of the preceding Claims, characterised in that the ignition time and the minimum necessary ignition voltage (U) are set directly by varying the structural geometry and by varying the thickness of the thermally insulating layer (3) that is located below the ignition bridge layer (2).
  8. A thin-film ignition element in accordance with Claim 7, characterised in that the thermally insulating layer (3) has an approximately constant thickness of 0.5 to 3 µm and consists of silicon oxide.
  9. A thin-film ignition element in accordance with any of the preceding Claims, characterised in that, for the purposes of varying the ignition time and the minimum necessary ignition voltage, the structural geometry and the thickness of the ignition bridge layer (2) are set in such a manner that the ohmic resistance of the ignition bridge layer (2) amounts to between 0.5 and 200 Ω, and preferably approximately 20 Ω, and the area of the surface of the ignition bridge layer (2) towards the pyrotechnically active material (5) and the thermally insulating layer (3) amounts to between 25 and 100,000 µm2.
  10. A thin-film ignition element in accordance with any of the. preceding Claims, characterised in that the ignition bridge layer (2) consists of hafnium without a titanium component and in that the atomic compound ratio (x) of hydrogen/hafnium in the hydrogenated hafnium layer (Hf Hx) lies in the range 0.025 to 2.0.
  11. A thin-film ignition element in accordance with Claim 10, characterised in that the percentile content of hydrogen in the hydrogenated hafnium layer lies in the range of 2.25 to 66.4 percent.
  12. A thin-film ignition element in accordance with any of the preceding Claims 1 to 9, characterised in that the ignition bridge layer (2) consists of a hydrogenated hafnium-titanium mixture.
  13. A thin-film ignition element in accordance with any of the preceding Claims, characterised in that a thermally and electrically insulating isolating layer (7) is applied to the ignition bridge layer (2) towards the pyrotechnic material (5), the material and structure of said isolating layer being such that it is destroyed when reaching a defined pressure by virtue of the reaction of the ignition bridge layer (2).
  14. A thin-film ignition element in accordance with any of the preceding Claims, characterised in that the carrier substrate (4) is a semiconductor substrate having components integrated therein for controlling the ignition process, and the contact surfaces (21) of the ignition bridge layer (2) are connected to regions of conductive tracks (4.1) that are integrated in the carrier substrate (4).
  15. A method of manufacturing a thin-film ignition element in accordance with any of the preceding Claims, characterised in that
    a) a layer of hafnium or of a titanium/hafnium mixture is initially deposited and is structured in correspondence with the selected structural geometry of the ignition bridge layer (2) and the contact surfaces (21), and
    b) hydrogen is then stored by means of a tempering process the temperature being preferably maintained at approximately 350° Celsius during the tempering process.
  16. A method in accordance with Claim 15, characterised in that a micro-electronic circuit in the carrier substrate (4) and the thermally insulating layer (3) are initially implemented utilising a semiconductor process prior to the deposition of the hafnium or titanium/hafnium mixture.
  17. A method in accordance with Claim 16, characterised in that, following the hydrogenation of the hafnium or titanium-hafnium mixture, an aluminium layer is deposited and is then structured as contacts (1) in correspondence with the shape of the contact surfaces (21) of the ignition bridge layer (2), the arrangement consisting of the carrier substrate (4) and the ignition bridge layer (2) preferably being locally cooled in such a manner that the temperature of the ignition bridge layer (2) remains below 350° Celsius.
  18. A method in accordance with Claim 17, characterised in that a plurality of ignition elements are implemented on the carrier substrate (4) which is in the form of a silicon wafer.
  19. The use of a thin-film ignition element in accordance with any of the Claims 1 to 14 as an igniter for occupant protection devices, and especially for airbags in motor vehicles.
EP98929356A 1997-05-26 1998-05-22 Thin layer igniter element for active pyrotechnic materials and method for the production thereof Expired - Lifetime EP0914587B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE1997121929 DE19721929C1 (en) 1997-05-26 1997-05-26 Thin film igniter for pyrotechnic material especially of airbag
DE19721929 1997-05-26
DE19732380 1997-07-25
DE1997132380 DE19732380B4 (en) 1997-07-25 1997-07-25 Ignition element for pyrotechnic active compositions with an insulating layer
PCT/EP1998/003009 WO1998054535A1 (en) 1997-05-26 1998-05-22 Thin layer igniter element for active pyrotechnic materials and method for the production thereof

Publications (2)

Publication Number Publication Date
EP0914587A1 EP0914587A1 (en) 1999-05-12
EP0914587B1 true EP0914587B1 (en) 2002-10-16

Family

ID=26036837

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98929356A Expired - Lifetime EP0914587B1 (en) 1997-05-26 1998-05-22 Thin layer igniter element for active pyrotechnic materials and method for the production thereof

Country Status (4)

Country Link
EP (1) EP0914587B1 (en)
JP (1) JP3772312B2 (en)
DE (1) DE59805957D1 (en)
WO (1) WO1998054535A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2807157B1 (en) * 2000-04-04 2003-01-31 Vishay Sa RESISTIVE ELEMENT FOR PYROTECHNIC INITIATOR
DE60118581T2 (en) * 2000-09-07 2007-06-21 Nknm Ltd., Tortola ELECTRIC BRIDGE IGNITION WITH A MULTILAYERED BRIDGE AND METHOD OF MANUFACTURING THIS BRIDGE
DE10204833B4 (en) * 2002-02-06 2005-11-10 Trw Airbag Systems Gmbh & Co. Kg Microelectronic pyrotechnic component
US7557433B2 (en) 2004-10-25 2009-07-07 Mccain Joseph H Microelectronic device with integrated energy source
JP2007024327A (en) * 2005-07-12 2007-02-01 Matsuo Electric Co Ltd Igniter for electric ignition device
US8250978B2 (en) 2005-09-07 2012-08-28 Nippon Kayaku Kabushiki Kaisha Semiconductor bridge, igniter, and gas generator
CN103017197B (en) * 2011-09-23 2014-10-01 中国电子科技集团公司第四十八研究所 Lead-free packaging thin film bridge firer and manufacturing method thereof
CN105674808B (en) * 2016-02-26 2017-10-31 中国振华集团云科电子有限公司 A kind of chip Alloy Foil firing resistor and preparation method thereof
CN106765308A (en) * 2016-11-28 2017-05-31 中国电子科技集团公司第四十八研究所 A kind of direct insertion membrane bridge igniter and preparation method thereof
CN111174652B (en) * 2019-09-30 2022-09-27 深圳市开步电子有限公司 Detonation resistor and blasting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484523A (en) * 1983-03-28 1984-11-27 The United States Of America As Represented By The Secretary Of The Navy Detonator, solid state type I film bridge
US4708060A (en) 1985-02-19 1987-11-24 The United States Of America As Represented By The United States Department Of Energy Semiconductor bridge (SCB) igniter
US5348597A (en) * 1988-11-10 1994-09-20 Composite Materials Technology, Inc. Propellant formulation and process containing bi-metallic metal mixture
US5080016A (en) 1991-03-20 1992-01-14 The United States Of America As Represented By The Department Of Energy Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation
DE4222223C1 (en) 1992-07-07 1994-03-17 Dynamit Nobel Ag Electrical igniter-fuse with insulating supporting body - has Titanium@ or Titanium-nitride igniter bridge joining contacts
FR2738334A1 (en) * 1995-09-05 1997-03-07 Motorola Semiconducteurs SEMICONDUCTOR IGNITION DEVICE FOR PYROTECHNIC TRIGGERING AND METHOD FOR FORMING SUCH A DEVICE

Also Published As

Publication number Publication date
EP0914587A1 (en) 1999-05-12
JP2001505646A (en) 2001-04-24
DE59805957D1 (en) 2002-11-21
WO1998054535A1 (en) 1998-12-03
JP3772312B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
DE3414065C2 (en)
EP0914587B1 (en) Thin layer igniter element for active pyrotechnic materials and method for the production thereof
DE69123575T2 (en) BOLOMETER TYPE THERMAL INFRARED DETECTOR WITH SEMICONDUCTOR FILM
DE2703831C2 (en) Process for making a thermal battery
CH652533A5 (en) SEMICONDUCTOR BLOCK.
EP1377791A1 (en) Bridge igniter
DE102013214988A1 (en) Thermoelectric module
WO2014072123A2 (en) Temperature probe and method for producing a temperature probe
DE3837128A1 (en) Heater plug for diesel engines
DE19732380B4 (en) Ignition element for pyrotechnic active compositions with an insulating layer
DE19521985B4 (en) Semiconductor device and related manufacturing method
EP1040311B1 (en) Integrated circuit arrangement for heating ignition material and use of this integrated circuit arrangement
DE102007003541A1 (en) Electronic component
DE1573720A1 (en) Electro-mechanical converter
EP1335178B1 (en) Microelectronic-pyrotechnic device
WO2006037711A2 (en) Semiconductor component
DE3843863A1 (en) High-temperature heating element, method of producing it and use thereof
WO1995004443A1 (en) Ceramic heating element and process for producing such a heating element
DE19756603C1 (en) Integrated detonation circuit arrangement for automobile occupant restraint device especially airbag
DE19721929C1 (en) Thin film igniter for pyrotechnic material especially of airbag
DE60104754T2 (en) Resistance element for a pyrotechnic igniter
DE10223524A1 (en) Method for producing a device containing pyrotechnic material and a device obtainable by the method
EP1243022A2 (en) Thin-film resistor with high temperature coefficient for use as passive semiconductor component for integrated circuits, and method for producing the same
DE10334433A1 (en) Device for interrupting current flow to semiconductor body of semiconductor component for power MOSFET comprises connecting unit for connecting component to external current cycle, and connecting line
DE112016004676T5 (en) Hydrogen sensor and method for its production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FI FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRW AIRBAG SYSTEMS GMBH & CO. KG

Owner name: BUCK WERKE GMBH & CO.

Owner name: TEMIC TELEFUNKEN MICROELECTRONIC GMBH

17Q First examination report despatched

Effective date: 20010612

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRW AIRBAG SYSTEMS GMBH & CO. KG

Owner name: BUCK WERKE GMBH & CO.

Owner name: CONTI TEMIC MICROELECTRONIC GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRW AIRBAG SYSTEMS GMBH & CO. KG

Owner name: NICO-PYROTECHNIK HANNS-JUERGEN DIEDERICHS GMBH &

Owner name: CONTI TEMIC MICROELECTRONIC GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FI FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59805957

Country of ref document: DE

Date of ref document: 20021121

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021219

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030717

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20080514

Year of fee payment: 11

Ref country code: IT

Payment date: 20080524

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080513

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080522

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 59805957

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59805957

Country of ref document: DE

Owner name: WEISS, UWE, DR.-ING., DE

Free format text: FORMER OWNERS: CONTI TEMIC MICROELECTRONIC GMBH, 90411 NUERNBERG, DE; RHEINMETALL WAFFE MUNITION GMBH, 29345 UNTERLUESS, DE; TRW AIRBAG SYSTEMS GMBH & CO. KG, 84544 ASCHAU, DE

Effective date: 20110407

Ref country code: DE

Ref legal event code: R081

Ref document number: 59805957

Country of ref document: DE

Owner name: WEISS, UWE, DR.-ING., DE

Free format text: FORMER OWNER: CONTI TEMIC MICROELECTRONIC GMB, RHEINMETALL WAFFE MUNITION GMBH, TRW AIRBAG SYSTEMS GMBH & CO. K, , DE

Effective date: 20110407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110603

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121129

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59805957

Country of ref document: DE

Effective date: 20131203