EP0914485B1 - Austenitic nickel-chromium steel alloys - Google Patents

Austenitic nickel-chromium steel alloys Download PDF

Info

Publication number
EP0914485B1
EP0914485B1 EP97937513A EP97937513A EP0914485B1 EP 0914485 B1 EP0914485 B1 EP 0914485B1 EP 97937513 A EP97937513 A EP 97937513A EP 97937513 A EP97937513 A EP 97937513A EP 0914485 B1 EP0914485 B1 EP 0914485B1
Authority
EP
European Patent Office
Prior art keywords
hafnium
zirconium
tantalum
nickel
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97937513A
Other languages
German (de)
French (fr)
Other versions
EP0914485A1 (en
Inventor
Willi Kleemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schmidt and Clemens GmbH and Co KG
Original Assignee
Schmidt and Clemens GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schmidt and Clemens GmbH and Co filed Critical Schmidt and Clemens GmbH and Co
Publication of EP0914485A1 publication Critical patent/EP0914485A1/en
Application granted granted Critical
Publication of EP0914485B1 publication Critical patent/EP0914485B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the invention relates to a heat-resistant, creep-resistant austenitic nickel-chrome steel alloy, as used in the petrochemical industry comes.
  • Such alloys require high strength, in particular creep rupture strength and sufficient Toughness at normal operating temperatures as well adequate corrosion resistance.
  • U.S. Patent 4,077,801 is a molybdenum cobalt-free austenitic nickel-chromium cast steel alloy with 0.25 to 0.8% carbon, up to 3.5% silicon, up to 3.0% manganese, 8 to 62% nickel, 12 to 32% Chromium, up to 2% niobium, 0.05 to below 1.0% titanium, 0.05 to 2% tungsten and up to 0.3% nitrogen, the rest iron with a high creep rupture strength and ductility at high Known temperatures.
  • This cast alloy has one good weldability and is suitable as a material for Hydrogen reforming devices.
  • An austenitic one is known from US Pat. No. 5,310,522 Nickel-chromium alloy for petrochemical uses with 0.05 to 0.3% carbon, 0.2 to 1.3% silicon, 0.2 to 1.5% manganese, 30 to 35% nickel, 22 to 25% chromium, 0.2 to 0.6% niobium, 0.1 to 0.6% titanium, 4 to 6.5% molybdenum, 0.35 to 1.75% cobalt, 0.2 to 1.5% tungsten, balance iron and unavoidable impurities.
  • the invention is therefore based on the problem of a nickel-chromium steel alloy propose the higher operating temperatures as well has grown and has sufficient creep resistance as well as carburizing and Has oxidation resistance.
  • the invention consists of an austenitic steel alloy with 0.3 up to 1.0% carbon, 0.2 to 2.5% silicon, up to 0.8% manganese, 30.0 to 48.0% Nickel, 16.0 to 22.0% chromium, 0.5 to 18.0% cobalt, 1.5 to 4% molybdenum, 0.2 to 0.6% niobium, 0.1 to 0.5% titanium, 0.1 to 0.6% zirconium, 0.1 to 1.5% tantalum and 0.1 to 1.5% hafnium, with a ratio of tantalum and hafnium contents the zirconium content of at least 1.2%, the total content of tantalum, Hafnium and zirconium is 1.2 to 3%.
  • the Steel alloy contains more than 20% iron at cobalt contents of at least 10% and with cobalt contents below 10% over 30% iron and optionally 1.5 to 2.5% Aluminum.
  • Molybdenum improves the creep rupture strength at medium temperatures, while intermetallic carbide phases give the weak iron-nickel-chromium structure a high strength at temperatures above 0.9 of its absolute melting point.
  • Hafnium, zirconium, titanium, tantalum and niobium form primary carbides of the type MC, while chromium, including the molybdenum, forms carbides of the types M 7 C 3 and M 23 C 6 in the intra- and interdentritic areas.
  • compositions of the test alloys result from Table I below, the three conventional ones Alloys 1, 2 and 3, Comparative Alloys 4 and 6 to 12 and alloys 5 and 13 according to the invention to 17 reproduces.
  • the rest of the alloy consisted of all Iron cases.
  • the alloys were in the medium frequency furnace melted and in investment molds or in Pour centrifugal casting.
  • the samples for the creep test were either made out the final investment casting samples or by processing the centrifugally cast pipes. Under use the creep behavior was measured according to these samples ASTM E 139 determined in the as-cast state; the results of Try at 1100 ° C and two different loads are summarized in Table II below.

Description

Die Erfindung bezieht sich auf eine hitzebeständige, kriechfeste austenitische Nickel-Chrom-Stahllegierung, wie sie in der petrochemischen Industrie zur Verwendung kommt.The invention relates to a heat-resistant, creep-resistant austenitic nickel-chrome steel alloy, as used in the petrochemical industry comes.

Derartige Legierungen bedürfen einer hohen Festigkeit, insbesondere Zeitstandfestigkeit und einer ausreichenden Zähigkeit bei den üblichen Betriebstemperaturen sowie einer hinreichenden Korrosionsbeständigkeit.Such alloys require high strength, in particular creep rupture strength and sufficient Toughness at normal operating temperatures as well adequate corrosion resistance.

Aus der US-Patentschrift 4 077 801 ist eine molybdänund kobaltfreie austenitische Nickel-Chrom-Gußstahllegierung mit 0,25 bis 0,8% Kohlenstoff, bis 3,5% Silizium, bis 3,0% Mangan, 8 bis 62% Nickel, 12 bis 32% Chrom, bis 2% Niob, 0,05 bis unter 1,0% Titan, 0,05 bis 2% Wolfram und bis 0,3% Stickstoff, Rest Eisen mit einer hohen Zeitstandfestigkeit und Duktilität bei hohen Temperaturen bekannt. Diese Gußlegierung besitzt eine gute Schweißbarkeit und eignet sich als Werkstoff für Vorrichtungen zum Wasserstoff-Reformieren.U.S. Patent 4,077,801 is a molybdenum cobalt-free austenitic nickel-chromium cast steel alloy with 0.25 to 0.8% carbon, up to 3.5% silicon, up to 3.0% manganese, 8 to 62% nickel, 12 to 32% Chromium, up to 2% niobium, 0.05 to below 1.0% titanium, 0.05 to 2% tungsten and up to 0.3% nitrogen, the rest iron with a high creep rupture strength and ductility at high Known temperatures. This cast alloy has one good weldability and is suitable as a material for Hydrogen reforming devices.

Aus der US-Patentschrift 5 310 522 ist eine austenitische Nickel-Chrom-Legierung für petrochemischen Verwendungen mit 0,05 bis 0,3% Kohlenstoff, 0,2 bis 1,3% Silizium, 0,2 bis 1,5 % Mangan, 30 bis 35% Nickel, 22 bis 25% Chrom, 0,2 bis 0,6% Niob, 0,1 bis 0,6% Titan, 4 bis 6,5% Molybdän, 0,35 bis 1,75% Kobalt, 0,2 bis 1,5% Wolfram, Rest Eisen und unvermeidbare Verunreinigungen.An austenitic one is known from US Pat. No. 5,310,522 Nickel-chromium alloy for petrochemical uses with 0.05 to 0.3% carbon, 0.2 to 1.3% silicon, 0.2 to 1.5% manganese, 30 to 35% nickel, 22 to 25% chromium, 0.2 to 0.6% niobium, 0.1 to 0.6% titanium, 4 to 6.5% molybdenum, 0.35 to 1.75% cobalt, 0.2 to 1.5% tungsten, balance iron and unavoidable impurities.

Probleme ergeben sich jedoch angesichts der ansteigenden Verfahrenstemperaturen und der daraus resultierenden Verringerung der Lebensdauer in Folge der sich mit zunehmender Temperatur verringernden Kriechfestigkeit und der abnehmenden Aufkohlungs- und Oxidationsbeständigkeit.However, problems arise in view of the increasing Process temperatures and the resulting Reduction in lifespan as a result of increasing temperature reducing creep strength and decreasing carburizing and Oxidation resistance.

Der Erfindung liegt daher das Problem zugrunde, eine Nickel-Chrom-Stahllegierung vorzuschlagen, die auch höheren Betriebstemperaturen gewachsen ist und dabei eine ausreichende Kriechfestigkeit sowie Aufkohlungsund Oxidationsbeständigkeit besitzt.The invention is therefore based on the problem of a nickel-chromium steel alloy propose the higher operating temperatures as well has grown and has sufficient creep resistance as well as carburizing and Has oxidation resistance.

Die Lösung dieser Aufgabe basiert auf dem Gedanken, die Hitzebeständigkeit einer austenitischen Nickel-Chrom-Stahllegierung mit Hilfe von Kobalt und Molybdän sowie bestimmter intermetallischer Verbindungen wesentlich zu verbessern. Kobalt verbessert dabei die Stabilität des austenitischen Eisen-Nickel-Chrom-Grundgefüges. Dies gilt insbesondere, wenn die Legierung zur Mischkristallverfestigung ferritstabilisierende Elemente wie Molybdän enthält.The solution to this problem is based on the idea of heat resistance an austenitic nickel-chrome steel alloy with the help of cobalt and Molybdenum and certain intermetallic compounds improve. Cobalt improves the stability of the austenitic iron-nickel-chromium basic structure. This is especially true when the alloy is used Mixed crystal strengthening contains ferrite stabilizing elements such as molybdenum.

Im einzelnen besteht die Erfindung in einer austenitischen Stahllegierung mit 0,3 bis 1,0% Kohlenstoff, 0,2 bis 2,5% Silizium, bis 0,8% Mangan, 30,0 bis 48,0% Nickel, 16,0 bis 22,0% Chrom, 0,5 bis 18,0% Kobalt, 1,5 bis 4% Molybdän, 0,2 bis 0,6% Niob, 0,1 bis 0,5% Titan, 0,1 bis 0,6% Zirkonium, 0,1 bis 1,5% Tantal und 0,1 bis 1,5% Hafnium, mit einem Verhältnis der Gehalte an Tantal und Hafnium zum Zirkoniumgehalt von mindestens 1,2%, deren Gesamtgehalt an Tantal, Hafnium und Zirkonium 1,2 bis 3% beträgt. Die Stahllegierung enthält bei Kobaltgehalten von mindestens 10% über 20% Eisen und bei Kobaltgehalten unter 10% über 30% Eisen sowie fakultativ 1,5 bis 2,5% Aluminium.In particular, the invention consists of an austenitic steel alloy with 0.3 up to 1.0% carbon, 0.2 to 2.5% silicon, up to 0.8% manganese, 30.0 to 48.0% Nickel, 16.0 to 22.0% chromium, 0.5 to 18.0% cobalt, 1.5 to 4% molybdenum, 0.2 to 0.6% niobium, 0.1 to 0.5% titanium, 0.1 to 0.6% zirconium, 0.1 to 1.5% tantalum and 0.1 to 1.5% hafnium, with a ratio of tantalum and hafnium contents the zirconium content of at least 1.2%, the total content of tantalum, Hafnium and zirconium is 1.2 to 3%. The Steel alloy contains more than 20% iron at cobalt contents of at least 10% and with cobalt contents below 10% over 30% iron and optionally 1.5 to 2.5% Aluminum.

Die Legierung besitzt ein austenitisches Eisen-Nickel-Chrom- oder ein austenitisches Eisen-Nickel-Chrom-Kobalt-Grundgefüge sowie eine hohe Zeitstand- bzw. Kriechfestigkeit und ist sowohl aufkohlungs- als auch oxidationsbeständig. Dennoch ist eine weitere Verbesserung der Zeitstandfestigkeit bei hohen Temperaturen möglich, wenn die Legierung auf Kosten ihrer zwingenden Bestandteile 1,5 bis 2,5% Aluminium enthält und/oder die Gehalte an Tantal, Hafnium und Zirkonium der folgenden Bedingung genügen: [(% Ta) + (% Hf)] / (% Zr) = 1,2 bis 14 The alloy has an austenitic iron-nickel-chromium or an austenitic iron-nickel-chromium-cobalt basic structure as well as a high creep rupture strength and is resistant to carburization and oxidation. Nevertheless, a further improvement in the creep rupture strength at high temperatures is possible if the alloy contains 1.5 to 2.5% aluminum at the expense of its mandatory components and / or the tantalum, hafnium and zirconium contents satisfy the following condition: [(% Ta) + (% Hf)] / (% Zr) = 1.2 to 14

Besonders bewährt hat sich eine Legierung mit 0,42% Kohlenstoff, 1,3% Silizium, 0,40% Mangan, 34,0% Nickel, 19,0% Chrom, 3,5% Molybdän, 0,40% Niob, 0,25% Titan, 0,30% Zirkonium, 0,15% Tantal und 0,80% Hafnium, Rest Eisen oder auch mit 0,44% Kohlenstoff, 1,2% Silizium, 0,40% Mangan, 33,0% Nickel, 19,0% Chrom, 3,0% Molybdän, 0,40% Niob, 0,20% Titan, 0,15% Zirkonium, 1,0% Tantal und 0,10% Hafnium, Rest Eisen.An alloy with 0.42% carbon, 1.3% silicon, 0.40% manganese, 34.0% nickel, 19.0% chromium, 3.5% molybdenum, 0.40% niobium, 0.25% Titanium, 0.30% zirconium, 0.15% tantalum and 0.80% hafnium, balance iron or else with 0.44% carbon, 1.2% silicon, 0.40% manganese, 33.0% nickel, 19.0% Chromium, 3.0% molybdenum, 0.40% niobium, 0.20% titanium, 0.15% zirconium, 1.0% tantalum and 0.10% hafnium, balance iron.

Molybdän verbessert die Zeitstandfestigkeit bei mittleren Temperaturen, während intermetallische Karbidphasen dem an sich schwachen Eisen-Nickel-Chrom-Grundgefüge eine hohe Festigkeit bei Temperaturen bis über 0,9 ihres absoluten Schmelzpunkts verleihen. Hafnium, Zirkonium, Titan, Tantal und Niob bilden primäre Karbide des Typs MC, während Chrom unter Einschluß des Molybdäns in den intra- und interdentritischen Bereichen Karbide des Typs M7C3 und M23C6 bildet.Molybdenum improves the creep rupture strength at medium temperatures, while intermetallic carbide phases give the weak iron-nickel-chromium structure a high strength at temperatures above 0.9 of its absolute melting point. Hafnium, zirconium, titanium, tantalum and niobium form primary carbides of the type MC, while chromium, including the molybdenum, forms carbides of the types M 7 C 3 and M 23 C 6 in the intra- and interdentritic areas.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen des näheren erläutert. In der Zeichnung zeigen:

Fig. 1:
eine graphische Darstellung der Bruchzeit beim Zeitstandversuch in Abhängigkeit vom Gesamtgehalt an Hafnium und Tantal im Verhältnis zum Zirkoniumgehalt bei einer Temperatur von 1100° C und hoher Belastung,
Fig. 2:
eine graphische Darstellung des vom Gesamtgehalt an Tantal und Hafnium im Verhältnis zum Zirkoniumgehalt ausgehenden Einflusses auf die Standzeit bei einer Temperatur von 1100° C und einer Anfangsbelastung von 9,4 MPA,
Fig. 3:
die zeitliche Gewichtszunahme in einer Wasserstoff/Propylen-Atmosphäre bei 1000° C und
Fig. 4:
die Oxidationsbeständigkeit der Stahllegierung als zeitliche Gewichtszunahme bei einem Glühen an Luft bei einer Temperatur von 1050° C.
The invention is explained below with reference to exemplary embodiments. The drawing shows:
Fig. 1 :
a graphic representation of the breaking time in the creep test as a function of the total content of hafnium and tantalum in relation to the zirconium content at a temperature of 1100 ° C. and high stress,
Fig. 2 :
a graphical representation of the influence of the total tantalum and hafnium content in relation to the zirconium content on the service life at a temperature of 1100 ° C and an initial load of 9.4 MPA,
Fig. 3 :
the temporal weight gain in a hydrogen / propylene atmosphere at 1000 ° C and
Fig. 4 :
the oxidation resistance of the steel alloy as a temporal increase in weight when annealed in air at a temperature of 1050 ° C.

Die Zusammensetzungen der Versuchslegierungen ergeben sich aus der nachfolgenden Tabelle I, die drei herkömmlichen Legierungen 1, 2 und 3, Vergleichslegierungen 4 und 6 bis 12 sowie erfindungsgemäße Legierungen 5 und 13 bis 17 wiedergibt. Der Legierungsrest bestand in allen Fällen aus Eisen. Die Legierungen wurden im Mittelfrequenzofen erschmolzen und in Feingußformen oder im Schleudergießverfahren vergossen.The compositions of the test alloys result from Table I below, the three conventional ones Alloys 1, 2 and 3, Comparative Alloys 4 and 6 to 12 and alloys 5 and 13 according to the invention to 17 reproduces. The rest of the alloy consisted of all Iron cases. The alloys were in the medium frequency furnace melted and in investment molds or in Pour centrifugal casting.

Die Proben für den Zeitstandversuch wurden entweder aus den endmaßnahen Feingußproben oder durch Bearbeiten aus den Schleudergußrohren hergestellt. Unter Verwendung dieser Proben wurde das Zeitstandverhalten nach ASTM E 139 im Gußzustand ermittelt; die Ergebnisse von Versuchen bei 1100° C und zwei verschiedenen Belastungen sind in der nachfolgenden Tabelle II zusammengestellt.The samples for the creep test were either made out the final investment casting samples or by processing the centrifugally cast pipes. Under use the creep behavior was measured according to these samples ASTM E 139 determined in the as-cast state; the results of Try at 1100 ° C and two different loads are summarized in Table II below.

Die Daten der Zeitstandversuche, die minimale Kriechgeschwindigkeit und der Zeitpunkt für den Beginn des tertiären Kriechens machen deutlich, daß die erfindungsgemäßen Legierungen angesichts ihrer Gehalte an starken Karbidbildnern den Vergleichslegierungen merklich überlegen sind. So veranschaulichen die Diagramme der Fig. 1 und 2 die deutliche Überlegenheit der erfindungsgemäßen Legierungen hinsichtlich ihrer Zeitstandfestigkeit bei erhöhten Temperaturen in Abhängigkeit vom Gesamtgehalt an intermetallische Phasen bildenden Legierungen oberhalb eines bestimmten Gehaltsniveaus auf dem Hintergrund eines bestimmten Chromgehaltes, eines bestimmten Mindestgehalts an Nickel, Nickel und Kobalt sowie Molybdän. Dabei zeigt sich, daß die Verbesserung der Zeitstandfestigkeit und des Kriechverhalten einerseits auf dem erfindungsgemäßen Gewichtsverhältnis des Gesamtgehalts an Tantal und Hafnium zum ZirkoniumGehalt und andererseits auf der Beeinflussung des Grundgefüges durch Chrom und/oder Nickel plus Kobalt basiert. The data of the creep tests, the minimum creep speed and the time for the start of tertiary Creep make it clear that the invention Alloys given their strong content Carbide formers the comparative alloys noticeably are superior. This is how the diagrams of the 1 and 2 the clear superiority of the invention Alloys with regard to their creep rupture strength at elevated temperatures depending on Total content of intermetallic phases Alloys above a certain level the background of a certain chromium content, one certain minimum levels of nickel, nickel and cobalt as well as molybdenum. It shows that the improvement creep rupture strength and creep behavior on the one hand on the weight ratio according to the invention of the total tantalum and hafnium content to the zirconium content and on the other hand on influencing the Basic structure with chrome and / or nickel plus cobalt based.

Zur Ermittlung der Aufkohlungsbeständigkeit wurden Proben bei 900° C und bei 1000° C in einer Atmosphäre aus Wasserstoff und Propylen mit einem Volumenverhältnis von 89 : 11 bei einem Volumendurchsatz von 601 ml/min untersucht. Dabei wurde die Menge der Kohlenstoffaufnahme unter Verwendung einer Mikrowaage kontinuierlich gemessen.Samples were used to determine the carburization resistance at 900 ° C and at 1000 ° C in one atmosphere Hydrogen and propylene with a volume ratio of 89: 11 at a volume flow of 601 ml / min examined. It was the amount of carbon intake using a microbalance continuously measured.

Das Diagramm der Fig. 3 gibt die Meßergebnisse wieder und zeigt eine parabolische Reaktionskinetik mit der Diffusion von Kohlenstoff als geschwindigkeitsbestimmendem Schritt sowie einen verhältnismäßig engen Bereich der Gewichtszunahme mit Ausnahme der Legierung 17 mit einer Gewichtszunahme, die beinahe um einen Faktor 4 geringer ist als bei der herkömmlichen Legierung 2 und der Vergleichslegierung 7. Die Ergebnisse der Versuche mit den Legierungen 4 und 6-12 belegen die Wirkungslosigkeit der Zugabe primärkarbidbildender Elemente auf das Zeitstandverhalten.3 shows the measurement results and shows parabolic reaction kinetics with the Diffusion of carbon as the rate-limiting Crotch as well as a relatively narrow area the weight gain with the exception of alloy 17 with a weight gain that is almost a factor of 4 is less than with the conventional alloy 2 and of the comparative alloy 7. The results of the tests with alloys 4 and 6-12 Ineffectiveness of adding primary carbide-forming elements on the creep behavior.

Die Ergebnisse gravimetrischer Oxidationsversuche an Luft bei 1050° C und einer Versuchsdauer von 25 Stunden veranschaulicht das Diagramm der Fig. 4 mit seiner ebenfalls parabolischen Abhängigkeit, die das überlegene Oxidationsverhalten der erfindungsgemäßen Versuchslegierung 16 im Vergleich zu der herkömmlichen Versuchslegierung 2 deutlich macht.

Figure 00070001
Figure 00080001
The results of gravimetric oxidation tests in air at 1050 ° C. and a test duration of 25 hours are illustrated in the diagram in FIG. 4 with its also parabolic dependency, which makes the superior oxidation behavior of the test alloy 16 according to the invention clear in comparison to the conventional test alloy 2.
Figure 00070001
Figure 00080001

Claims (6)

  1. Heat-resistant and high temperature austenitic nickel chromium steel alloy with high creep rupture strength and resistance to carburisation consisting of 0.3 to 1.0 % carbon 0.2 to 2.5 % silicon  to 0.8 % manganese 30.0 to 48.0 % nickel 16.0 to 22 % chromium 0.5 to 18 % cobalt 1.5 to 4 % molybdenum 0.2 to 0.6 % niobium 0.1 to 0.5 % titanium 0.1 to 0.6 % zirconium 0.1 to 1.5 % tantalum 0.1 to 1.5 % hafnium
    with a remainder of more than 20 % iron with a minimum cobalt content of 10 % or with a remainder of more than 30 % iron with a cobalt content of less than 10 %, where the ratio between the sum of tantalum plus hafnium to zirconium is at least 1.2 with the total content of tantalum, hafnium and zirconium being 1.2 to 3.0 % with an optional 1.5 to 2.5 % aluminium.
  2. Alloy according to claim 1 with 0.42 % carbon, 1.3 % silicon, 0.40 % manganese, 34.0 % nickel, 19.0 % chromium, 3.5 % molybdenum, 0.40 % niobium, 0.25 % titanium, 0.30 % zirconium, 0.15 % tantalum and 0.80 % hafnium and the remainder iron.
  3. Alloy according to one of claims 1 or 2 with 0.44 % carbon, 1.2 % silicon, 0,40 % manganese, 33.0 % nickel, 19.0 % chromium, 3.0 % molybdenum, 0.40 % niobium, 0.20 % titanium, 0.15 % zirconium, 1.0 % tantalum and 0.15 % hafnium and the remainder iron.
  4. Alloy according to one of the claims 1 to 3 where the weight ratio between the total tantalum plus hafnium content to the zirconium content lies between 2.5 to 14 %.
  5. Use of an alloy according to one of claims 1 to 4 as a material for the manufacture of objects with a high creep rupture strength at high temperatures as well as with a high resistance to carburisation and oxidation.
  6. Use of an alloy according to one of claims 1 to 4 as a material for the manufacture of pipes and fittings for cracking plant producing ethylene or synthetic gas.
EP97937513A 1996-07-25 1997-07-23 Austenitic nickel-chromium steel alloys Expired - Lifetime EP0914485B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19629977A DE19629977C2 (en) 1996-07-25 1996-07-25 Austenitic nickel-chrome steel alloy workpiece
DE19629977 1996-07-25
PCT/EP1997/003975 WO1998004757A1 (en) 1996-07-25 1997-07-23 Austenitic nickel-chromium steel alloys

Publications (2)

Publication Number Publication Date
EP0914485A1 EP0914485A1 (en) 1999-05-12
EP0914485B1 true EP0914485B1 (en) 2002-05-08

Family

ID=7800771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97937513A Expired - Lifetime EP0914485B1 (en) 1996-07-25 1997-07-23 Austenitic nickel-chromium steel alloys

Country Status (6)

Country Link
US (1) US6409847B2 (en)
EP (1) EP0914485B1 (en)
JP (1) JP3710097B2 (en)
CA (1) CA2261736C (en)
DE (2) DE19629977C2 (en)
WO (1) WO1998004757A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156737A1 (en) * 2003-02-06 2004-08-12 Rakowski James M. Austenitic stainless steels including molybdenum
DE10233961A1 (en) * 2002-07-25 2004-02-12 Schmidt + Clemens Gmbh + Co. Edelstahlwerk Kaiserau Cracking hydrocarbon materials in presence of steam heated with pipes having helical inner ribs promoting uniform temperature in pipe wall
US20050131263A1 (en) * 2002-07-25 2005-06-16 Schmidt + Clemens Gmbh + Co. Kg, Process and finned tube for the thermal cracking of hydrocarbons
JP2006505694A (en) * 2002-11-04 2006-02-16 ドンカスターズ リミテッド High temperature alloy
GB2394959A (en) * 2002-11-04 2004-05-12 Doncasters Ltd Hafnium particle dispersion hardened nickel-chromium-iron alloys
US7482502B2 (en) * 2003-01-24 2009-01-27 Stone & Webster Process Technology, Inc. Process for cracking hydrocarbons using improved furnace reactor tubes
SE527319C2 (en) 2003-10-02 2006-02-07 Sandvik Intellectual Property Alloy for high temperature use
US7985304B2 (en) 2007-04-19 2011-07-26 Ati Properties, Inc. Nickel-base alloys and articles made therefrom
CN101592187B (en) * 2009-07-10 2011-04-13 攀钢集团钢铁钒钛股份有限公司 Axle bush and axle sleeve
CN101592186B (en) * 2009-07-10 2011-01-26 攀钢集团钢铁钒钛股份有限公司 Axle bush and sleeve
US9011620B2 (en) * 2009-09-11 2015-04-21 Technip Process Technology, Inc. Double transition joint for the joining of ceramics to metals
UA111115C2 (en) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. cost effective ferritic stainless steel
MY186424A (en) 2014-12-16 2021-07-22 Exxonmobil Chemical Patents Inc Pyrolysis furnace tubes
WO2016099738A1 (en) 2014-12-16 2016-06-23 Exxonmobil Research And Engineering Company Alumina forming refinery process tubes with mixing element
US9909395B2 (en) 2015-09-21 2018-03-06 National Oilwell DHT, L.P. Wellsite hardfacing with distributed hard phase and method of using same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB618560A (en) * 1945-11-02 1949-02-23 Kanthal Ab Heat resistant machinable alloy with high strength while hot
US3135602A (en) * 1957-02-11 1964-06-02 Babcock & Wilcox Co 45% iron base austenitic cr-ni alloy with 18-22% cr, 27-32% ni or (ni+co) plus strengthening additions
JPS58207352A (en) * 1982-05-28 1983-12-02 Mitsubishi Metal Corp Cast ni alloy for guide shoe
DE1233609B (en) * 1961-01-24 1967-02-02 Rolls Royce Process for the heat treatment of a hardenable nickel-chromium alloy
US3658516A (en) * 1969-09-05 1972-04-25 Hitachi Ltd Austenitic cast steel of high strength and excellent ductility at high temperatures
US3713788A (en) * 1970-10-21 1973-01-30 Chromalloy American Corp Powder metallurgy sintered corrosion and heat-resistant, age hardenable nickel-chromium refractory carbide alloy
US4077801A (en) 1977-05-04 1978-03-07 Abex Corporation Iron-chromium-nickel heat resistant castings
US4764225A (en) * 1979-05-29 1988-08-16 Howmet Corporation Alloys for high temperature applications
US4313760A (en) 1979-05-29 1982-02-02 Howmet Turbine Components Corporation Superalloy coating composition
US4302256A (en) * 1979-11-16 1981-11-24 Chromalloy American Corporation Method of improving mechanical properties of alloy parts
JPS5820732A (en) 1981-07-24 1983-02-07 Comput Basic Mach Technol Res Assoc Preparation of magnetic thin film of oxide
EP0246092A3 (en) * 1986-05-15 1989-05-03 Exxon Research And Engineering Company Alloys resistant to stress corrosion cracking
JPS63297542A (en) * 1987-05-28 1988-12-05 Nissan Motor Co Ltd Heat resistant wear resistant iron based sintered alloy
JPH072981B2 (en) 1989-04-05 1995-01-18 株式会社クボタ Heat resistant alloy
JPH04116142A (en) * 1990-09-06 1992-04-16 Res Inst Electric Magnetic Alloys Nonmagnetic functional alloy having high rigidity and low magnetic permeability and its manufacture
JP2574528B2 (en) * 1990-09-06 1997-01-22 財団法人電気磁気材料研究所 High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same
US5310522A (en) * 1992-12-07 1994-05-10 Carondelet Foundry Company Heat and corrosion resistant iron-nickel-chromium alloy

Also Published As

Publication number Publication date
US20010001399A1 (en) 2001-05-24
JP2000513767A (en) 2000-10-17
JP3710097B2 (en) 2005-10-26
DE59707227D1 (en) 2002-06-13
CA2261736A1 (en) 1998-02-05
WO1998004757A1 (en) 1998-02-05
EP0914485A1 (en) 1999-05-12
CA2261736C (en) 2005-06-14
DE19629977C2 (en) 2002-09-19
DE19629977A1 (en) 1998-01-29
US6409847B2 (en) 2002-06-25

Similar Documents

Publication Publication Date Title
EP0914485B1 (en) Austenitic nickel-chromium steel alloys
DE60224277T2 (en) METALWORK WITH GOOD STABILITY AGAINST METAL DUSTING
DE60004737T2 (en) Heat-resistant nickel-based alloy
DE3029658C2 (en)
DE60010997T2 (en) Heat-resistant chrome-molybdenum steel
DE3117539C2 (en)
DE69824962T2 (en) Use of a heat-resistant cast steel
DE3041565C2 (en)
EP0866145A2 (en) Completely martensitic steel alloy
EP0348380B2 (en) Use of an iron-base alloy in the manufacture of sintered parts with a high corrosion resistance, a high wear resistance as well as a high toughness and compression strength, especially for use in the processing of synthetic materials
DE2447137A1 (en) STEEL ALLOY RESISTANT AGAINST PITCH CORROSION
AT396118B (en) METAL ALLOY
EP0255597B1 (en) Low alloy steels
DE1558711B2 (en) Use of a nickel-chromium steel alloy
DE3624669C2 (en) Use of 9% chrome steel as a material for steam generators in fast breeders
AT395176B (en) CORROSION RESISTANT NI-CR-SI-CU ALLOYS
WO1995025826A1 (en) Corrosion and wear-resistant chill casting
AT405297B (en) DUPLEX ALLOY FOR COMPLEXLY STRESSED COMPONENTS
WO1995031581A1 (en) Highly corrosion and wear resistant chilled casting
DE19628350B4 (en) Use of a stainless ferritic-austenitic steel alloy
DE1758593C2 (en) Steel with high toughness and high tensile strength
JPS60155649A (en) Ferritic steel having superior strength at high temperature
DE2548526C3 (en) Use of a heat-resistant and weldable steel
DE3808451A1 (en) ALLOYS WITH EXCELLENT EROSION RESISTANCE
DE1758385C2 (en) Use of an Fe-Cr-Ni-Mn alloy for valves and valve parts of internal combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20001027

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SCHMIDT + CLEMENS GMBH & CO. KG

REF Corresponds to:

Ref document number: 59707227

Country of ref document: DE

Date of ref document: 20020613

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020721

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110729

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110721

Year of fee payment: 15

Ref country code: DE

Payment date: 20110926

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120723

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120723

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59707227

Country of ref document: DE

Effective date: 20130201