EP0904521B1 - Systeme d'apprentissage au tir, equipement pour fusil, cible et procede correspondants - Google Patents

Systeme d'apprentissage au tir, equipement pour fusil, cible et procede correspondants Download PDF

Info

Publication number
EP0904521B1
EP0904521B1 EP97926046A EP97926046A EP0904521B1 EP 0904521 B1 EP0904521 B1 EP 0904521B1 EP 97926046 A EP97926046 A EP 97926046A EP 97926046 A EP97926046 A EP 97926046A EP 0904521 B1 EP0904521 B1 EP 0904521B1
Authority
EP
European Patent Office
Prior art keywords
target
rifle
processing unit
sensor
shot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97926046A
Other languages
German (de)
English (en)
Other versions
EP0904521A1 (fr
Inventor
Michel Billon
Henri L'her
Olivier Sentieys
Michel Valette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Rennes 1
Original Assignee
Universite de Rennes 1
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite de Rennes 1 filed Critical Universite de Rennes 1
Publication of EP0904521A1 publication Critical patent/EP0904521A1/fr
Application granted granted Critical
Publication of EP0904521B1 publication Critical patent/EP0904521B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A33/00Adaptations for training; Gun simulators
    • F41A33/02Light- or radiation-emitting guns ; Light- or radiation-sensitive guns; Cartridges carrying light emitting sources, e.g. laser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/2683Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile with reflection of the beam on the target back to the weapon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J5/00Target indicating systems; Target-hit or score detecting systems
    • F41J5/02Photo-electric hit-detector systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J9/00Moving targets, i.e. moving when fired at
    • F41J9/16Clay-pigeon targets; Clay-disc targets

Definitions

  • the field of the invention is that of the use of shooting weapons. More specifically, the invention relates to learning and training in the use of a weapon, including a shotgun.
  • clay pigeon shooting is an expensive hobby.
  • the hunter practicing clay pigeon shooting (or the hunting course or the pit) must have two rifles: a robust rifle for the clay pigeon shooting and a lighter rifle suitable for shooting hunted game.
  • a robust rifle for the clay pigeon shooting and a lighter rifle suitable for shooting hunted game.
  • a lighter rifle suitable for shooting hunted game In addition, take into account the fixed costs of clay pigeon shooting, and the cost of cartridges and clay pigeons, or trays, which are normally broken when fired.
  • clay pigeon shooting creates nuisances for those around you, in particular with regard to noise and dangers. Installing a clay pigeon shooting therefore requires administrative authorizations, and the number of clubs and clay pigeon shooting is therefore limited. We note, however, that demand is very high. So in some countries like Italy, there are more license-holders in clay pigeon shooting than in soccer ball.
  • clay pigeon shooting is only slightly useful for hunting, because it is not used with the same type of rifle.
  • Each rifle has specific characteristics, to which the hunter must become accustomed.
  • patent application WO-91 12480 presents a system for simulating bullet shooting. It mainly concerns the case of fixed targets. The case of moving targets is approached, but supposes the existence of telemetry means (which supposes an impact on the target) and does not make it possible to analyze the shot in the event that the target was missed.
  • Document UK-2 138 112 presents yet another system for simulating shoot. It is not very precise, due to the use of a photodiode with fixed thresholding. Through elsewhere, it only provides for "all or nothing” detection of the impact.
  • the request of Patent FR-2,614,097 describes yet another system of this type. It is only suitable for close fire, with "all or nothing” results.
  • the document FR-2 560 370 relates to a system for simulating gunshot shooting on fixed target, the result of which is also given by "all or nothing".
  • the invention particularly aims to overcome these various drawbacks of the state of the art.
  • an objective of the invention is to provide a system allowing learn to shoot, then improve your shooting technique.
  • Another object of the invention is to provide such a system, which allows the hunter practicing clay pigeon shooting, or any other entertainment, with his own shotgun hunt.
  • the invention also aims to provide such a system, which is little expensive to set up and operate, especially compared to ball traps classics.
  • Yet another object of the invention is to provide such a system, which does not presents no nuisance (noise, danger %) and which can be used freely, practically everywhere (and not only in ball traps).
  • the shooter obtains, for each shot, a quantification of its shot (precision, "timing”, 7), and not a simple indication of success or failure to fire. It can therefore detect and understand its faults, and therefore improve the quality of his shot.
  • the present invention resides in particular in the formulation of the problem of obtaining a quantification of the shot. This problem is completely new for the person skilled in the art, who has always simply sought to indicate whether the shooting was good or bad.
  • the approach of the invention on the other hand makes it possible to know the characteristics of this shot.
  • the processing unit can be placed in a remote station (connected rifles for example over the air), or in rifles, or even distributed among different elements.
  • said processing unit comprises means for determination of the trajectory of each of said targets, as a function of measurements issued by said launcher (initial conditions of launch).
  • said means for determining the trajectory allow for measurement of wind direction and / or wind speed.
  • the equipment of the rifle is removable, in a simple and direct way, and it can be put in place in a conventional rifle. So the hunter can use his own shotgun. He does not need to buy a specific rifle, and learning him is directly beneficial for hunting.
  • said analysis also takes into account an estimate of the distance between a shooter and a target.
  • this distance is known directly.
  • said analysis comprises at least one of the information belonging to the group including an indication of the centering of the shot with respect to the target, an indication of the distance between the shooter and the target and an indication of how the shot was made relative to the position of the target.
  • the system comprises means for simulating the dispersion and / or speed of pellets in space.
  • said means of dispersion simulation include means ensuring the divergence of said beam luminous at the exit of said rifle.
  • It can in particular be a holographic diffuser.
  • said speed simulation means includes means for applying a delay to the emission of said light beam.
  • the invention also relates to the rifle equipment in such a system learning to shoot.
  • This equipment includes transmission means along the axis of shooting of an incident light beam, a sensor for receiving a reflected light signal by said target and means of transmission to said processing unit of said signal reflected light, and bidirectional data exchange means with a station at the distant ground.
  • such equipment comprises at least two guns and means for triggering said light beam comprising detection means sensitive to the use of the trigger associated with any one of said guns.
  • said means of detection include a piezoelectric sensor. This detects the use of either trigger, without the need for direct mechanical contact.
  • said reception sensor comprises a position detector plane, detecting the center of gravity of the illuminance received.
  • said sensor for reception cooperates with means of taking into account the ambient lighting.
  • It can also include means for simulating the weight of the load in lead and / or powder of said cartridge, among several possible weights, and / or the effect of "choke”, "half-choke” or smooth barrel.
  • the invention also relates to an advantageous target for a system. training in shooting according to the invention, having a profile chosen so as to optimize the efficiency between the amount of light received and the amount of reflected light.
  • such a target has a reflective coating at an angle of very weak retro-reflection (between 0 and 15 °), at least over a portion of said target likely to receive said light beam.
  • the target may in particular include means for receiving an order to simulation of the effect of an impact, and the means of displacement from a point mass to inside said target.
  • this method can simultaneously deliver a shot analysis fired from at least two rifles on the same target.
  • the shooting learning system allows the shooter to train with his own rifle, and to obtain a quantification of each of his shots, which allows him to progress.
  • the processing unit 14 is for example a PC compatible microcomputer (trademark). In particular, it monitors the ballistics of targets 13, by function of launch characteristic measurements delivered (15) by the launcher 12, and possibly external parameters (such as wind characteristics), treatment information 16 transmitted over the air by each rifle 11, the realization of various calculations in real time, and the restitution of the results, for example on a screen.
  • PC compatible microcomputer trademark
  • the rifle 11 comprises means for emitting an incident light beam 17, from a laser diode, and means for receiving the reflected light beam 18 (when target 13 is reached ).
  • the launcher 12 can for example be of the type illustrated in FIG. 2. It is manual or automatic. It conventionally comprises a tripod 21, carrying a guide handle 22 and a pigeon support 23.
  • the angle a is between 0 and 15 °, and the angle b can vary between -45 and + 45 °.
  • the sensors used can be rotary potentiometric sensors (for example example of Spectrol (registered trademark) sensors with a value of 5 k ⁇ . These sensors are connected by cables to the processing unit.
  • D1 illustrates the vertical axis
  • D2 is the position reference in the horizontal plane
  • y'y is the projection of x'x in the horizontal plane.
  • the distance between the shooter's position and the launcher must be initialized in the processing unit.
  • the material used is unbreakable (aluminum or plastic) and dressed a layer of retro-reflective coating, on its edge for typical applications "trapeze” or on the underside for "rabbit” type applications.
  • This coating is by example of 3M mark of type 2000X (registered trademarks). It is composed of micro high performance prisms for large entry angles.
  • the angle of the retro-reflected ray is very small, which allows to use the same type of equipment for several rifles, if the shooters are separated from each other by more than 2 m.
  • the rifle of the invention is an ordinary rifle, which allows the hunter to use his own shotgun. It includes removable equipment, which can adapt to the majority of rifles, and which can be divided into three parts: the transmitter, the receiver and the transmitter.
  • the receiver makes it possible to recover the signal reflected by the target, when the latter has been affected by the signal.
  • a plane position detector (PSD) 61 for example a silicon sensor, type 5590 of Hamamatsu brand (registered trademarks)
  • An interference filter 62 centered on 860 nm filters the wavelength of the beam laser.
  • the illumination transmitted by a converging lens 63 passes through the spatial filter constituted by a diaphragm 64 and the image is then made on the PSD 61.
  • This detects in is the center of gravity of the illumination.
  • detection is practically insensitive optical aberrations.
  • the diameter of the input optic is 20 mm, but it is possible to reduce it by a factor of 2.
  • the detector is subjected to several “parasites” (sun, ambient radiation, ...), and the light from the laser diode, and reflected by the target. To ensure good dynamics of measurement, the effect of each of these sources should be studied.
  • the diameter of the optic 71 is 20 mm, and its focal length 15 mm. A 5.6 ° angle of view is obtained.
  • 1 m in the plane of the target therefore corresponds to 0.75 mm in the plane of the detector.
  • the illumination received by the detector varies in D -4 .
  • the power received by the detector is 130nW. It can generate a current in the detector equal to 65 nA which is very large compared to the dark current (typically 0.1nA).
  • the dynamic range necessary for shots between 20 m and 60 m (27) is therefore possible to obtain.
  • Figure 8 is a block diagram of the main electronic means of the invention.
  • a micro-contact allows the supply of the various circuits.
  • a voltage converter charges a 0.5 mF capacitor. About one second after, when the capacitor is charged, firing can take place.
  • an accelerometer 81 is used, which has the double advantage of not requiring a mechanical connection with the striker, and to be able to detect the use of either of the two triggers.
  • the accelerometer 81 placed in the cartridge, activates a module 82 for detecting firing, which alerts a sequencer 83.
  • This sequencer 83 authorizes the supply 84 of the diode laser, for example through an IRFD014 type mosfet transistor from International Correct (registered trademarks).
  • This shaping 86 notably includes a transformation into current, amplification, analog / digital conversion (by example using a CAN converter type Max 186 (12 bit resolution) from Maxime (registered trademarks)) and serialization.
  • a control photodiode 88 delivers information relating to the power of the laser diode.
  • sequencer 83 ensures the radio transmission 87 of the signal obtained, to the processing unit.
  • the accelerometer 81 can be of the ADXL050JH type from Analog Device (brands filed). Advantageously, it can also be produced according to the diagram in FIG. 9.
  • a piezoelectric blade 91 is mounted radially. It is of PXE5 bimorph type Philips (registered trademarks). The mechanical vibrations are then transformed and shaped through BFT46 92 and 93 transistors processed by the sequencer 83.
  • FIG. 10 The operating principle of the detector 85 is illustrated in FIG. 10. This is of a bidirectional PSD. It includes four electrodes 101 to 104, and a voltage of polarization 105 is applied to the center of the detector.
  • the coordinates of the center of gravity of the illumination L are x 0 , y 0 .
  • the addition of a light spot, due to the retroreflection of the lighting pigeon 1 will modify the previous coordinates if the shot is not centered.
  • the accuracy of the detection is a function of 1 compared to L.
  • the detector must operate in a linear area despite the atmosphere while maintaining a dynamic range for 1 ranging from a target at 20m to 60m.
  • the result is determined by the processing unit and broadcast by loudspeaker or displayed on a screen.
  • a capacity of 0.5 mF is charged through the voltage converter for one to a few seconds from such that at the time of firing a mosfet transistor controlled by the sequencer 83 on its grid ensures the passage of a drain current of 3A, current necessary to obtain a light power of 1.5 W at the diode output. Given the characteristic of the transistor, this current remains constant throughout the excitation of the diode.
  • the light power in output is evacuated by a light fraction captured by a photodiode. Information given by the photodiode is transmitted to the processing unit.
  • Each rifle has its own HF 87 transmitter with a range of approximately 10 m.
  • Heiland brand registered trademark for example, it works in frequency modulation with a carrier of 433.92 MHz. Its bandwidth is + or - 20 kHz and its weight 11 g.
  • the part of the system located at the end of the rifle must have a weight the as low as possible so as not to shift the center of gravity of the rifle and so as not to weigh it down.
  • a counterweight can be provided, to keep the center of gravity unchanged of the rifle, whether equipped or not.
  • the cartridge is designed to adapt to rifles of the type 12 gauge.
  • the length of the cartridge is around 80 to 90 mm. She slips into the barrel like an ordinary cartridge.
  • a micro-contact ensures the connection between the battery and the various electronic circuits.
  • the autonomy of a cartridge, depending on the quality of the battery can be 1 year.
  • the system at the end of the rifle is partly mounted in a barrel and partly under the cannons. It is easily removable.
  • the maximum exposure allowed for the eye in the conditions of use described mean that the system presents no danger from from a distance of 1.6 m from the end of the barrel. Furthermore, there is no danger to the skin.
  • a barrel can contain a loaded "white” cartridge only powder. This can, on the first try, create the recoil effect.
  • a cannon shocked presents at its end a narrowing which makes that the distribution of lead in space is different from that described, causing a decrease in the dispersion of sinkers. This can be simulated by software.
  • FIG. 12 illustrates the architecture of the means used on the ground.
  • Information processing on the ground, acquisition of ballistics parameters, the reception of the calculation data and the display of the results are carried out by a microcomputer.
  • the following table presents, in a simplified way, the chronology of a shot for the shooter (column 1), the processing unit (column 2) and the launcher (column 3).
  • FIG. 13 illustrates an example of determining the path 131 of a pigeon, and analysis of the shot 132, such as the processing unit can perform it.
  • the horizontal plane is defined by (Oy, OT).
  • Vo is the initial speed of the pigeon belonging to the plane (OI, Oy), perpendicular to the horizontal plane. The effect of the wind is neglected.
  • Oz is the vertical axis.
  • I is the intersection of the laser beam and the pigeon.
  • D is the shooting distance sought from the coordinates (y, z) of point I.
  • H being the projection of I, IH will be known as well as OH. Knowledge of OH, OT, and of us allow to determine D.
  • k1 and k2 are determined by preliminary tests associated with a numerical resolution of the system by a method of "Runge-Kutta" of the 4th order. From this resolution we also deduce the speed of the pigeon in I.
  • the treatment provides for a correction of the advance effect of the laser beam compared to pellets.
  • Vp the initial speed of the pellets.
  • D the advance A taken by a laser beam
  • This value should be compared to the duration of the pulses necessary to achieve good detection which is of the order of 1.10-3s.
  • Figure 14 shows another possible architecture for equipping the rifle. It consists in dissociating the cartridge 141 from the end of the rifle. For this the optics of the cartridge ends with a short length of optical fiber (1 cm). The outgoing beam 142 is collected by a lens which converges this beam on the lens located in end of the barrel, which realizes the divergence 143 of the beam. Separating the cartridge from the other party causes modifications to the electronics without changing the general functionality of the system. Part of the sequencer function remains in the cartridge but another part must be at the end of the barrel. Two sources of energy must be used.
  • the equipment therefore includes the electronic cartridge 141, a module for divergence and detection 143, a white cartridge 144, a second sequencer 145 and an HF 146 transmission module.
  • the barrel optics are designed as illustrated in Figure 15.
  • a first battery 151 supplies the cartridge 141, and in particular ensures the power supply 152 of the laser diode 153.
  • the cartridge includes a Selfoc 154 lens, a portion of optical fiber 155 (for circularize the beam) and a converging lens 156.
  • a divergent lens 157 simulates scattering of pellets.
  • a photodiode 158 will be activated by the stray reflections 159 of the lens 157.
  • the consequent information will be transmitted to a second sequencer 1510 placed at the end of the barrel.
  • This sequencer will manage the detection 1511, the digitization 1512 HF measurements and transmission.
  • a battery 1514 ensures the supply of the various elements.
  • the rifle end will be in the form of a volume entering a barrel and an external part.
  • the station link to the rifle ground is bidirectional, which has the effect of making it possible to synchronize the means gun calculation, transmission, take note of the moment of excitement trigger, transmit information to the ground and depending on the ballistics of the pigeon calculated by the ground to transmit to the rifle the authorization to emit its light beam.
  • a second possibility is to carry out dynamic detection thresholding.
  • the cost and size are minimized.
  • the L.E.D. linked to the ground station as well as the infrared detector will be found near the displays, in front of the guns, hence the absence of additional wiring.
  • all the equipment, and in particular the means of treatment can be placed in the barrel of the rifle (and no longer in the ground station).
  • the pigeon (or any other target) is equipped with means allowing to visualize (or hear) the positive result of the impact.
  • the pigeon can emit a sound and / or a light signal.
  • a one-way HF link is established between the ground station (or a rifle) and the pigeon (remote-controlled).
  • the pigeon is made up of a mass distributed giving its shape, retroreflective material and a point mass 171 centered in flight. The pigeon will be unbalanced by causing the displacement of this mass which has translate the center of gravity of the pigeon.
  • This mass including all on-board electronics represents half of the mass of the pigeon is about 50 g.
  • the electromagnet 172 releases the trigger (core) 173.
  • the spring 174 then propels the mass 171, guided in translation (175) towards the edge of the pigeon, which then falls.
  • Figure 18 shows schematically the corresponding on-board electronics.
  • the ground station (or a rifle possibly) transmits an HF frame whose carrier frequency depends on the country concerned.
  • This HF transmission will be received by the receiver 181 (for example of the Rx 1000 type) and decoded by an integrated circuit 182 (by example of the MC 145027 type from Motorola (registered trademark)).
  • an astable circuit 183 If the decoding is positive the output of an astable circuit 183 is positioned in the state high. This voltage is applied to the trigger of a mosfet technology transistor, by example, and lets the current flow through the coil of the electromagnet 184.
  • the nucleus thereof enters the body and releases the embedded mass 171 consisting of the electromagnet, electronics and power supplies (batteries). This mass is pushed by a spring.
  • An ILS bulb serves as a switch, opening the circuit away from the fixed permanent magnet. So the battery life is very important and the pigeon is “harvested” then “rearmed” before launching.
  • the system is rearmed (176) by manually repelling the charge 171.
  • the invention can be used as a single user (by hunters anxious to improve, for example), or to several users aiming to same target.
  • FIG. 19 shows a display of the result of a shot according to the invention.
  • Various numerical information such as distance 191, number of points 192 and the shooter's number 193 can be entered.
  • the target 195 is displayed on a screen 194.
  • the center of the screen 196 represents the impact.
  • An arrow 197 indicates the direction of movement of the target. The shooter notes so easily, although his shot hit the target, he shot slightly too early.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Telescopes (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Air Bags (AREA)
  • Road Repair (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Adornments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

Le domaine de l'invention est celui de l'utilisation d'armes de tir. Plus précisément, l'invention concerne l'apprentissage et l'entraínement à l'utilisation d'une arme, et notamment d'un fusil de chasse.
La chasse n'est possible que lors des périodes d'ouverture réglementaires. Le reste du temps, c'est-à-dire une grand partie de l'année, le tireur est obligé, pour s'entraíner ou se divertir, de se rendre dans un ball-trap. Cette limitation présente de nombreux inconvénients.
Tout d'abord, le ball-trap est un loisir coûteux. Le chasseur pratiquant le ball-trap (ou le parcours de chasse ou la fosse) doit posséder deux fusils : un fusil robuste pour le ball-trap et un fusil plus léger et adapté au tir du gibier chassé. En outre, il convient de prendre en compte les frais fixes d'accès au ball-trap, et le coût des cartouches et des pigeons d'argile, ou plateaux, qui sont en principe cassés lors du tir.
Par ailleurs, le ball-trap génère des nuisances vis-à-vis de l'entourage, notamment en ce qui concerne le bruit et les dangers. L'installation d'un ball-trap nécessite donc des autorisations administratives, et le nombre de clubs et de ball-trap est de ce fait limité. On notera toutefois que la demande est très importante. Ainsi, dans certains pays comme l'Italie, il y a plus de licenciés en ball-trap qu'en foot-ball.
Dans tous les cas, le chasseur a de grandes difficultés à s'entraíner, et à corriger ses défauts. Lorsqu'il chasse réellement, il sait rarement pour quelles raisons il a raté le gibier visé. Il en est de même au ball-trap : il sait seulement s'il a touché ou non le pigeon d'argile.
De plus, l'entraínement au ball-trap n'est que faiblement utile pour la chasse, car il n'est pas pratiqué avec le même type de fusil. Or chaque fusil présente des caractéristiques spécifiques, auxquelles le chasseur doit s'habituer.
Diverses techniques ont été présentées, pour pallier certains de ces inconvénients.
Ainsi, la demande de brevet WO-91 12480 présente un système de simulation de tir à balle. Il concerne essentiellement le cas de cibles fixes. Le cas des cibles mobiles est abordé, mais suppose l'existence de moyens de télémétrie (ce qui suppose un impact sur la cible) et ne permet pas d'analyser le tir dans l'hypothèse où la cible a été manquée.
Le document US-3 499 650 propose simplement une information "tout ou rien" sur le succès du tir, et non une analyse de ce dernier. Par ailleurs, il s'applique à des cibles de très grande taille, telles que les chars.
Le brevet US-3 898 747 décrit un système mettant en oeuvre un double faisceau, pour l'entraínement au combat de soldat à soldat. A nouveau, il s'agit d'une simple détection par "tout ou rien".
Le document UK-2 138 112 présente encore un autre système de simulation de tir. Il est peu précis, du fait de l'utilisation d'une photodiode avec seuillage fixe. Par ailleurs, il ne prévoit que la détection en "tout ou rien" de l'impact. La demande de brevet FR- 2 614 097 décrit encore un autre système de ce type. Il n'est adapté que pour des tirs rapprochés, avec résultats par "tout ou rien".
Le document FR-2 560 370 concerne un système de simulation de tir à balle sur cible fixe, dont le résultat est également donné par "tout ou rien".
On constate que de nombreuses recherches ont été effectuées dans ce dossier. Toutefois, aucune des techniques proposées n'apporte une aide efficace à l'apprentissage. Le tireur ne connaít pas les raisons de son échec, lorsqu'il n'a pas atteint la cible.
L'invention a notamment pour objectif de pallier ces différents inconvénients de l'état de la technique.
Plus précisément, un objectif de l'invention est de fournir un système permettant d'apprendre à tirer, puis d'améliorer sa technique de tir.
Un autre objectif de l'invention est de fournir un tel système, qui permette au chasseur de pratiquer le ball-trap, ou tout autre divertissement, avec son propre fusil de chasse.
L'invention a également pour objectif de fournir un tel système, qui soit peu coûteux à mettre en oeuvre et à exploiter, en particulier par rapport aux ball-traps classiques.
Encore un autre objectif de l'invention est de fournir un tel système, qui ne présente pas de nuisances (bruit, danger...) et qui puisse être utilisé en toute liberté, pratiquement partout (et non seulement dans les ball-traps).
Ces objectifs, ainsi que d'autres qui apparaítront par la suite, sont atteints selon l'invention par un système d'apprentissage au tir, du type comprenant au moins une cible et au moins un fusil équipé de moyens d'émission d'un faisceau lumineux selon l'axe de tir, et une unité de traitement délivrant une analyse de chacun des tirs, en fonction notamment :
  • du signal réfléchi par ladite cible et reçu par un capteur équipant ledit fusil ;
  • et d'une estimation permanente de la trajectoire de chacune desdites cibles.
En d'autres termes, selon l'invention, le tireur obtient, pour chaque tir, une quantification de son tir (précision, "timing",...), et non une simple indication de succès ou d'échec du tir. Il peut donc détecter et comprendre ses défauts, et donc améliorer la qualité de son tir.
Il est à noter que la présente invention réside notamment dans la formulation du problème de l'obtention d'une quantification du tir. Ce problème est tout à fait nouveau pour l'homme du métier, qui a toujours simplement cherché à indiquer si le tir était bon ou mauvais. L'approche de l'invention permet en revanche de connaítre les caractéristiques de ce tir.
Selon les cas, l'unité de traitement peut être placée dans une station distante (reliée aux fusils par exemple par voie hertzienne), ou dans les fusils, ou encore répartie entre les différents éléments.
De façon avantageuse, ladite unité de traitement comprend des moyens de détermination de la trajectoire de chacune desdites cibles, en fonction de mesures délivrées par ledit lanceur (conditions initiales du lancement).
Il est ainsi possible de calculer, en particulier, la distance entre la cible et le tireur au moment de l'impact.
Dans ce cas, préférentiellement, lesdits moyens de détermination de la trajectoire tiennent compte d'une mesure de la direction et/ou de la vitesse du vent.
Préférentiellement, l'équipement du fusil est amovible, de façon simple et directe, et il peut être mis en place dans un fusil classique. Ainsi, le chasseur peut utiliser son propre fusil chasse. Il n'a pas besoin d'acheter un fusil spécifique, et l'apprentissage lui est directement bénéfique pour la chasse.
Dans le cas ou lesdites cibles sont mises en mouvement par un lanceur de cibles, il est avantageux que ladite analyse tient compte également d'une estimation de la distance entre un tireur et une cible. Bien sûr, dans le cas d'une cible fixe, cette distance est connue directement.
Selon un mode de réalisation préférentiel de l'invention, ladite analyse comprend au moins une des informations appartenant au groupe comprenant une indication sur le centrage du tir par rapport à la cible, une indication de la distance entre le tireur et la cible et une indication sur la réalisation du tir par rapport à la position de la cible.
Selon une autre caractéristique préférentielle de l'invention, le système comprend des moyens de simulation de la dispersion et/ou de la vitesse de plombs dans l'espace.
Cela permet de simuler et analyser parfaitement le tir, et donc d'améliorer les performances du tireur.
A nouveau, cette approche est tout à fait nouvelle pour l'homme du métier. L'objectif n'est pas en effet d'obtenir un système de tir "parfait" (basé sur un rayon laser), mais au contraire de simuler un tir réel, avec ses "défauts" (lenteur, éparpillement...).
Selon un mode de réalisation avantageux de l'invention, lesdits moyens de simulation de la dispersion comprennent des moyens assurant la divergence dudit faisceau lumineux en sortie dudit fusil.
Il peut notamment s'agir d'un diffuseur holographique.
Par ailleurs, selon une autre caractéristique avantageuse de l'invention, lesdits moyens de simulation de la vitesse comprennent des moyens pour appliquer un retard à l'émission dudit faisceau lumineux.
En effet, la vitesse des plombs est inférieure à celle de la lumière ! Ce retard permet d'améliorer encore la simulation.
L'invention concerne également l'équipement pour fusil dans un tel système d'apprentissage au tir. Cet équipement comprend des moyens d'émission selon l'axe de tir d'un faisceau lumineux incident, un capteur de réception d'un signal lumineux réfléchi par ladite cible et des moyens de transmission à ladite unité de traitement dudit signal lumineux réfléchi, et des moyens d'échange bidirectionnel de données avec une station au sol distante.
Il est à noter que cet équipement peut aisément être installé sur tout type de fusil classique. En d'autres termes, le système de l'invention ne nécessite pas la mise en oeuvre de fusils spécifiques. Outre l'aspect économique, cela permet au tireur de s'entraíner avec son propre fusil de chasse.
De façon avantageuse, un tel équipement comprend au moins deux canons et des moyens de déclenchement dudit faisceau lumineux comprenant des moyens de détection sensibles à l'utilisation de la gâchette associée à l'un quelconque desdits canons.
Selon un mode de réalisation préférentiel de l'invention, lesdits moyens de détection comprennent un capteur piézo-électrique. Cela permet de détecter l'utilisation de l'une ou l'autre des gâchettes, sans la nécessité de contacts mécaniques directs.
Préférentiellement, ledit capteur de réception comprend un détecteur de position plan, détectant le centre de gravité de l'éclairement reçu.
Selon une autre caractéristique avantageuse de l'invention, ledit capteur de réception coopère avec des moyens de prise en compte de l'éclairage ambiant.
Un tel équipement peut donc notamment comprendre :
  • dans un premier ensemble ayant le format d'une cartouche :
    • un amortisseur de percussion ;
    • un accéléromètre de détection de ladite percussion ;
    • un contacteur établissant l'alimentation électrique à la fermeture dudit fusil ;
  • et dans un second ensemble placé en bout dudit fusil :
    • des moyens optiques d'émission d'un signal lumineux émis ;
    • des moyens optiques de réception d'un signal lumineux reçu.
  • Il peut également comprendre des moyens de simulation du poids de la charge en plomb et/ou en poudre de ladite cartouche, parmi plusieurs poids possibles, et/ou de l'effet de "choke", de "demi-choke" ou de canon lisse.
    L'invention concerne encore une cible avantageuse pour un système d'apprentissage au tir selon l'invention, présentant un profil choisi de façon à optimiser le rendement entre la quantité de lumière reçue et la quantité de lumière réfléchie.
    Préférentiellement, une telle cible présente un revêtement réfléchissant à angle de rétro-réflexion très faible (compris entre 0 et 15°), au moins sur une portion de ladite cible susceptible de recevoir ledit rayon lumineux.
    Selon un mode de réalisation avantageux, ledite cible comprend des moyens de simulation de l'effet d'un impact réalisant au moins une des opérations appartenant au groupe comprenant :
    • la chute de ladite cible, par déséquilibrage de cette dernière ;
    • l'émission d'un signal sonore ;
    • l'émission d'un signal lumineux.
    Il est ainsi possible, pour le tireur, de constater directement et explicitement le succès de son tir.
    Le cible peut notamment comprendre des moyens de réception d'un ordre de simulation de l'effet d'un impact, et des moyens de déplacement d'une masse ponctuelle à l'intérieure de ladite cible.
    L'invention concerne également un procédé d'apprentissage au tir, du type mettant en oeuvre au moins une cible et au moins un fusil équipé de moyens d'émission d'un faisceau lumineux selon l'axe de tir, procédé délivrant une analyse de chacun des tirs, en fonction notamment :
    • du signal réfléchi par ladite cible et reçu par un capteur équipant ledit fusil, et
    • de la trajectoire de chacune desdites cibles.
    Selon un mode de réalisation préférentiel de l'invention, un tel procédé comprend, pour chaque lancer, au moins certaines des étapes suivantes :
    • lancement d'une cible ;
    • acquisition de mesures permettant de déterminer la trajectoire de ladite cible ;
    • détection d'un tir effectué à l'aide d'un desdits fusils ;
    • première détermination de la lumière ambiante reçue par ledit capteur ;
    • émission dudit faisceau lumineux, sous la forme d'une série d'éclairs ;
    • réception de la lumière réfléchie correspondante, par ledit capteur ;
    • seconde détermination de la lumière ambiante reçue par ledit capteur ;
    • transmission des données correspondantes vers une unité de traitement, ou traitement local dans ledit fusil ;
    • échange de données bidirectionnelle entre une unité de traitement et lesdits fusils ;
    • calcul de la position de ladite cible à l'instant du tir ;
    • détermination d'au moins une des informations appartenant au groupe comprenant une indication de la distance entre le tireur et la cible, une indication sur le centrage du tir par rapport à la cible et une indication sur la synchronisation du tir par rapport à la position de la cible ;
    • simulation de l'effet de l'impact sur ladite cible ;
    • présentation de ladite analyse.
    Avantageusement, ce procédé peut délivrer simultanément une analyse de tirs effectués à partir d'au moins deux fusils sur une même cible.
    D'autres caractéristiques et avantages de l'invention apparaítront à la lecture de la description de deux modes de réalisation préférentiels de l'invention, donnés à titre de simples exemples illustratifs et non limitatifs, et des dessins annexés, parmi lesquels :
    • la figure 1 illustre de façon schématique le système de l'invention, formé d'un lanceur, d'une cible, d'un fusil équipé et d'une unité de traitement ;
    • la figure 2 présente un mode de réalisation du lanceur de la figure 1 ;
    • la figure 3 montre une forme avantageuse pour la cible de la figure 1 ;
    • la figure 4 illustre un premier mode de réalisation de l'équipement du fusil de la figure 1 ;
    • la figure 5 présente la structure de l'optique de l'émetteur du fusil de la figure 4 ;
    • la figure 6 décrit la structure de l'optique de réception du fusil de la figure 4;
    • la figure 7 précise les caractéristiques optiques du récepteur de la figure 6 ;
    • la figure 8 est un schéma synoptique des éléments électroniques du fusil de la figure 4 ;
    • la figure 9 est un schéma électrique d'un mode de réalisation de l'accéléromètre inclut dans la cartouche du fusil de la figure 4 ;
    • la figure 10 illustre le fonctionnement du détecteur de l'optique de réception de la figure 6 ;
    • la figure 11 présente le chronogramme d'une séquence de tir, géré par le séquenceur de la figure 8 ;
    • la figure 12 décrit l'architecture des moyens mis en oeuvre au sol, dans le système de la figure 1 ;
    • la figure 13 est un exemple de trajectoire d'une cible, illustrant les calculs effectués par l'unité de traitement de la figure 12 ;
    • la figure 14 présente un autre mode de réalisation d'un fusil selon l'invention ;
    • la figure 15 est un schéma synoptique simplifié des moyens mis en oeuvre dans le fusil de la figure 14 ;
    • la figure 16 présente un schéma synoptique global d'un second mode de réalisation d'un équipement selon l'invention ;
    • la figure 17 représente une cible équipée de moyens de déséquilibrage ;
    • la figure 18 est un synoptique de l'électronique embarquée de la cible de la figure 17 ;
    • la figure 19 présente un exemple d'affichage du résultat d'une analyse d'un tir selon l'invention.
    Comme indiqué plus haut, le système d'apprentissage au tir selon l'invention permet au tireur de s'entraíner avec son propre fusil, et d'obtenir une quantification de chacun de ses tirs, ce qui lui permet de progresser.
    Un tel système est illustré, globalement, en figure 1. Il comprend :
    • un ou plusieurs (classiquement 1 à 10) fusils 11 ;
    • un lanceur 12 ;
    • une pluralité (par exemple quelques dizaines) de cibles (ou pigeons) non cassables 13 ;
    • une unité de traitement 14.
    L'unité de traitement 14 est par exemple un micro-ordinateur compatible PC (marque déposée). Elle assure notamment le suivi de la balistique des cibles 13, en fonction de mesures de caractéristiques du lancement délivrées (15) par le lanceur 12, et éventuellement de paramètres extérieurs (tel que les caractéristiques du vent), le traitement des informations 16 transmises par voie hertzienne par chaque fusil 11, la réalisation des différents calculs en temps réel, et la restitution des résultats, par exemple sur un écran.
    Le fusil 11 comprend des moyens d'émission d'un faisceau lumineux incident 17, issu d'une diode laser, et des moyens de réception du faisceau lumineux réfléchi 18 (lorsque la cible 13 est atteinte...).
    La chronologie générale des événements est la suivante :
    • positionnement du lanceur 12 ;
    • déclenchement du lanceur 12, provoquant le départ du pigeon 13 et l'acquisition des paramètres de balistique de ce pigeon par l'unité de traitement 14 ;
    • montée à l'épaule du fusil 11 par le tireur, et visée du pigeon 13 ;
    • excitation de la gâchette du fusil 11, provoquant la libération du percuteur, qui vient frapper la "cartouche" équipant le fusil ;
    • émission d'une trame d'impulsions laser 17 en direction de la cible 13 ;
    • réception du signal réfléchi 18 par le détecteur équipant le fusil (dans un des canons, ou sous le fusil) ;
    • transmission au sol des mesures 16, par liaison HF, vers l'unité de traitement 14 ;
    • calcul de la position de la cible 13 par rapport à l'axe de tir, et détermination de la direction de la vitesse de la cible à partir de la balistique ;
    • affichage des résultats, et éventuellement simulation du bruit du tir ;
    • réalisation, éventuellement, d'un second tir.
    On décrit maintenant chaque élément constitutif de ce système.
    Le lanceur 12 peut par exemple être du type illustré en figure 2. Il est manuel ou automatique. Il comprend classiquement un trépied 21, portant un manche de guidage 22 et un support de pigeon 23.
    Il est instrumenté pour relever l'angle de latitude a et l'angle d'azimut b, à partir desquels il sera possible de déterminer la balistique du pigeon. L'angle a est compris entre 0 et 15°, et l'angle b peut varier entre -45 et + 45°.
    Les capteurs employés peuvent être des capteurs potentiométriques rotatifs (par exemple des capteurs Spectrol (marque déposée) de valeur 5 kΩ. Ces capteurs sont reliés par câbles à l'unité de traitement.
    Sur la figure 2, D1 illustre l'axe vertical, et D2 est la référence de position dans le plan horizontal. y'y est la projection de x'x dans le plan horizontal.
    Dans tous les cas, la distance entre la position du tireur et le lanceur doit être initialisée dans l'unité de traitement.
    Le pigeon illustré en figure 3 possède une forme se rapprochant des pigeons d'argile connus. Cependant, pour améliorer le rendement caractérisé par le rapport entre l'éclairement reçu et l'énergie rétro-réfléchie, on a profilé le pigeon de la manière suivante :
    • diamètre 110 mm,
    • épaisseur 20 mm,
    • angle de dépouille : 7,5 degrés (cet angle a été choisi comme valeur moyenne entre 0 et 15 degrés, angle d'entrée du faisceau).
    Le matériau utilisé est incassable (aluminium ou matériau plastique) et habillé d'une couche de revêtement rétro-réfléchissant, sur sa tranche pour les applications type "ball-trap" ou sur le dessous pour les applications type "rabbit". Ce revêtement est par exemple de marque 3M du type 2000X (marques déposées). Il est composé de micro prismes très performants pour les grands angles d'entrée.
    L'angle du rayon rétro-réfléchi est très faible, ce qui permet d'utiliser le même type d'équipement pour plusieurs fusils, si les tireurs sont séparés entre eux de plus de 2 m.
    Comme déjà indiqué, le fusil de l'invention est un fusil ordinaire, ce qui permet au chasseur d'utiliser son propre fusil de chasse. Il comprend un équipement amovible, qui peut s'adapter à la majorité des fusils, et que l'on peut diviser en trois parties : l'émetteur, le récepteur et le transmetteur.
    La mise en place de l'équipement, dans le mode de réalisation illustré en figure 4, comprend les étapes suivantes :
    • mise en place d'une cartouche électronique 41, comprenant une diode laser, dans l'emplacement prévu pour les cartouches ;
    • mise en place, à l'extrémité du canon correspondant, d'un module d'émission 42, relié par un câble optique 43 à la cartouche électronique, et comprenant une optique de divergence ;
    • mise en place du module de détection 44 et du module de liaison HF 45, dans le second canon, ou sous les canons ;
    • éventuellement, mise en place d'une cartouche blanche 46 dans le second canon ;
    • éventuellement, mise en place d'un contre-poids 47, destiné à conserver l'équilibre du fusil, légèrement modifié par les éléments placés à l'extrémité des canons.
    L'optique de l'émetteur est illustré en figure 5. Elle comprend :
    • une source lumineuse 51, de type diode laser (par exemple une diode C86104E, de marque EG & G (marques déposées), d'une puissance de 1,5 W émettant dans l'infra-rouge à 860 nm, alimentée par une alimentation 52 ;
    • une lentille 53 à gradient d'indice "Selfoc", de diamètre de 1,8 mm dont le rôle est de collecter le flux émis par la diode laser et de l'injecter dans la fibre optique ;
    • une fibre optique 54 de 140 microns de diamètre de coeur dont le rôle est de rendre circulaire le faisceau laser et de le guider jusqu'à la sortie du canon ;
    • une lentille 55 de diamètre 10 mm faisant diverger le faisceau, et lui assurant un diamètre de 1 m à 20 m de distance.
    On obtient ainsi une simulation de la dispersion des plombs dans l'espace, dans le cas d'un tir réel.
    Le récepteur permet de récupérer le signal réfléchi par la cible, lorsque celle-ci a été touchée par le signal émis. Dans le mode de réalisation de la figure 6, il comprend un détecteur de position plan (PSD) 61, par exemple un capteur en silicium, de type 5590 de marque Hamamatsu (marques déposées)
    Un filtre interférentiel 62 centré sur 860 nm filtre la longueur d'onde du faisceau laser.
    L'éclairement transmis par une lentille convergente 63 traverse le filtre spatial constitué par un diaphragme 64 et l'image se fait alors sur le PSD 61. Celui-ci détecte en fait le centre de gravité de l'éclairement. De ce fait, la détection est pratiquement insensible aux aberrations optiques. Le diamètre de l'optique d'entrée est de 20 mm, mais il est possible de le réduire d'un facteur 2.
    Le détecteur est soumis à plusieurs "parasites" (soleil, rayonnement ambiant,...), et à la lumière issue de la diode laser, et réfléchie par la cible. Pour assurer une bonne dynamique de mesure, il convient d'étudier l'effet de chacune de ces sources.
    Concernant l'effet de l'ambiance, on fait l'hypothèse d'un éclairement ambiant de 100 W.m2.
    Ainsi que cela est illustré en figure 7, le diamètre de l'optique 71 est 20 mm, et sa focale 15 mm. On obtient un angle de vue de 5,6°. Pour une cible placée à 20 m, 1 m dans le plan de la cible correspond donc à 0,75 mm dans le plan du détecteur.
    Le récepteur présente les caractéristiques suivantes :
    • sensibilité du capteur : 0,5 A/W
    • bande passante du détecteur : 0,2 µ
    • angle solide de visée : 5 mrd
    D'où une puissance tombant sur le détecteur de 25 µW.
    Si on considère que cette puissance est distribuée également suivant toutes les longueurs d'onde allant de 0,3 à 1,3 µ , le courant débité par le détecteur sera égal à 5 µA. en fait ceci est très pessimiste puisque l'émissivité du feuillage autour de 0,9 µ est très faible (voisin de 0,2).
    Le signal utile est caractérisé par :
    • Dimension du pigeon : 20 mm x 100 mm ;
    • Coefficient de rétro-réflexion : 0,3 ;
    • Angle de réémission : < 1degré ;
    • Angle d'observation : 0 ;
    • Puissance de la diode laser : 1,5W ;
    • Rendement de l'optique d'émission : 0,7 ;
    • Distance de tir : D.
    L'éclairement reçu par le détecteur varie en D-4. Pour un tir à 40 m la puissance reçue par le détecteur est de 130nW. Elle peut générée un courant dans le détecteur égal à 65 nA ce qui est très grand devant le courant d'obscurité ( typiquement 0,1nA). La dynamique nécessaire pour des tirs compris entre 20 m et 60 m (27) est donc possible à obtenir.
    Par contre le courant dû à l'ambiance est trop important par rapport au courant utile (100 fois). On le diminue en plaçant un filtre interférentiel devant l'optique de réception.
    Ce filtre a les caractéristiques suivantes:
    • Bande passante 40nm autour de 860nm ;
    • Coefficient de transmission dans la bande: 0,7 ;
    • Coefficient de transmission hors bande 0,01.
    Les courants obtenus sont alors les suivants:
    • courant d'ambiance:1000 nA ;
    • courant utile: 32 nA.
    Pour ces valeurs il n'y a pas saturation du PSD par l'ambiance et une amplification réaliste permet de mesurer les courants de chaque électrode.
    La figure 8 est un schéma synoptique des moyens électroniques principaux de l'invention.
    Au moment de la fermeture du fusil, après installation de la cartouche électronique, un micro-contact permet l'alimentation des différents circuits. En particulier, un convertisseur de tension assure la charge d'un condensateur de 0,5 mF. Environ une seconde après, lorsque le condensateur est chargé, le tir peut avoir lieu.
    Lors du tir, l'action du percuteur est détectée. On peut utiliser un contact classique. Toutefois, on met en oeuvre avantageusement un accéléromètre 81, qui présente le double avantage de ne pas nécessiter de liaison mécanique avec le percuteur, et de pouvoir détecter l'utilisation de l'une et l'autre des deux gâchettes.
    L'accéléromètre 81, placé dans la cartouche, active un module 82 de détection de tir, qui alerte un séquenceur 83. Ce séquenceur 83 autorise l'alimentation 84 de la diode laser, par exemple au travers d'un transistor mosfet de type IRFD014 de International Rectifier (marques déposées).
    L'éclairement réfléchi par la cible (ainsi que l'éclairement ambiant) est reçu par le détecteur 85, puis mis en forme. Cette mise en forme 86 comprend notamment une transformation en courant, une amplification, une conversion analogique/numérique (par exemple à l'aide d'un convertisseur CAN de type Max 186 (12 bits de résolution) de chez Maxime (marques déposées)) et une sérialisation.
    Une photodiode de contrôle 88 délivre une information relative à la puissance lumineuse de la diode laser.
    Enfin, le séquenceur 83 assure l'émission par voie hertzienne 87 du signal obtenu, vers l'unité de traitement.
    On décrit maintenant plus en détail les modules particuliers de la figure 8.
    L'accéléromètre 81peut être du type ADXL050JH de Analog Device (marques déposées). Avantageusement, il peut aussi être réalisé suivant le schéma de la figure 9.
    Sachant que l'excitation est axiale, une lame piézo-électrique 91 est montée radialement. Elle est de type PXE5 bimorphe de marque Philips (marques déposées). Les vibrations mécaniques sont ensuite transformées et mises en forme à travers les transistors BFT46 92 et 93et traitées par le séquenceur 83.
    Si le tireur souhaite effectuer un deuxième tir, il le fera en actionnant la deuxième gâchette. Dans le deuxième canon on placera une cartouche dite "blanche" c'est à dire non chargée de plombs. Les vibrations de percussion sur cette cartouche sont transmises à l'accéléromètre précédent qui activera à nouveau le séquenceur 83.
    Le principe de fonctionnement du détecteur 85 est illustré en figure 10. Il s'agit d'un PSD bidirectionnel. Il comprend quatre électrodes 101 à 104, et une tension de polarisation 105 est appliquée au centre du détecteur.
    L'image de la cible se fait sur la surface du P.S.D provoquant une variation des courants I1, I2, I3, I4, s'écoulant dans des résistances de charge. Les valeurs de ces courants sont fonction de la position du centre de gravité de l'éclairement de coordonnées (x,y) reçu. On en déduit x et y par les relations :
  • x = (I1-I2)/(|I1|+|I2|)
  • y = (I3-I4)/(|I3|+|I4|)
  • En statique (ou lentement variable) les coordonnées du centre de gravité de l'éclairement L sont x0, y0. L'addition d'un spot lumineux, dû à la rétroréflexion du pigeon d'éclairement 1 va modifier les coordonnées précédentes si le tir n'est pas centré. La précision de la détection est fonction de 1 par rapport à L. Il faut que le détecteur fonctionne dans une zone linéaire malgré l'ambiance tout en conservant une dynamique pour 1 allant d'une visée à 20m jusqu'à 60m.
    Le résultat est déterminé par l'unité de traitement et diffusé par haut-parleur ou affiché sur un écran.
    Pour la commande de la diode laser 84, la fermeture du fusil, une capacité de 0,5 mF est chargé à travers le convertisseur de tension pendant une à quelques secondes de telle façon qu'au moment du tir un transistor mosfet commandé par le séquenceur 83 sur sa grille assure le passage d'un courant de drain de 3A, courant nécessaire pour obtenir une puissance lumineuse de 1,5 W en sortie de diode. Vu la caractéristique du transistor, ce courant reste constant pendant toute l'excitation de la diode. La puissance lumineuse en sortie est évacuée par une fraction lumineuse captée par une photodiode. L'information donnée par la photodiode est transmise à l'unité de traitement.
    Le séquenceur 83 est la partie commande des différents sous-ensembles du système. Les différentes contraintes auxquelles il doit répondre sont de quatre ordres :
    • Σ contrainte de temps : en effet, un tir ne se réduit pas simplement à une seule mesure mais à une séquence de plusieurs mesures à réaliser à une période d'échantillonnage de 50 µs.
    • Σ contrainte d'espace : l'ensemble des composants constituant ce séquenceur doit impérativement tenir dans un minimum d'espace puisque toute l'électronique embarquée est implantée dans une cartouche.
    • Σ contrainte de consommation : la capacité des accumulateurs alimentant l'ensemble optoélectronique étant forcément limitée, il est nécessaire de sélectionner des composants à faible consommation pour permettre une autonomie suffisante du système.
    • Σ contrainte de coût : le système étant destiné au grand public, le choix de la solution doit nécessairement prendre en compte le prix de revient des différents éléments utilisés.
    Une solution technique peut reposer sur la réalisation d'un circuit programmable (FPGA de la famille Altera (marques déposées)) ou d'un circuit intégré masqué pour bénéficier d'un meilleur encombrement (boítier CMS) et d'un meilleur prix. Pour chaque lancé de plateau, la chronologie des événements, illustrée en figure 11, est la suivante :
    • 1. détection du départ du plateau par l'unité de traitement ;
    • 2. détection du tir 111 par l'accéléromètre et transmission au séquenceur ;
    • 3. acquisition du fond 112 (lumière ambiante) par le séquenceur pendant 10 ms ;
    • 4. allumage de la diode laser 113 (flashes 114 de 100 µs) et acquisition 115 de la position du plateau par le séquenceur pendant 10 ms à raison de 4 mesures par période (Tech = 50µs) sur les 4 sorties 1161 à 1164 du capteur PSD ; Chaque mesure 116 nécessite l'envoi au CAN d'un mot (8 bits) 117 de programmation puis de la lecture du résultat de la conversion (12 bits) 118;
    • 5. acquisition 119 du fond par le séquenceur pendant 10 ms .
    • 6. envoi des différentes acquisitions au micro-ordinateur distant.
    Chaque fusil à son propre émetteur HF 87 d'une portée de 10 m environ. De marque Heiland (marque déposée) par exemple, il fonctionne en modulation de fréquence avec une porteuse de 433,92 MHz. Sa bande passante est de + ou - 20 kHz et son poids de 11 g.
    En effet, la partie du système se trouvant en bout de fusil doit avoir un poids le plus faible possible pour ne pas déplacer le centre de gravité du fusil et pour ne pas trop l'alourdir. Un contrepoids peut être prévu, pour conserver inchangé le centre de gravité du fusil, qu'il soit équipé ou non.
    Sur le plan mécanique, la cartouche est conçue pour s'adapter aux fusils de type calibre 12. La longueur de la cartouche est de l'ordre de 80 à 90 mm. Elle se glisse dans le canon comme une cartouche ordinaire. A la fermeture du fusil un micro-contact assure la liaison entre la pile et les différents circuits électroniques. L'autonomie d'une cartouche, fonction de la qualité de la pile peut être de 1 an.
    Le système en bout de fusil se monte en partie dans un canon et en partie sous les canons. Il est facilement amovible.
    D'après la norme NFC 43-801, l'exposition maximale permise pour l'oeil dans les conditions d'utilisation décrites fait que le système ne présente aucun danger à partir d'une distance de 1,6 m du bout du canon. Par ailleurs, il n'y a aucun danger pour la peau.
    De façon optionnelle, un canon peut contenir une cartouche "blanche" chargée uniquement en poudre. Celle-ci peut, sur le premier coup, créer l'effet de recul.
    Une autre option est l'effet de changement de "choke" des canons. Un canon choqué présente à son extrémité un rétrécissement qui fait que la distribution des plombs dans l'espace est différente de celle décrite, provoquant la diminution de la dispersion des plombs. Ceci peut être simulé par logiciel.
    La figure 12 illustre l'architecture des moyens mis en oeuvre au sol.
    Le traitement des informations au sol, l'acquisition des paramètres de balistique, la réception des données de calcul et l'affichage des résultats sont réalisés par un micro-ordinateur.
    Le système comprend :
    • un récepteur HF 121, par exemple de marque Heiland, fonctionnant à 433,92 MHz en modulation FM et ayant une bande passante de 280 kHz, et pouvant fonctionner à une distance avec les fusils de 100 m ;
    • des moyens 122 d'acquisition, recevant les mesures des angles a et b du lanceur et, par exemple, des mesures de la vitesse et de la direction du vent. Il s'agit par exemple de 4 entrées analogiques pouvant être reliés par liaison série avec l'unité de traitement 123 ;
    • une entrée interruption 124 ou équivalent dont le signal correspond à la libération du pigeon. Ce signal déclenche la procédure de suivi balistique ;
    • l'unité de traitement 123, assurant notamment le calcul et la gestion des résultats en temps réel (réception des mesures ; traitement des mesures : filtrage et démodulation synchrone, calcul du centre de gravité de l'image de la cible, corrections éventuelles et affichage ; gestion de l'affichage) ;
    • des moyens d'affichage 125 des résultats. Pour un tir, l'écran peut présenter les résultats comme illustré sur la figure 12, c'est-à-dire distance 1251 de tir 40 m, impact 1252 limite sur pigeon traversard 1253, tir tardif. Pour deux tirs, il peut y avoir superposition d'images et pour 4 tireurs par exemple, l'écran peut être divisé en 4 ; et
    • optionnellement un organe type H.P. 126 pour simuler le bruit du tir à plombs, une lampe flash 127 pour simuler l'impact, etc...
    Le tableau suivant présente, de façon simplifiée, la chronologie d'un tir pour le tireur (colonne 1), l'unité de traitement (colonne 2) et le lanceur (colonne 3).
    Tireur Unité de traitement Lanceur
    - Fermeture du fusil
    -Initialisation: acquisition des paramètres de géométrie (emplacement des tireurs et du lanceur)
    - attente de tir, fusil fermé -Mise en direction du lanceur
    -épaulé
    -lancement
    -acquisition de l'époque de départ et des angles a et b, détermination de la balistique
    -tir: excitation du percuteur, détection par l'accéléromètre, activation du séquenceur, transmission au sol de l'époque du tir, transmission du faisceau laser,...
    -correction de l'effet d'avance du faisceau laser
    -réalisation des mesures, transmission au sol
    -réception des mesures, filtrage, calcul des courants du PSD par détection synchrone
    -calcul de la position du pigeon par rapport à la direction du tir
    -Affichage visuel, sonore,etc...
    -Ouverture du fusil en fin de tir
    La figure 13 illustre un exemple de détermination de la trajectoire 131 d'un pigeon, et d'analyse du tir 132, telles que l'unité de traitement peut l'effectuer.
    Le plan horizontal est défini par (Oy, OT). Vo est la vitesse initiale du pigeon appartenant au plan (OI,Oy), perpendiculaire au plan horizontal. L'effet du vent est négligé. Oz est l'axe vertical. I est l'intersection du faisceau laser et du pigeon. D est la distance de tir recherchée à partir des coordonnées (y,z) du point I. H étant la projection de I, IH sera connue ainsi que OH. Les connaissances de OH, OT, et de a nous permettent de déterminer D.
    En appelant:
  • Vo la vitesse initiale du pigeon, fonction du lanceur supposée connue,
  • k1 le coefficient de traínée,
  • k2 le coefficient de portance,
  • t la variable temps,
  • y et z les coordonnées du point I dans le référentiel (Oy, Oz),
  • (dy/dt) la vitesse du pigeon suivant oy,
  • et (dz/dt) la vitesse du pigeon suivant oz,
  • la balistique du pigeon est définie par les équations suivantes:
    • y=Vo.(cos b).t-k1.(dy/dt)2
    • z=-0.5.t2+Vo.(sin b).t+k2.(dz/dt)2
    Vo et b étant connues, on détermine k1 et k2 par des essais préalables associés à une résolution numérique du système par une méthode de "Runge-Kutta " du 4ième ordre. De cette résolution on déduit également la vitesse du pigeon en I.
    Avantageusement, le traitement prévoit une correction de l'effet d'avance du faisceau laser par rapport au plombs.
    Appelons Vp la vitesse initiale des plombs. Pour une distance de tir D l'avance A pris par un faisceau laser sera égal à:
       A=D/Vp
    soit pour Vp= 400 m/s et D = 40 m A=0.1s.
    Si le pigeon est fuyant ou rentrant cette avance induit seulement une erreur sur D qui est compensée par correction programmée. Une correction n'est possible que si le pigeon se trouve dans le champs du faisceau laser. La situation la plus critique se rencontre quand le pigeon est traversard. Ainsi si à 40 m sa vitesse est de l'ordre de V= 20m/s il pourra évoluer dune quantité Dp=AxV= 0.1x20= 2m.
    On retardera donc l'émission du faisceau de 0.1s et on appliquera une correction fonction de la géométrie tireur-lanceur-balistique.
    Une correction de l'effet de la distribution des plombs dans l'espace est également possible. En effet, dans une cartouche type de longueur 70 mm, les plombs occupent un espace de longueur 50mm. De ce fait avec une vitesse initiale Vp les plombs se distribuent dans l'espace sur un incrément de temps égal à 0.05/400 = 0.125.10-3s.
    Cette valeur est à rapprocher à la durée des impulsions nécessaire pour réaliser une bonne détection qui est de l'ordre de 1.10-3s.
    Il faudra donc compenser le temps de détection. Ceci est une correction très faible, car si à l'instant du tir la vitesse du pigeon est de l'ordre de 20.m/s, pendant 1.10-3s il aura évolué de 20mm.
    La figure 14 présente une autre architecture possible pour l'équipement du fusil. Elle consiste à dissocier la cartouche 141 de l'embout du fusil. Pour cela l'optique de la cartouche se termine par une faible longueur de fibre optique (1 cm). Le faisceau sortant 142 est collecté par une lentille qui fait converger ce faisceau sur la lentille se trouvant en bout de canon, laquelle réalise la divergence 143 du faisceau. Le fait de séparer la cartouche de l'autre partie entraíne des modifications sur l'électronique sans changer la fonctionnalité générale du système. Une partie de la fonction du séquenceur reste dans la cartouche mais une autre partie doit se trouver en bout de canon. Deux sources d'énergie doivent être utilisées.
    L'équipement comprend donc la cartouche électronique 141, un module de divergence et de détection 143, une cartouche blanche 144, un second séquenceur 145 et un module d'émission HF 146.
    Ainsi, il n'y a aucune liaison filaire ou fibrée entre la cartouche et l'embout du canon. L'optique du canon est conçue de la façon illustrée en figure 15.
    Une première pile 151 alimente la cartouche 141, et assure notamment l'alimentation 152 de la diode laser 153. Comme déjà décrit en relation avec la figure 5, la cartouche comprend une lentille Selfoc 154, une portion de fibre optique 155 (pour circulariser le faisceau) et une lentille convergente 156.
    A l'autre extrémité du canon, une lentille divergente 157 assure la simulation de l'éparpillement des plombs.
    En retrait, une photodiode 158 sera activée par les réflexions parasites 159 de la lentille 157. L'information conséquente sera transmise à un deuxième séquenceur 1510 placé en bout de canon. Ce séquenceur va gérer la détection 1511, la numérisation 1512 des mesures et la transmission HF. Ces deux fonctions sont identiques à la version du séquenceur décrit précédemment.
    Une pile 1514 assure l'alimentation des différents éléments.
    Pour diminuer la bande passante de l'émetteur, il est possible de réaliser des calculs avant transmission. Ces calculs sont le filtrage, la détection synchrone, la différenciation et la sommation des courants à partir desquels on calcule les coordonnées du centre de gravité de l'image du pigeon. L'information émise par le fusil sera alors uniquement:
    • l'époque du tir,
    • les coordonnées du centre de gravité de l'image du pigeon sur le PSD,
    • le courant de photodiode qui est une information relative à la puissance lumineuse de la diode laser.
    On présente maintenant un second mode de réalisation de l'invention. Bien sûr, seules les différences essentielles sont discutées.
    L'équipement est présenté en figure 16. Il comprend une cartouche 161, équipée :
    • d'un amortisseur de percussion 1611, dé préférence démontable et remplaçable (un micro-contact établit l'alimentation à la fermeture du fusil et l'élément central ne sert que d'amortisseur à la percussion) ;
    • d'un accéléromètre 1612 de détection de percussion ;
    • de moyens 1613 de mise en forme, de comptage de coups ;
    • une diode LED 1614 de transmission par impulsions lumineuses de la percussion à l'embout du fusil 162.
    Cet embout 162 comprend quant à lui :
    • une photodiode 1621 de détection du signal émis ;
    • des moyens 1622 de mise en forme du signal reçu ;
    • un module 1623 de traitement gérant les liaisons entre les différents éléments et réalisant les traitements des mesures, la déduction des paramètres de tir et la transmission du résultat au sol. Il s'agit par exemple d'un microprosseur MSP 430 de chez Texas Instrument (marque déposée) ;
    • une partie optique d'émission 1624 ;
    • une partie optique de réception 1625 ;
    • une liaison HF bidirectionnelle 1626, par exemple de marque RFM (marque déposée), permettant de s'adapter à la législation des différents pays;
    • une photodiode de contrôle de la puissance laser.
    L'embout de fusil se présentera sous la forme d'un volume rentrant dans un canon et d'une partie extérieure.
    Le module 1624 d'émission et de divergence contient :
    • une diode laser 16241 d'une puissance de 1 W environ, par exemple de type Siemens SPL CG94 (marque déposée) émettant à 950 nm,
    • une lentille de collimation 16242,
    • un diffuseur holographique 16243, par exemple de marque Physical Optics Corporation (marque déposée).
    Le module 1625 de réception optique contient :
    • une lentille de réception ;
    • un filtre qui coupe les longueurs d'ondes parasites (filtre interférentiel ou passe-haut) ;
    • un détecteur de position (inchangé) ;
    • des moyens de numérisation 1627.
    La station au sol est quant à elle équipée des moyens suivants :
    • une liaison bidirectionnelle HF du même type ;
    • une électronique de discrimination du fusil émettant ;
    • des moyens de traitement et de gestion des résultats (affichage, sonore,...) ;
    • selon l'application des moyens de correction pour simuler au mieux les caractéristiques des cartouches (charge de plomb,...) ou celles du fusil (canon choke, lisse,..).
    La séquence de tir devient donc la suivante :
    • prise en compte des paramètres de tir,
    • initialisation des moyens embarqués par les fusils via la liaison HF,
    • attente,
    • lancement,
    • évaluation de la balistique par les moyens au sol (ou transmission des paramètres aux moyens embarqués dans les fusils),
    • attente de tir,
    • après une éventuelle percussion, calcul de la distance du pigeon, et déduction du retard de la commande du faisceau laser, ceci pour que l'instant de l'intersection éventuelle par le faisceau lumineux soit identique à celle du plomb,
    • réception synchrone de l'éclairement éventuel émanant du pigeon,
    • acquisitions, filtrage et calcul des coordonnées du pigeon par rapport au centre du PSD,
    • transmission des résultats au sol (code du fusil, coordonnées, distance de tir, vitesse du pigeon, numéro du coup d'impact),
    • réception des résultats au sol et affichage visuel ou sonore selon l'application.
    On notera que, par rapport au premier mode de réalisation, la liaison station au sol-fusils est bidirectionnelle, ce qui a pour effet de permettre de synchroniser les moyens de calcul des fusils, la transmission, de prendre connaissance du moment de l'excitation de la gâchette, de transmettre l'information au sol et en fonction de la balistique du pigeon calculée par le sol de transmettre au fusil l'autorisation d'émettre son faisceau lumineux.
    Une deuxième possibilité est de réaliser le seuillage dynamique de la détection. Le coût et l'encombrement sont minimisés. La L.E.D. liée à la station au sol ainsi que le détecteur infrarouge se trouveront près des afficheurs, devant les fusils, d'où l'absence de câblage supplémentaire.
    Par ailleurs, selon ce second mode de réalisation, tout l'équipement, et notamment les moyens de traitement, peuvent être placés dans le canon du fusil (et non plus dans la station au sol).
    Dans un mode de réalisation avantageux, le pigeon (ou tout autre cible) est équipée de moyens permettant de bien visualiser (ou entendre) le résultat positif de l'impact. Ainsi, le pigeon peut émettre un son et/ou un signal lumineux.
    Il peut également être équipé de moyens permettant de commander instantanément sa chute, ainsi que cela est illustré en figure 17.
    Pour cela, une liaison unidirectionnelle HF est établie entre la station au sol (ou un fusil) et le pigeon (télécommandé). Le pigeon est constitué d'une masse répartie lui donnant sa forme, du matériau rétroréfléchissant et d'une masse ponctuelle 171 centrée en vol. Le pigeon sera déséquilibré en provoquant le déplacement de cette masse ce qui a pour effet de translater le centre de gravité du pigeon.
    Cette masse comprenant toute l'électronique embarquée représente la moitié de la masse du pigeon soit environ 50 g. A réception d'un ordre de basculement, l'électroaimant 172 libère la gâchette (noyau) 173. Le ressort 174 propulse alors la masse 171, guidée en translation (175) vers le bord du pigeon, qui chute alors.
    La figure 18 présente schématiquement l'électronique embarquée correspondante.
    La station au sol (ou un fusil éventuellement) émet une trame HF dont la fréquence porteuse est fonction du pays concerné. Cette émission HF sera reçue par le récepteur 181 (par exemple du type Rx 1000) et décodée par un circuit intégrée 182 (par exemple du type MC 145027 de chez Motorola (marque déposée)).
    Si le décodage est positif la sortie d'un circuit astable 183 est positionnée à l'état haut. Cette tension est appliquée sur la gâchette d'un transistor de technologie mosfet, par exemple, et laisse passer le courant dans la bobine de l'électroaimant 184.
    Le noyau de celui-ci pénètre dans le corps et libère la masse embarquée 171 constituée de l'électro-aimant, de l'électronique et des alimentations (piles). Cette masse est poussée par un ressort. Une ampoule ILS sert d'interrupteur, ouvrant le circuit d'alimentation en s'éloignant de l'aimant permanent fixe. Ainsi l'autonomie des piles est très importante et le pigeon est "récoltée" puis "réarmée" avant son lancement.
    On ré-arme (176) le système en repoussant manuellement la charge 171.
    Bien sûr, l'invention peut être mis en oeuvre dans de nombreuses autres formes. De façon générale, les avantages de l'invention sont notamment :
    • quantification du tir (obtention des paramètres de tir : distance de la cible, position de la cible par rapport à l'axe de tir,
    • apprentissage de l'épaulé,
    • pas de pollution (déchets de plombs, déchets de plateaux),
    • pas de bruit possible,
    • danger faible, voire inexistant,
    • coût de fonctionnement réduit.
    Elle peut notamment être utilisée pour les applications suivantes :
    • ball-trap,
    • parcours de chasse et skeet,
    • fosse, (rabbit et cibles rapides),
    • centres de loisirs,
    • hôtel de chasse,
    • utilisation pour l'apprentissage du permis de chasse.
    Il est à noter que l'invention peut être utilisée en mono-utilisateur (par des chasseurs soucieux de se perfectionner, par exemple), ou à plusieurs utilisateurs visant la même cible.
    A titre d'exemple, la figure 19 présente un affichage de résultat d'un tir selon l'invention.
    Diverses informations numériques, telles que la distance 191, le nombre de points 192 et le numéro 193 du tireur peuvent être inscrites.
    Sur un écran 194, on affiche la cible 195. Le centre de l'écran 196 représente l'impact. Une flèche 197 indique le sens de déplacement de la cible. Le tireur constate donc aisément, bien que son tir ait atteint la cible, il a tiré légèrement trop tôt.

    Claims (23)

    1. Système d'apprentissage au tir, du type comprenant au moins une cible mobile (13) et au moins un fusil (11) équipé de moyens (41, 42 ; 141, 143) d'émission d'un faisceau lumineux (17) selon l'axe de tir,
      caractérisé en ce qu'il comprend une unité de traitement (14 ; 123) délivrant une analyse de chacun des tirs, en fonction notamment :
      du signal réfléchi (18) par ladite cible (13) et reçu par un capteur (44 ; 143) équipant ledit fusil (11);
      et d'une estimation permanente de la trajectoire de chacune desdites cibles (13).
    2. Système selon la revendication 1, caractérisé en ce que ladite unité de traitement (14 ; 123) comprend des moyens de détermination de la trajectoire de chacune desdites cibles, en fonction de mesures (a, b) de conditions initiales du lancement de chacune desdites cibles (13), délivrées par ledit lanceur (12).
    3. Système selon l'une quelconque des revendications 1 et 2, caractérisé en ce qu'il comprend un équipement (41 à 47; 141, 143 à 146) de fusil amovible et prévu pour être installé et désinstallé aisément sur un fusil standard.
    4. Système selon l'une quelconque des revendications 1 à 3, caractérisé en ce que lesdites cibles (13) sont mises en mouvement par un lanceur de cibles (12), et en ce que ladite analyse tient compte également d'une estimation de la distance entre un tireur et une cible.
    5. Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ladite analyse comprend au moins une des informations appartenant au groupe comprenant une indication sur le centrage du tir par rapport à la cible (1252), une indication de la distance entre le tireur et la cible (1251) et une indication sur la réalisation du tir par rapport à la position de la cible (1253).
    6. Système selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdits moyens de détermination de la trajectoire tiennent compte d'une mesure de la direction et/ou de la vitesse du vent.
    7. Système selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend des moyens (42 ; 55 ; 143 ; 157) de simulation de la dispersion et/ou de la vitesse de plombs dans l'espace.
    8. Système selon la revendication 7, caractérisé en ce que lesdits moyens de simulation de la dispersion comprennent des moyens (42 ; 55 ; 143 ; 157) assurant la divergence dudit faisceau lumineux (17) en sortie dudit fusil (11).
    9. Système selon la revendication 8, caractérisé en ce que lesdits moyens (42 ; 55 ; 143 ; 157) assurant la divergence dudit faisceau lumineux (17) comprennent un diffuseur holographique.
    10. Système selon l'une quelconque des revendications 7 à 9, caractérisé en ce que lesdits moyens de simulation de la vitesse comprennent des moyens pour appliquer un retard (112) à l'émission dudit faisceau lumineux (17).
    11. Système selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'on met en oeuvre une liaison bi-directionnelle entre ladite unité de traitement (14; 123) et chacun desdits fusils (11).
    12. Equipement pour fusil (11) dans un système d'apprentissage au tir comprenant au moins une cible (13) et au moins un fusil équipé et une unité de traitement (14 ; 123) délivrant une analyse de chacun des tirs, en fonction notamment d'une estimation permanente de la trajectoire de chacune desdites cibles (13),
      caractérisé en ce qu'il comprend des moyens (41, 42 ; 141, 143) d'émission selon l'axe de tir d'un faisceau lumineux incident (17), un capteur de réception (44 ; 145) d'un signal lumineux réfléchi (18) par ladite cible et des moyens (16 ; 45 ; 87 ; 146) de transmission à ladite unité de traitement (14 ; 123) dudit signal lumineux réfléchi, et des moyens d'échange bidirectionnel de données avec une station au sol distante.
    13. Equipement selon la revendication 12, caractérisé en ce qu'il comprend au moins deux canons et des moyens de déclenchement dudit faisceau lumineux comprenant des moyens (83) de détection sensibles à l'utilisation de la gâchette associée à l'un quelconque desdits canons, comprenant un capteur piézo-électrique (91).
    14. Equipement selon l'une quelconque des revendications 12 et 13, caractérisé en ce que ledit capteur de réception (44 ; 145) comprend un détecteur de position plan (fig. 10), détectant le centre de gravité de l'éclairement reçu.
    15. Equipement selon l'une quelconque des revendications 12 à 14, caractérisé en ce que ledit capteur de réception (44 ; 145) coopère avec des moyens de prise en compte de l'éclairage ambiant (112, 119).
    16. Equipement selon l'une quelconque des revendications 12 à 15, caractérisé en ce qu'il comprend, dans un premier ensemble ayant le format d'une cartouche
      un amortisseur de percussion ;
      un accéléromètre de détection de ladite percussion ;
      un contacteur établissant l'alimentation électrique à la fermeture dudit fusil (13);
      et dans un second ensemble placé en bout dudit fusil (13) :
      des moyens optiques d'émission d'un signal lumineux émis ;
      des moyens optiques de réception d'un signal lumineux reçu.
    17. Equipement selon l'une quelconque des revendications 12 à 16, caractérisé en ce qu'il comprend des moyens de simulation du poids de la charge en plomb et/ou en poudre de ladite cartouche, parmi plusieurs poids possibles, et/ou de l'effet de "choke", de "demi-choke" ou de canon lisse.
    18. Cible pour système d'apprentissage au tir comprenant au moins une cible (13) et au moins un fusil (11) équipé de moyens (41, 42 ; 141, 143) d'émission d'un faisceau lumineux (17) selon l'axe de tir et une unité de traitement (14) délivrant une analyse de chacun des tirs, en fonction notamment d'une estimation permanente de la trajectoire de chacune desdites cibles (13), et du signal réfléchi (18) par ladite cible (13) et reçu par un capteur (44 ; 143) équipant ledit fusil (11),
      caractérisé en ce qu'elle présente un revêtement réfléchissant, sur au moins une portion de ladite cible susceptible de recevoir ledit rayon lumineux.
    19. Cible selon la revendication 18, caractérisé en ce qu'elle comprend des moyens de simulation de l'effet d'un impact réalisant au moins une des opérations appartenant au groupe comprenant :
      la chute de ladite cible, par déséquilibrage de cette dernière ;
      l'émission d'un signal sonore ;
      l'émission d'un signal lumineux.
    20. Cible selon la revendication 19, caractérisée en ce qu'elle comprend des moyens de réception d'un ordre de simulation de l'effet d'un impact, et des moyens de déplacement d'une masse ponctuelle à l'intérieur de ladite cible.
    21. Procédé d'apprentissage au tir, du type mettant en oeuvre au moins une cible (13) et au moins un fusil (11) équipé de moyens (41, 42 ; 141, 143) d'émission d'un faisceau lumineux (17) selon l'axe de tir,
      caractérisé en ce qu'il délivre une analyse de chacun des tirs, en fonction notamment du signal réfléchi (18) par ladite cible (13) et reçu par un capteur (44 ; 143) équipant ledit fusil (11), et d'une estimation permanente de la trajectoire de chacune desdites cibles (13).
    22. Procédé selon la revendication 21, caractérisé en ce qu'il comprend, pour chaque lancer, au moins certaines des étapes suivantes :
      lancement d'une cible ;
      acquisition de mesures permettant de déterminer la trajectoire de ladite cible ;
      détection d'un tir effectué à l'aide d'un desdits fusils ;
      première détermination de la lumière ambiante reçue par ledit capteur ;
      émission dudit faisceau lumineux, sous la forme d'une série d'éclairs ;
      réception de la lumière réfléchie correspondante, par ledit capteur ;
      seconde détermination de la lumière ambiante reçue par ledit capteur ;
      traitement des données en local, dans lesdits fusils ;
      transmission des données correspondantes vers une unité de traitement ;
      échange de données bidirectionnelle entre une unité de traitement et lesdits fusils ;
      calcul de la position de ladite cible à l'instant du tir ;
      détermination d'au moins une des informations appartenant au groupe comprenant une indication de la distance entre le tireur et la cible, une indication sur le centrage du tir par rapport à la cible et une indication sur la synchronisation du tir par rapport à la position de la cible ;
      simulation de l'effet de l'impact sur ladite cible ;
      présentation de ladite analyse.
    23. Procédé selon l'une quelconque des revendications 21 et 22, caractérisé en ce qu'il délivre simultanément une analyse de tirs effectués à partir d'au moins deux fusils sur une même cible (13).
    EP97926046A 1996-05-28 1997-05-28 Systeme d'apprentissage au tir, equipement pour fusil, cible et procede correspondants Expired - Lifetime EP0904521B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9606779 1996-05-28
    FR9606779A FR2749380A1 (fr) 1996-05-28 1996-05-28 Systeme d'apprentissage au tir, equipement pour fusil, cible et procede correspondants
    PCT/FR1997/000929 WO1997045692A1 (fr) 1996-05-28 1997-05-28 Systeme d'apprentissage au tir, equipement pour fusil, cible et procede correspondants

    Publications (2)

    Publication Number Publication Date
    EP0904521A1 EP0904521A1 (fr) 1999-03-31
    EP0904521B1 true EP0904521B1 (fr) 2001-09-12

    Family

    ID=9492630

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97926046A Expired - Lifetime EP0904521B1 (fr) 1996-05-28 1997-05-28 Systeme d'apprentissage au tir, equipement pour fusil, cible et procede correspondants

    Country Status (6)

    Country Link
    EP (1) EP0904521B1 (fr)
    AT (1) ATE205592T1 (fr)
    AU (1) AU3096897A (fr)
    DE (1) DE69706679D1 (fr)
    FR (1) FR2749380A1 (fr)
    WO (1) WO1997045692A1 (fr)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102010038636A1 (de) 2010-07-29 2012-02-02 Christian-Frank Bebenroth Vorrichtung und Verfahren zur Simulation von Schießvorgängen

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102012006351B4 (de) * 2012-03-28 2019-12-12 Mbda Deutschland Gmbh Vorrichtung zum Simulieren eines fliegenden realen Ziels
    CA3021546C (fr) 2016-04-22 2021-01-26 Hubbell Incorporated Luminaire
    IT202200017046A1 (it) * 2022-08-09 2024-02-09 Piero Lovato Sistema di gioco basato su proiettori a luce visibile e bersagli passivi retroriflettenti

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3499650A (en) * 1966-02-10 1970-03-10 Jerome H Lemelson Light projecting and sensing device and target practice apparatus
    US3898747A (en) * 1974-06-24 1975-08-12 Us Navy Laser system for weapon fire simulation
    GB2138112B (en) * 1983-04-05 1987-10-07 Peter Gilbertson Equipment for simulated shooting
    NO850503L (no) * 1984-02-24 1985-08-22 Noptel Ky Fremgangsmaate til optisk-elektronisk oevingsskyting.
    US4695256A (en) * 1984-12-31 1987-09-22 Precitronic Gesellschaft Method for practicing aiming with the use of a laser firing simulator and of a retroreflector on the target side, as well as firing simulator for carrying out this method
    FR2614097A1 (fr) * 1987-04-16 1988-10-21 Gregoire Rene Cartouche emettrice de lumiere pour entrainement au tir
    FI84753C (fi) * 1990-02-19 1992-01-10 Noptel Oy Foerfarande foer skjutoevning och analysering av skytteprocessen.

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102010038636A1 (de) 2010-07-29 2012-02-02 Christian-Frank Bebenroth Vorrichtung und Verfahren zur Simulation von Schießvorgängen

    Also Published As

    Publication number Publication date
    WO1997045692A1 (fr) 1997-12-04
    ATE205592T1 (de) 2001-09-15
    FR2749380A1 (fr) 1997-12-05
    AU3096897A (en) 1998-01-05
    DE69706679D1 (de) 2001-10-18
    EP0904521A1 (fr) 1999-03-31

    Similar Documents

    Publication Publication Date Title
    US10584940B2 (en) System and method for marksmanship training
    US20170307333A1 (en) System and method for marksmanship training
    EP0961913B1 (fr) Simulateur de tir de missiles avec immersion du tireur dans un espace virtuel
    FR2560370A1 (fr) Procede d&#39;entrainement de tir a la cible optoelectronique
    CA2138152C (fr) Systeme d&#39;arme a defense de zone
    EP0904521B1 (fr) Systeme d&#39;apprentissage au tir, equipement pour fusil, cible et procede correspondants
    EP3928126A1 (fr) Dispositif et procédé d&#39;analyse de tir
    WO2020079157A1 (fr) Dispositif et procede d&#39;analyse de tir
    WO1998031985A1 (fr) Dispositif apte a determiner la direction d&#39;une cible dans un repere predefini
    CH638036A5 (fr) Appareil a cible constituee par une image projetee.
    FR2659136A1 (fr) Systeme de tir utilisable aussi bien a l&#39;entrainement au tir de precision qu&#39;a la simulation de combats.
    BE1006775A3 (fr) Arme a visee stabilisee.
    FR2524978A1 (fr) Dispositif de visee
    EP2326909B1 (fr) Procédé de simulation de tirs en zone urbaine
    FR2878615A1 (fr) Systeme de simulation de tir ou de lancement de projectile a l&#39;aide d&#39;un objet ou lanceur specifique
    EP0283386B1 (fr) Dispositif de commande à distance de la mise à feu d&#39;un projectile
    WO2014185764A1 (fr) Simulateur de tir en salle pour armes légères et lance-roquettes antichars
    EP2120000B1 (fr) Procédé de discrimination lors de simulation de tirs
    EP2643830A2 (fr) Procede de simulation de tirs au-dela de la vue directe et simulateur de tirs apte a mettre en oeuvre le procede
    FR2700840A1 (fr) Arme à visée stabilisée.
    FR2531525A1 (fr) Procede de simulation de tir et dispositif pour son execution
    CA2098669C (fr) Munition comportant des moyens de detection de cibles
    FR3110226A1 (fr) Simulateur de tir de combat vidéo et procédé de simulation de tir associé
    FR2756914A1 (fr) Procede de test de groupement de projectiles et de test de l&#39;ensemble munition/canon, en situation de tir, par un tireur
    EP0624805A1 (fr) Procédé d&#39;amélioration du pointage d&#39;une arme par obus précurseurs et obus correspondant

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19981217

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE DE ES FR GB GR IE IT PT

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 20001221

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE DE ES FR GB GR IE IT PT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20010912

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20010912

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20010912

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20010912

    REF Corresponds to:

    Ref document number: 205592

    Country of ref document: AT

    Date of ref document: 20010915

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 69706679

    Country of ref document: DE

    Date of ref document: 20011018

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011212

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011213

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011214

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20010912

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020326

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20030602

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040531

    BERE Be: lapsed

    Owner name: *UNIVERSITE DE RENNES I

    Effective date: 20040531

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20041130

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20060131