EP0914485A1 - Austenitic nickel-chromium steel alloys - Google Patents

Austenitic nickel-chromium steel alloys

Info

Publication number
EP0914485A1
EP0914485A1 EP97937513A EP97937513A EP0914485A1 EP 0914485 A1 EP0914485 A1 EP 0914485A1 EP 97937513 A EP97937513 A EP 97937513A EP 97937513 A EP97937513 A EP 97937513A EP 0914485 A1 EP0914485 A1 EP 0914485A1
Authority
EP
European Patent Office
Prior art keywords
hafnium
tantalum
nickel
zirconium
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97937513A
Other languages
German (de)
French (fr)
Other versions
EP0914485B1 (en
Inventor
Willi Kleemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schmidt and Clemens GmbH and Co KG
Original Assignee
Schmidt and Clemens GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schmidt and Clemens GmbH and Co filed Critical Schmidt and Clemens GmbH and Co
Publication of EP0914485A1 publication Critical patent/EP0914485A1/en
Application granted granted Critical
Publication of EP0914485B1 publication Critical patent/EP0914485B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the invention relates to a heat-resistant, creep-resistant austenitic nickel-chromium steel alloy, as used in the petrochemical industry.
  • Such alloys require high strength, in particular creep rupture strength and sufficient toughness at the usual operating temperatures, as well as adequate corrosion resistance.
  • From US Pat. No. 4,077,801 is a molybdenum and cobalt-free austenitic nickel-chromium cast steel alloy with 0.25 to 0.8% carbon, up to 3.5% silicon, up to 3.0% manganese, 8 to 62% nickel , 12 to 32% chromium, up to 2% niobium, 0.05 to under 1.0% titanium, 0.05 to 2% tungsten and up to 0.3% nitrogen, the rest iron with a high creep rupture strength and ductility at high temperatures .
  • This cast alloy has good weldability and is suitable as a material for devices for hydrogen reforming.
  • the invention is therefore based on the problem of proposing a nickel-chromium steel alloy which can also withstand higher operating temperatures and at the same time has sufficient creep resistance and resistance to carburization and oxidation.
  • the solution to this problem is based on the idea of significantly improving the heat resistance of an austenitic nickel-chromium steel alloy with the aid of cobalt and molybdenum as well as certain intermetallic compounds.
  • Cobalt improves the stability of the austenitic iron-nickel-chromium structure. This applies in particular if the alloy for solid solution strengthening contains ferrite-stabilizing elements such as molybdenum.
  • the invention consists of an austenitic steel alloy with 0.3 to 1.0% carbon, 0.2 to 2.5% silicon, up to 0.8% manganese, 30.0 to 48.0% nickel, 16.0 up to 22.0% chromium, 0.5 to 18.0% cobalt, 1.5 to 4% molybdenum, 0.2 to 0.6% niobium, 0.1 to 0.5% titanium, 0.1 to 0 , 6% zirconium, 0.1 to 1.5% tantalum and 0.1 to 1.5% hafnium, with a ratio of the tantalum and hafnium content to the zirconium content of over 2.4%, their total tantalum, hafnium and Zirconium is 1.2 to 3%.
  • the steel alloy contains with cobalt contents of at least 10% over 20% iron and with cobalt contents under 10% over 30% iron.
  • the alloy has an austenitic iron-nickel-chromium or an austenitic iron-nickel-chromium-cobalt basic structure as well as a high creep resistance and creep resistance and is resistant to carburization and oxidation. Nevertheless, a further improvement in the fatigue strength at high temperatures is possible if the alloy contains 1.5 to 2.5% aluminum at the expense of its mandatory components and / or the tantalum, hafnium and zirconium contents satisfy the following condition:
  • An alloy with 0.42% carbon, 1.3% silicon, 0.40% manganese, 34.0% nickel, 19.0% chromium, 3.5% molybdenum, 0.40% niobium, 0 has proven particularly useful , 25% titanium, 0.30% zirconium, 0.15% tantalum and 0.80% hafnium, rest iron or also with 0.44% carbon, 1.2% silicon, 0.40% manganese, 33.0% Nickel, 19.0% chromium, 3.0% molybdenum, 0.40% niobium, 0.20% titanium, 0.15% zirconium, 1.0% tantalum and 0.10% hafnium, the rest iron.
  • Molybdenum improves the creep rupture strength at medium temperatures, while intermetallic carbide phases give the weak iron-nickel-chromium structure a high strength at temperatures above 0.9 of its absolute melting point.
  • Hafnium, zirconium, titanium, tantalum and niobium form primary carbides of the MC type, while chromium forms below Inclusion of molybdenum in the intra- and interdentritic areas forms carbides of the type M7C3 and M 23 6.
  • Fig. 2 a graphical representation of the influence of the total tantalum and hafnium content in relation to the zirconium content on the service life at a temperature of 1100 ° C. and an initial load of 9.4 MPA,
  • Fig. 3 the temporal weight gain in a hydrogen / propylene atmosphere at 1000 ° C and
  • compositions of the test alloys are shown in Table I below, which shows three conventional alloys 1, 2 and 3, comparative alloys 4 and 6 to 12 and alloys 5 and 13 to 17 according to the invention.
  • the rest of the alloy consisted of all Iron cases.
  • the alloys were melted in the medium frequency furnace and cast in investment casting molds or by centrifugal casting.
  • the samples for the creep rupture test were either produced from the near-final investment casting samples or by processing from the centrifugal cast pipes. Using these samples, the creep rupture behavior was determined according to ASTM E 139 in the as-cast state; the results of tests at 1100 ° C and two different loads are summarized in Table II below.
  • the diagram of FIG. 3 shows the measurement results and shows a parabolic reaction kinetics with the diffusion of carbon as the rate-determining step and a relatively narrow range of weight gain with the exception of alloy 17 with a weight gain that is almost a factor of 4 less than that conventional alloy 2 and the comparative alloy 7.
  • the results of the tests with alloys 4 and 6-12 demonstrate the ineffectiveness of adding primary carbide-forming elements on the creep behavior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A steel alloy contains 0.3 to 1.0 % carbon, 0.2 to 2.5 % silicium, up to 0.8 % manganese, 30.0 to 48.0 % nickel, 16.0 to 22.0 % chromium, 0.5 to 18.0 % cobalt, 1.5 to 4 % molybdenum, 0.2 to 0.6 %niobium, 0.1 to 0.5 % titanium, 0.1 to 0.6 % zirconium, 0.1 to 1.5 % tantalum and 0.1 to 1.5 % hafnium, the remaining percentage being made up of over 20 % iron when the cobalt content equals or exceeds 10 % and of over 30 % iron when the cobalt content is lower than 10 %. The steel alloy is particularly useful as heat-resistant and heating resistant materials for parts, in particular pipes of petrochemical cracking furnaces for producing ethylene or synthesis gas.

Description

"Austenitische Nickel -Chrom-Stahlleαi erung" "Austenitic nickel-chromium steel alloy"
Die Erfindung bezieht sich auf eine hitzebeständige, kriechfeste austenitische Nickel-Chrom-Stahllegierung, wie sie in der petrochemischen Industrie zur Verwendung kommt .The invention relates to a heat-resistant, creep-resistant austenitic nickel-chromium steel alloy, as used in the petrochemical industry.
Derartige Legierungen bedürfen einer hohen Festigkeit, insbesondere Zeitstandfestigkeit und einer ausreichenden Zähigkeit bei den üblichen Betriebstemperaturen sowie einer hinreichenden Korrosionsbeständigkeit.Such alloys require high strength, in particular creep rupture strength and sufficient toughness at the usual operating temperatures, as well as adequate corrosion resistance.
Aus der US-Patentschrift 4 077 801 ist eine molybdän- und kobaltfreie austenitische Nickel -Chrom-Gußstahllegierung mit 0,25 bis 0,8% Kohlenstoff, bis 3,5% Silizium, bis 3,0% Mangan, 8 bis 62% Nickel, 12 bis 32% Chrom, bis 2% Niob, 0,05 bis unter 1,0% Titan, 0,05 bis 2% Wolfram und bis 0,3% Stickstoff, Rest Eisen mit einer hohen Zeitstandfestigkeit und Duktilitat bei hohen Temperaturen bekannt. Diese Gußlegierung besitzt eine gute Schweißbarkeit und eignet sich als Werkstoff für Vorrichtungen zum Wasserstoff-Reformieren.From US Pat. No. 4,077,801 is a molybdenum and cobalt-free austenitic nickel-chromium cast steel alloy with 0.25 to 0.8% carbon, up to 3.5% silicon, up to 3.0% manganese, 8 to 62% nickel , 12 to 32% chromium, up to 2% niobium, 0.05 to under 1.0% titanium, 0.05 to 2% tungsten and up to 0.3% nitrogen, the rest iron with a high creep rupture strength and ductility at high temperatures . This cast alloy has good weldability and is suitable as a material for devices for hydrogen reforming.
Probleme ergeben sich jedoch angesichts der ansteigenden Verfahrenstemperaturen und der daraus resultierenden Verringerung der Lebensdauer in Folge der sich mit zunehmender Temperatur verringernden Kriechfestigkeit und der abnehmenden Aufkohlungs- und Oxidationsbestän- digkeit .However, problems arise in view of the rising process temperatures and the resulting ones Reduction of the service life as a result of the creep resistance, which decreases with increasing temperature, and the decreasing carburization and oxidation resistance.
Der Erfindung liegt daher das Problem zugrunde, eine Nickel -Chrom-Stahllegierung vorzuschlagen, die auch höheren Betriebstemperaturen gewachsen ist und dabei eine ausreichende Kriechfestigkeit sowie Aufkohlungs- und Oxidationsbeständigkeit besitzt.The invention is therefore based on the problem of proposing a nickel-chromium steel alloy which can also withstand higher operating temperatures and at the same time has sufficient creep resistance and resistance to carburization and oxidation.
Die Lösung dieser Aufgabe basiert auf dem Gedanken, die Hitzebeständigkeit einer austenitischen Nickel -Chrom- Stahllegierung mit Hilfe von Kobalt und Molybdän sowie bestimmter intermetallischer Verbindungen wesentlich zu verbessern. Kobalt verbessert dabei die Stabilität des austenitischen Eisen-Nickel -Chrom-Grundgefüges . Dies gilt insbesondere, wenn die Legierung zur Mischkristallverfestigung ferritstabilisierende Elemente wie Molybdän enthält.The solution to this problem is based on the idea of significantly improving the heat resistance of an austenitic nickel-chromium steel alloy with the aid of cobalt and molybdenum as well as certain intermetallic compounds. Cobalt improves the stability of the austenitic iron-nickel-chromium structure. This applies in particular if the alloy for solid solution strengthening contains ferrite-stabilizing elements such as molybdenum.
Im einzelnen besteht die Erfindung in einer austenitischen Stahllegierung mit 0,3 bis 1,0% Kohlenstoff, 0,2 bis 2,5% Silizium, bis 0,8% Mangan, 30,0 bis 48,0% Nickel, 16,0 bis 22,0% Chrom, 0,5 bis 18,0% Kobalt, 1,5 bis 4% Molybdän, 0,2 bis 0,6% Niob, 0,1 bis 0,5% Titan, 0,1 bis 0,6% Zirkonium, 0,1 bis 1,5% Tantal und 0,1 bis 1,5% Hafnium, mit einem Verhältnis der Gehalte an Tantal und Hafnium zum Zirkoniumgehalt von über 2,4%, deren Gesamtgehalt an Tantal, Hafnium und Zirkonium 1,2 bis 3% beträgt. Die Stahllegierung enthält bei Kobaltgehalten von mindestens 10% über 20% Eisen und bei Kobaltgehalten unter 10% über 30% Eisen.In particular, the invention consists of an austenitic steel alloy with 0.3 to 1.0% carbon, 0.2 to 2.5% silicon, up to 0.8% manganese, 30.0 to 48.0% nickel, 16.0 up to 22.0% chromium, 0.5 to 18.0% cobalt, 1.5 to 4% molybdenum, 0.2 to 0.6% niobium, 0.1 to 0.5% titanium, 0.1 to 0 , 6% zirconium, 0.1 to 1.5% tantalum and 0.1 to 1.5% hafnium, with a ratio of the tantalum and hafnium content to the zirconium content of over 2.4%, their total tantalum, hafnium and Zirconium is 1.2 to 3%. The steel alloy contains with cobalt contents of at least 10% over 20% iron and with cobalt contents under 10% over 30% iron.
Die Legierung besitzt ein austenitisches Eisen-Nickel - Chrom- oder ein austenitisches Eisen-Nickel -Chrom- Kobalt-Grundgefüge sowie eine hohe Zeitstand- bzw. Kriechfestigkeit und ist sowohl aufkohlungs- als auch oxidationsbeständig. Dennoch ist eine weitere Verbesserung der ZeitStandfestigkeit bei hohen Temperaturen möglich, wenn die Legierung auf Kosten ihrer zwingenden Bestandteile 1,5 bis 2,5% Aluminium enthält und/oder die Gehalte an Tantal, Hafnium und Zirkonium der folgenden Bedingung genügen:The alloy has an austenitic iron-nickel-chromium or an austenitic iron-nickel-chromium-cobalt basic structure as well as a high creep resistance and creep resistance and is resistant to carburization and oxidation. Nevertheless, a further improvement in the fatigue strength at high temperatures is possible if the alloy contains 1.5 to 2.5% aluminum at the expense of its mandatory components and / or the tantalum, hafnium and zirconium contents satisfy the following condition:
[(% Ta) + (% Hf)] / (% Zr) = 1,2 bis 14[(% Ta) + (% Hf)] / (% Zr) = 1.2 to 14
Besonders bewährt hat sich eine Legierung mit 0,42% Kohlenstoff, 1,3% Silizium, 0,40% Mangan, 34,0% Nickel, 19,0% Chrom, 3,5% Molybdän, 0,40% Niob, 0,25% Titan, 0,30% Zirkonium, 0,15% Tantal und 0,80% Hafnium, Rest Eisen oder auch mit 0,44% Kohlenstoff, 1,2% Silizium, 0,40% Mangan, 33,0% Nickel, 19,0% Chrom, 3,0% Molybdän, 0,40% Niob, 0,20% Titan, 0,15% Zirkonium, 1,0% Tantal und 0,10% Hafnium, Rest Eisen.An alloy with 0.42% carbon, 1.3% silicon, 0.40% manganese, 34.0% nickel, 19.0% chromium, 3.5% molybdenum, 0.40% niobium, 0 has proven particularly useful , 25% titanium, 0.30% zirconium, 0.15% tantalum and 0.80% hafnium, rest iron or also with 0.44% carbon, 1.2% silicon, 0.40% manganese, 33.0% Nickel, 19.0% chromium, 3.0% molybdenum, 0.40% niobium, 0.20% titanium, 0.15% zirconium, 1.0% tantalum and 0.10% hafnium, the rest iron.
Molybdän verbessert die Zeitstandfestigkeit bei mittleren Temperaturen, während intermetallische Karbidphasen dem an sich schwachen Eisen-Nickel -Chrom- Grundgefüge eine hohe Festigkeit bei Temperaturen bis über 0,9 ihres absoluten Schmelzpunkts verleihen. Hafnium, Zirkonium, Titan, Tantal und Niob bilden primäre Karbide des Typs MC, während Chrom unter Einschluß des Molybdäns in den intra- und interdentritischen Bereichen Karbide des Typs M7C3 und M23 6 bildet.Molybdenum improves the creep rupture strength at medium temperatures, while intermetallic carbide phases give the weak iron-nickel-chromium structure a high strength at temperatures above 0.9 of its absolute melting point. Hafnium, zirconium, titanium, tantalum and niobium form primary carbides of the MC type, while chromium forms below Inclusion of molybdenum in the intra- and interdentritic areas forms carbides of the type M7C3 and M 23 6.
Die Erfindung wird nachfolgend anhand von Ausführungs- beispielen des näheren erläutert. In der Zeichnung zeigen:The invention is explained below with reference to exemplary embodiments. The drawing shows:
Fig. 1: eine graphische Darstellung der Bruchzeit beim Zeitstandversuch in Abhängigkeit vom Gesamtgehalt an Hafnium und Tantal im Verhältnis zum Zirkoniumgehalt bei einer Temperatur von 1100° C und hoher Belastung,1: a graphical representation of the breaking time in the creep test as a function of the total content of hafnium and tantalum in relation to the zirconium content at a temperature of 1100 ° C. and high load,
Fig . 2 : eine graphische Darstellung des vom Gesamtgehalt an Tantal und Hafnium im Verhältnis zum Zirkoniumgehalt ausgehenden Einflusses auf die Standzeit bei einer Temperatur von 1100° C und einer Anfangsbelastung von 9,4 MPA,Fig. 2: a graphical representation of the influence of the total tantalum and hafnium content in relation to the zirconium content on the service life at a temperature of 1100 ° C. and an initial load of 9.4 MPA,
Fig. 3: die zeitliche Gewichtszunahme in einer Wasserstoff/Propylen-Atmosphäre bei 1000° C undFig. 3: the temporal weight gain in a hydrogen / propylene atmosphere at 1000 ° C and
Fig. 4: die Oxidationsbeständigkeit der Stahllegierung als zeitliche Gewichtszunahme bei einem Glühen an Luft bei einer Temperatur von 1050° C.4: the oxidation resistance of the steel alloy as a temporal increase in weight when annealed in air at a temperature of 1050 ° C.
Die Zusammensetzungen der Versuchslegierungen ergeben sich aus der nachfolgenden Tabelle I, die drei herkömm- liehen Legierungen 1, 2 und 3, Vergleichslegierungen 4 und 6 bis 12 sowie erfindungsgemäße Legierungen 5 und 13 bis 17 wiedergibt. Der Legierungsrest bestand in allen Fällen aus Eisen. Die Legierungen wurden im Mittel - frequenzofen erschmolzen und in Feingußformen oder im Schleudergießverfahren vergossen .The compositions of the test alloys are shown in Table I below, which shows three conventional alloys 1, 2 and 3, comparative alloys 4 and 6 to 12 and alloys 5 and 13 to 17 according to the invention. The rest of the alloy consisted of all Iron cases. The alloys were melted in the medium frequency furnace and cast in investment casting molds or by centrifugal casting.
Die Proben für den Zeitstandversuch wurden entweder aus den endmaßnahen Feingußproben oder durch Bearbeiten aus den Schleudergußrohren hergestellt. Unter Verwendung dieser Proben wurde das Zeitstandverhalten nach ASTM E 139 im Gußzustand ermittelt; die Ergebnisse von Versuchen bei 1100° C und zwei verschiedenen Belastungen sind in der nachfolgenden Tabelle II zusammengestellt.The samples for the creep rupture test were either produced from the near-final investment casting samples or by processing from the centrifugal cast pipes. Using these samples, the creep rupture behavior was determined according to ASTM E 139 in the as-cast state; the results of tests at 1100 ° C and two different loads are summarized in Table II below.
Die Daten der Zeitstandversuche, die minimale Kriechgeschwindigkeit und der Zeitpunkt für den Beginn des ter- tiären Kriechens machen deutlich, daß die erfindungsgemäßen Legierungen angesichts ihrer Gehalte an starken Karbidbildnern den Vergleichslegierungen merklich überlegen sind. So veranschaulichen die Diagramme der Fig. 1 und 2 die deutliche Überlegenheit der erfin- dungsgemäßen Legierungen hinsichtlich ihrer Zeitstandfestigkeit bei erhöhten Temperaturen in Abhängigkeit vom Gesamtgehalt an intermetallische Phasen bildenden Legierungen oberhalb eines bestimmten Gehaltsniveaus auf dem Hintergrund eines bestimmten Chromgehaltes, eines bestimmten Mindestgehalts an Nickel, Nickel und Kobalt sowie Molybdän. Dabei zeigt sich, daß die Verbesserung der Zeitstandfestigkeit und des Kriechverhalten einerseits auf dem erfindungsgemäßen Gewichtsverhältnis des Gesamtgehalts an Tantal und Hafnium zum Zirkonium- Gehalt und andererseits auf der Beeinflussung desThe data from the creep tests, the minimum creep speed and the time for the start of tertiary creep make it clear that the alloys according to the invention are markedly superior to the comparative alloys in view of their contents of strong carbide formers. 1 and 2 illustrate the clear superiority of the alloys according to the invention with regard to their creep rupture strength at elevated temperatures as a function of the total content of alloys forming intermetallic phases above a specific content level against the background of a specific chromium content, a specific minimum content of nickel, Nickel and cobalt as well as molybdenum. It shows that the improvement in creep rupture strength and creep behavior is based on the weight ratio according to the invention of the total tantalum and hafnium content to the zirconium content and on the other hand on influencing the
Grundgefüges durch Chrom und/oder Nickel plus Kobalt basiert . Zur Ermittlung der Aufkohlungsbeständigkeit wurden Proben bei 900° C und bei 1000° C in einer Atmosphäre aus Wasserstoff und Propylen mit einem Volumenverhältnis von 89 : 11 bei einem Volumendurchsatz von 601 ml/min untersucht. Dabei wurde die Menge der Kohlenstoffauf - nähme unter Verwendung einer Mikrowaage kontinuierlich gemessen.Basic structure based on chrome and / or nickel plus cobalt. To determine the carburization resistance, samples were examined at 900 ° C. and at 1000 ° C. in an atmosphere of hydrogen and propylene with a volume ratio of 89:11 at a volume throughput of 601 ml / min. The amount of carbon absorption was continuously measured using a microbalance.
Das Diagramm der Fig. 3 gibt die Meßergebnisse wieder und zeigt eine parabolische Reaktionskinetik mit der Diffusion von Kohlenstoff als geschwindigkeitsbestimmendem Schritt sowie einen verhältnismäßig engen Bereich der Gewichtszunahme mit Ausnahme der Legierung 17 mit einer Gewichtszunahme, die beinahe um einen Faktor 4 geringer ist als bei der herkömmlichen Legierung 2 und der Vergleichslegierung 7. Die Ergebnisse der Versuche mit den Legierungen 4 und 6-12 belegen die Wirkungslosigkeit der Zugabe primärkarbidbildender Ele- mente auf das Zeitstandverhalten.The diagram of FIG. 3 shows the measurement results and shows a parabolic reaction kinetics with the diffusion of carbon as the rate-determining step and a relatively narrow range of weight gain with the exception of alloy 17 with a weight gain that is almost a factor of 4 less than that conventional alloy 2 and the comparative alloy 7. The results of the tests with alloys 4 and 6-12 demonstrate the ineffectiveness of adding primary carbide-forming elements on the creep behavior.
Die Ergebnisse gravimetrischer Oxidationsversuche an Luft bei 1050° C und einer Versuchsdauer von 25 Stunden veranschaulicht das Diagramm der Fig. 4 mit seiner ebenfalls parabolischen Abhängigkeit, die das überlegene Oxidationsverhalten der erfindungsgemäßen Versuchslegierung 16 im Vergleich zu der herkömmlichen Versuchslegierung 2 deutlich macht. O 98/04757The results of gravimetric oxidation tests in air at 1050 ° C. and a test duration of 25 hours are illustrated by the diagram in FIG. 4 with its also parabolic dependency, which makes the superior oxidation behavior of the test alloy 16 according to the invention clear in comparison to the conventional test alloy 2. O 98/04757
- 7 -- 7 -
Tabelle 1Table 1
9 10 1 1 12 13 14 16 1 6 1 79 10 1 1 12 13 14 16 1 6 1 7
84006/4.3 84006/4.31 64006/806 84006/806 84006/907 84006/808 84006/808 84006/8.1 84006/8.384006 / 4.3 84006 / 4.31 64006/806 84006/806 84006/907 84006/808 84006/808 84006 / 8.1 84006 / 8.3
368 366 361 363 367 368 377 379 383368 366 361 363 367 368 377 379 383
31.60 32.16 36.76 37.24 33.27 33.24 33.01 32.31 31.2931.60 32.16 36.76 37.24 33.27 33.24 33.01 32.31 31.29
22.40 23.64 23.21 • 34.417 19.14 19.14 19.17 18.61 17.6622.40 23.64 23.21 • 34.417 19.14 19.14 19.17 18.61 17.66
3.00 3.160 3.100 3.060 3.200 3.040 3.260 3.160 3.0803.00 3.160 3.100 3.060 3.200 3.040 3.260 3.160 3.080
1.420 1.840 1.380 1.300 1.360 1.210 1.380 1.240 .681,420 1,840 1,380 1,300 1,360 1,210 1,380 1,240 .68
.43 .46 .446 .466 .46 .44 .400 .436 .420.43 .46 .446 .466 .46 .44 .400 .436 .420
.40 .37 .37 .37 .38 .37 .41 .40 .41.40 .37 .37 .37 .38 .37 .41 .40 .41
.37 .40 .38 AO .36 .40 .37 .38 .38.37 .40 .38 AO .36 .40 .37 .38 .38
.36 - .18 .17 - .18 .21 .17 .21 .21 .26.36 - .18 .17 - .18 .21 .17 .21 .21 .26
14.61 16.32 .61 .06 .32 .03 <.01 16.70 14.2614.61 16.32 .61 .06 .32 .03 <.01 16.70 14.26
.048 .028 .029"" .021 .024 .021 .026 .028 1.660.048 .028 .029 " " .021 .024 .021 .026 .028 1,660
.71 * 1.030 .84 .22 .97 1.010 .79 .097 1.230.71 * 1,030 .84 .22 .97 1,010 .79 .097 1,230
1.200 .67 .68 .13 . .82 .12 .84 .86 1.2801,200 .67 .68 .13. .82 .12 .84 .86 1,280
.386 .263 .166 .134 .128 .164 .343 .392 .464.386 .263 .166 .134 .128 .164 .343 .392 .464
.018 .017 .019 .019 .017 .016 .019 .017 .018.018 .017 .019 .019 .017 .016 .019 .017 .018
<.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 < .006<.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006
R R R R . R R R R R Tabelle 2RRRR. RRRRR Table 2

Claims

"Austenitische Nickel -Chrom-Stahlleαierunσ"Patentansprüche : "Austenitic nickel-chromium steel alloy" Claims:
1. Hitzebeständige und hoch armfeste austenitische Nickel -Chrom-Stahllegierung mit hoher Zeitstandfestigkeit und Aufkohlungsbeständigkeit aus1. Heat-resistant and highly arm-resistant austenitic nickel-chromium steel alloy with high creep rupture strength and carburization resistance
0,3 bis 1,0% Kohlenstoff0.3 to 1.0% carbon
0,2 bis 2,5% Silizium bis 0,8% Mangan 30,0 bis 48,0% Nickel 16,0 bis 22 % Chrom 0,5 bis 18,0% Kobalt0.2 to 2.5% silicon to 0.8% manganese 30.0 to 48.0% nickel 16.0 to 22% chromium 0.5 to 18.0% cobalt
1,5 bis 4 % Molybdän 0,2 bis 0,6% Niob 0, 1 bis 0, 5% Titan 0,1 bis 0,6% Zirkonium 0,1 bis 1,5% Tantal1.5 to 4% molybdenum 0.2 to 0.6% niobium 0.1 to 0.5% titanium 0.1 to 0.6% zirconium 0.1 to 1.5% tantalum
0,1 bis 1,5% Hafnium0.1 to 1.5% hafnium
Rest über 20% Eisen bei einem Kobaltgehalt von mindestens 10% oder über 30% Eisen bei einem Kobaltgehalt unter 10%, mit einem Verhältnis des Gesamtgehalts an Tantal und Hafnium zum Zirkoniumgehalt von über 2,4, bei einem Gesamtgehalt an Tantal, Hafnium und Zirkonium von 1,2 bis 3,0%.Remainder over 20% iron with a cobalt content of at least 10% or over 30% iron with one Cobalt content below 10%, with a ratio of the total content of tantalum and hafnium to the zirconium content of more than 2.4, with a total content of tantalum, hafnium and zirconium of 1.2 to 3.0%.
2. Legierung nach Anspruch 1 mit 1,5 bis 2,5% Aluminium.2. Alloy according to claim 1 with 1.5 to 2.5% aluminum.
3. Legierung nach Anspruch 1 oder 2 mit 0,42% Kohlen- stoff, 1,3% Silizium, 0,40% Mangan, 34,0% Nickel,3. Alloy according to claim 1 or 2 with 0.42% carbon, 1.3% silicon, 0.40% manganese, 34.0% nickel,
19,0% Chrom, 3,5% Molybdän, 0,40% Niob, 0,25% Titan, 0,30% Zirkonium, 0,15% Tantal und 0,80% Hafnium, Rest Eisen.19.0% chromium, 3.5% molybdenum, 0.40% niobium, 0.25% titanium, 0.30% zirconium, 0.15% tantalum and 0.80% hafnium, the rest iron.
4. Legierung nach einem der Ansprüche 1 bis 3 mit 0,44% Kohlenstoff, 1,2% Silizium, 0,40% Mangan, 33,0% Nickel, 19,0% Chrom, 3,0% Molybdän, 0,40% Niob, 0,20% Titan, 0,15% Zirkonium, 1,00% Tantal und 0,15% Hafnium, Rest Eisen.4. Alloy according to one of claims 1 to 3 with 0.44% carbon, 1.2% silicon, 0.40% manganese, 33.0% nickel, 19.0% chromium, 3.0% molybdenum, 0.40 % Niobium, 0.20% titanium, 0.15% zirconium, 1.00% tantalum and 0.15% hafnium, balance iron.
5. Legierung nach einem der Ansprüche 1 bis 4, bei der das Gewichtsverhältnis des Gesamtgehalts an Tantal und Hafnium zum Zirkoniumgehalt 2,5 bis 14 beträgt.5. Alloy according to one of claims 1 to 4, wherein the weight ratio of the total tantalum and hafnium to zirconium content is 2.5 to 14.
6. Verwendung einer Legierung nach einem der Ansprüche 1 bis 5 als Werkstoff zum Herstellen von Gegenständen mit hoher Zeitstandfestigkeit bei hohen Temperaturen sowie hoher Aufkohlungs- und Oxidationsbe- ständigkeit .6. Use of an alloy according to one of claims 1 to 5 as a material for the production of objects with high creep rupture strength at high temperatures and high carburization and oxidation resistance.
Verwendung einer Legierung nach einem der Ansprüche 1 bis 5 als Werkstoff zum Herstellen von Rohren und Fittings von Crackanlagen zum Herstellen von Äthylen oder Synthesegas. Use of an alloy according to one of claims 1 to 5 as a material for producing pipes and Cracking system fittings for the production of ethylene or syngas.
EP97937513A 1996-07-25 1997-07-23 Austenitic nickel-chromium steel alloys Expired - Lifetime EP0914485B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19629977 1996-07-25
DE19629977A DE19629977C2 (en) 1996-07-25 1996-07-25 Austenitic nickel-chrome steel alloy workpiece
PCT/EP1997/003975 WO1998004757A1 (en) 1996-07-25 1997-07-23 Austenitic nickel-chromium steel alloys

Publications (2)

Publication Number Publication Date
EP0914485A1 true EP0914485A1 (en) 1999-05-12
EP0914485B1 EP0914485B1 (en) 2002-05-08

Family

ID=7800771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97937513A Expired - Lifetime EP0914485B1 (en) 1996-07-25 1997-07-23 Austenitic nickel-chromium steel alloys

Country Status (6)

Country Link
US (1) US6409847B2 (en)
EP (1) EP0914485B1 (en)
JP (1) JP3710097B2 (en)
CA (1) CA2261736C (en)
DE (2) DE19629977C2 (en)
WO (1) WO1998004757A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156737A1 (en) * 2003-02-06 2004-08-12 Rakowski James M. Austenitic stainless steels including molybdenum
US20050131263A1 (en) 2002-07-25 2005-06-16 Schmidt + Clemens Gmbh + Co. Kg, Process and finned tube for the thermal cracking of hydrocarbons
DE10233961A1 (en) * 2002-07-25 2004-02-12 Schmidt + Clemens Gmbh + Co. Edelstahlwerk Kaiserau Cracking hydrocarbon materials in presence of steam heated with pipes having helical inner ribs promoting uniform temperature in pipe wall
GB2394959A (en) * 2002-11-04 2004-05-12 Doncasters Ltd Hafnium particle dispersion hardened nickel-chromium-iron alloys
EP1558776B8 (en) * 2002-11-04 2009-04-29 Paralloy Limited High temperature resistant alloys
US7482502B2 (en) * 2003-01-24 2009-01-27 Stone & Webster Process Technology, Inc. Process for cracking hydrocarbons using improved furnace reactor tubes
SE527319C2 (en) 2003-10-02 2006-02-07 Sandvik Intellectual Property Alloy for high temperature use
US7985304B2 (en) * 2007-04-19 2011-07-26 Ati Properties, Inc. Nickel-base alloys and articles made therefrom
CN101592186B (en) * 2009-07-10 2011-01-26 攀钢集团钢铁钒钛股份有限公司 Axle bush and sleeve
CN101592187B (en) * 2009-07-10 2011-04-13 攀钢集团钢铁钒钛股份有限公司 Axle bush and axle sleeve
US9011620B2 (en) * 2009-09-11 2015-04-21 Technip Process Technology, Inc. Double transition joint for the joining of ceramics to metals
UA111115C2 (en) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. cost effective ferritic stainless steel
EP3233269B1 (en) 2014-12-16 2022-08-10 ExxonMobil Chemical Patents Inc. Heat transfer tube weldment suitable for use in pyrolysis furnace and pyrolysis process
WO2016099738A1 (en) 2014-12-16 2016-06-23 Exxonmobil Research And Engineering Company Alumina forming refinery process tubes with mixing element
US9909395B2 (en) 2015-09-21 2018-03-06 National Oilwell DHT, L.P. Wellsite hardfacing with distributed hard phase and method of using same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB618560A (en) * 1945-11-02 1949-02-23 Kanthal Ab Heat resistant machinable alloy with high strength while hot
US3135602A (en) * 1957-02-11 1964-06-02 Babcock & Wilcox Co 45% iron base austenitic cr-ni alloy with 18-22% cr, 27-32% ni or (ni+co) plus strengthening additions
JPS58207352A (en) * 1982-05-28 1983-12-02 Mitsubishi Metal Corp Cast ni alloy for guide shoe
DE1233609B (en) * 1961-01-24 1967-02-02 Rolls Royce Process for the heat treatment of a hardenable nickel-chromium alloy
US3658516A (en) * 1969-09-05 1972-04-25 Hitachi Ltd Austenitic cast steel of high strength and excellent ductility at high temperatures
US3713788A (en) * 1970-10-21 1973-01-30 Chromalloy American Corp Powder metallurgy sintered corrosion and heat-resistant, age hardenable nickel-chromium refractory carbide alloy
US4077801A (en) 1977-05-04 1978-03-07 Abex Corporation Iron-chromium-nickel heat resistant castings
US4313760A (en) 1979-05-29 1982-02-02 Howmet Turbine Components Corporation Superalloy coating composition
US4764225A (en) * 1979-05-29 1988-08-16 Howmet Corporation Alloys for high temperature applications
US4302256A (en) * 1979-11-16 1981-11-24 Chromalloy American Corporation Method of improving mechanical properties of alloy parts
JPS5820732A (en) 1981-07-24 1983-02-07 Comput Basic Mach Technol Res Assoc Preparation of magnetic thin film of oxide
EP0246092A3 (en) * 1986-05-15 1989-05-03 Exxon Research And Engineering Company Alloys resistant to stress corrosion cracking
JPS63297542A (en) * 1987-05-28 1988-12-05 Nissan Motor Co Ltd Heat resistant wear resistant iron based sintered alloy
JPH072981B2 (en) 1989-04-05 1995-01-18 株式会社クボタ Heat resistant alloy
JP2574528B2 (en) * 1990-09-06 1997-01-22 財団法人電気磁気材料研究所 High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same
JPH04116142A (en) * 1990-09-06 1992-04-16 Res Inst Electric Magnetic Alloys Nonmagnetic functional alloy having high rigidity and low magnetic permeability and its manufacture
US5310522A (en) 1992-12-07 1994-05-10 Carondelet Foundry Company Heat and corrosion resistant iron-nickel-chromium alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9804757A1 *

Also Published As

Publication number Publication date
US6409847B2 (en) 2002-06-25
DE19629977A1 (en) 1998-01-29
CA2261736C (en) 2005-06-14
DE19629977C2 (en) 2002-09-19
JP3710097B2 (en) 2005-10-26
DE59707227D1 (en) 2002-06-13
WO1998004757A1 (en) 1998-02-05
EP0914485B1 (en) 2002-05-08
JP2000513767A (en) 2000-10-17
US20010001399A1 (en) 2001-05-24
CA2261736A1 (en) 1998-02-05

Similar Documents

Publication Publication Date Title
EP0914485B1 (en) Austenitic nickel-chromium steel alloys
EP3330390A1 (en) Nickel-chromium alloy
DE2407410B2 (en) Carbide hard metal with precipitation hardenable metallic matrix
DE60124646T2 (en) Stainless cast steel with good heat resistance and good tensionability
DE3117539C2 (en)
EP0866145A2 (en) Completely martensitic steel alloy
DE3041565C2 (en)
DE69821493T2 (en) Use of heat-resistant cast steel for components of turbine housings
DE3300392C2 (en)
CN100376708C (en) Heat-resisting steel, heat treatment method for heat-resisting steel and high-temperature steam turbine rotor
AT393642B (en) USE OF AN IRON BASED ALLOY FOR THE POWDER METALLURGICAL PRODUCTION OF PARTS WITH HIGH CORROSION RESISTANCE, HIGH WEAR RESISTANCE AND HIGH TENSITY AND PRESSURE STRENGTH, ESPECIALLY FOR THE PROCESS
AT396118B (en) METAL ALLOY
DE1967005C3 (en) Process for producing a nickel-chromium-cobalt material
AT395176B (en) CORROSION RESISTANT NI-CR-SI-CU ALLOYS
AT405297B (en) DUPLEX ALLOY FOR COMPLEXLY STRESSED COMPONENTS
DE1758010A1 (en) Heat-resistant alloys with a proportion of rhenium and hafnium
WO1995031581A1 (en) Highly corrosion and wear resistant chilled casting
DE1533429C3 (en) Use of a chrome-nickel-cobalt steel alloy as a corrosion-resistant material
AT414341B (en) STEEL FOR CHEMICALS - PLANTS - COMPONENTS
DE3241414C2 (en) Use of a heat-resistant steel
DE2548526C3 (en) Use of a heat-resistant and weldable steel
AT407648B (en) METALLIC MATERIAL WITH HIGH HARDNESS, HIGH WEAR RESISTANCE AND HIGH TOUGHNESS
DE1962547C3 (en) Process for producing a nickel-chromium-cobalt material
DE2544545A1 (en) HEAT-RESISTANT AND STAINLESS AUSTENITIC NICKEL-CHROME STEEL
DE2027656A1 (en) Nickel Chromium Iron Alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20001027

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SCHMIDT + CLEMENS GMBH & CO. KG

REF Corresponds to:

Ref document number: 59707227

Country of ref document: DE

Date of ref document: 20020613

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020721

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110729

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110721

Year of fee payment: 15

Ref country code: DE

Payment date: 20110926

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120723

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120723

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59707227

Country of ref document: DE

Effective date: 20130201