EP0899425B1 - Aube pour une turbine à gaz - Google Patents
Aube pour une turbine à gaz Download PDFInfo
- Publication number
- EP0899425B1 EP0899425B1 EP98810770A EP98810770A EP0899425B1 EP 0899425 B1 EP0899425 B1 EP 0899425B1 EP 98810770 A EP98810770 A EP 98810770A EP 98810770 A EP98810770 A EP 98810770A EP 0899425 B1 EP0899425 B1 EP 0899425B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- blade
- turbine blade
- cooling passage
- cooling system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims description 141
- 239000002826 coolant Substances 0.000 claims description 19
- 239000012530 fluid Substances 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 24
- 239000012809 cooling fluid Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 208000031872 Body Remains Diseases 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
Definitions
- the invention relates to a turbine blade of a gas turbine according to the preamble of claim 1.
- the turbine blades are at least partially hollow in their interior and have one or more cooling channels.
- the latter are from one Cooling fluid flows through, the cooling effect through convective heat transfer arises inside the blade body.
- An additional film cooling is possible by placing parts of the cooling fluid through openings in the blade body on the Be guided outside of the turbine blade. A film of cooling fluid forms there, which the outside of the turbine blade from the hot working medium shields the turbine (see DE 36 42 789 C2).
- cooling fluid are from the compressor the gas turbine plant or from an external source and under Overpressurized air or also appropriately treated water vapor are known.
- steam cooling systems which come from a steam cycle First of all keep the steam in a closed cooling circuit.
- the steam heated by the convective cooling process becomes the again Steam circuit supplied (see EP 06 98 723 A2).
- They are also open steam cooling systems known in which the heated steam through openings in the blade body is directed to the outside of the turbine blade.
- Hybrid steam cooling systems with a closed body and one in the area of the blade trailing edge open cooling system, the latter with Steam or air is operated.
- Closed steam cooling systems have both open and opposite the above-mentioned hybrid steam cooling systems process advantages. The range of uses such systems are increasing today particularly because of their higher Efficiency.
- a closed steam cooling system can penetrate foreign bodies in the cooling channel adjacent to the blade leading edge be severely damaged.
- a lot of cooling steam escapes that downstream of the impact point is not sufficient Bucket cooling takes place more. This causes the material to overheat, which is why serious consequential damage can occur.
- US-A-5,634,766 discloses a turbine vane with a closed one Steam cooling system.
- the steam is passed through baffle plates and internal inserts.
- US-A-5,603,606 discloses a turbine blade with an internal cooling system, which is located in the front edge of the turbine blade. Cooling air is drawn from a first Channel tangentially guided into an approximately circular second channel and swirled there. Thereafter, the air is passed through film cooling holes into those surrounding the turbine blade Hot gases blown in.
- the document WO 98/45577 discloses a turbine blade with an outer wall, at least a cooling chamber thermally coupled to the outer wall with an inlet and an outlet for a cooling fluid is provided.
- the cooling fluid supply and the cooling fluid discharge are fluidly connected to the cooling chamber.
- the invention tries to avoid all of these disadvantages. It is based on the task To create turbine blades with increased functional reliability.
- the open cooling system particularly advantageously consists of two parallel to one another arranged and connected to one another via several feed openings Cooling channels.
- the cooling can also downstream of a leak of the first cooling channel by supplying the cooling medium from the second Cooling channel can be maintained.
- a first embodiment of the invention that is the blade leading edge Adjacent cooling duct at least approximately with a circular cross section.
- the film cooling holes are arranged tangentially starting from this first cooling channel, while the feed openings extend tangentially from the second cooling channel and also lead tangentially into the first cooling channel.
- This is the cooling medium A rotating movement is impressed in the first cooling channel. This vortex of the cooling medium ensures improved convective cooling in the interior as well as for effective film cooling of the blade body.
- the film cooling holes face the suction wall and at least approximately in the flow direction of the working fluid of the gas turbine are aligned.
- the one emerging from the film cooling holes at high speed The desired flow direction is thus already the cooling medium specified. This can have a better effect on the suction side Wall of the turbine blade spreading cooling film and thus an improved Film cooling can be achieved.
- the closed Steam cooling system also consists of at least two arranged parallel to each other Cooling channels, which are connected to each other via connection openings. After foreign objects have been struck, the cooling medium flows through the connection openings to the corresponding impact points, so that the cooling side downstream cooling sections can be filled with cooling medium. On in this way the functional reliability of the turbine blades can be further increased become.
- the gas turbine system for example, does not show the compressor, the combustion chamber and the guide vanes of the gas turbine.
- the flow direction the work equipment is marked with arrows.
- the gas turbine has several rows of rotor and guide blades.
- 1 shows one of the rotor blades 1 according to the prior art. It consists of one Blade root 2 and a blade body 3.
- the blade body 3 of the moving blade 1 has a suction-side wall 4, one opposite, pressure-side Wall 5, a blade leading edge 6 and a blade leading edge 7 on. It has a hollow interior 8 which is in the area of the suction side Wall 4, the pressure side wall 5 and the blade leading edge 7 a closed Steam cooling system 9, with a cooling channel 10 (Fig. 2).
- an open cooling system 11 with two in parallel mutually arranged cooling channels 14, 15 are formed. Between the closed Steam cooling system 9 and the open cooling system 11 is a partition 16 arranged.
- the first cooling channel 14 of the open cooling system 11 is the blade leading edge 6 adjacent, circular and with the second cooling channel 15 over a plurality of feed openings 18 arranged in an intermediate wall 17 are connected.
- the first cooling channel 14 can also have other suitable shapes, such as, for example approximately circular, elliptical or potato-shaped Have training (not shown).
- the intermediate wall 17 is in the area of Blade root 2 connected to the suction-side wall 4 via a connecting piece 19, wherein in the connector 19 a plurality of cooling holes 20 for local cooling the suction-side wall 4 are arranged.
- the feed openings 18 arranged in the intermediate wall 17 close tangentially to the two cooling channels 14, 15.
- a film hole row 21 with each several tangential to the suction side wall 4 and approximately in the direction of flow 12 of the working fluid 13 of the gas turbine aligned film cooling holes 22 educated.
- a plurality of rows of film holes 21 can also be arranged in the blade body 3 be what in Figure 3 by a second, dashed line of film holes 21 is indicated.
- Air is used as the cooling medium 23.
- the air 23 is in the blade root 2 arranged supply channel 24 introduced into the second cooling channel 15 and serves there the convective cooling of the blade body 3 Air 23 via the supply openings 18 in the first cooling channel 14, where they Blade body 3 also cools convectively.
- the air 23 experiences the first cooling channel 14 and its tangential injection a rotating movement, which significantly improves the cooling effect.
- the air 23 passes from the first cooling duct 14 through the tangential ones Film cooling holes 22 on the suction side wall 4.
- Cooling film softer the outer surface of the blade body 3 from shields hot working fluid 13 of the gas turbine.
- appropriately prepared water vapor can also be used as the cooling medium 23 Find use.
- both the closed and the open cooling system 9, 11 operated with the same cooling medium 23, 26. Therefore no separate coolant supply is required, so that the partition between shortened the two cooling systems 9, 11 in the area of the blade root 2 can be trained (not shown).
- the cooling medium that got into the working fluid 13 of the gas turbine during the cooling process 23 of the open cooling system 11 is in the downstream part of the turbine blading relaxed.
- the closed steam cooling system 9 recycled steam used as cooling medium 26 and for example relaxed in the steam circuit of a steam turbine connected to the gas turbine (not shown).
- the closed steam cooling system 9 designed as a serpentine cooling system. It consists of two parallel to each other arranged cooling channels 27, 28 which extend in the longitudinal direction of the blade from the blade root 2 extend to the tip of the blade 29.
- the cooling channels 27, 28 are on the blade tip 29 is deflected in the direction of the blade root 2 of the rotor blade 1 (Fig. 3).
- rib walls 30 Between the two parallel and in the same direction from steam 26 through which cooling channels 27, 28 are arranged are rib walls 30 which have a plurality of connection openings 31.
- connection openings 31 FIG. 4
- holes 25 can also be made in the area of the closed steam cooling system 9 can be compensated. It comes to Impact of foreign bodies in this area of the blade 1 flows the cooling medium from the cooling channel 27, 28 not affected by the Connection openings 31 to the corresponding holes 25, so that the Cooling section downstream of the cooling side can again be filled with steam 26.
- the the Process sequences relating to open cooling system 11 are analogous to those from, for example, FIGS. 1 and 2 specified.
- guide vanes can refer to a gas turbine their cooling are formed analogously.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Claims (10)
- Aube de turbine à gaz, comprenantun corps d'aube (3) se composantd'une pointe d'aube et d'une base d'aube (2),d'un bord d'entrée d'aube (6) et d'un bord de fuite d'aube (7),d'une paroi du côté aspiration et d'une paroi du côté refoulement (4, 5), etd'un espace interne creux (8),dans l'espace interne creux (8) duquel sont disposés plusieurs canaux de refroidissement (10, 14, 15, 27, 28) guidant au moins un fluide de refroidissement (23, 26),l'espace interne (8) présentant dans la région de la paroi du côté aspiration (4), de la paroi du côté refoulement (5) et du bord d'entrée d'aube (7) à chaque fois un système de refroidissement à vapeur fermé (9) avec au moins un canal de refroidissement d'entrée (10, 27, 28) et au moins un canal de refroidissemetn de sortie (10, 27, 28), etau moins un système de refroidissement étant en outre disposé dans l'espace creux,à la fois les canaux d'entrée et de sortie (10, 27, 28) du système de refroidissement à vapeur s'étendent depuis la base de l'aube (2) vers la pointe de l'aube et sont reliés l'un à l'autre au niveau de la pointe de l'aube,à l'intérieur du canal de refroidissement d'entrée (10, 27, 28), et/ou du canal de refroidissement de sortie (10, 27, 28), des parois nervurées (30) étant prévues avec des ouvertures de connexion (31) etle système de refroidissement ouvert (11) étant réalisé dans la région du bord d'entrée d'aube (6) avec au moins un canal de refroidissement (14, 15) et plusieurs trous de refroidissement à film (22) traversant le corps d'aube (3).
- Aube de turbine selon la revendication 1,
caractérisée en ce que
le système de refroidissement ouvert (11) se compose de deux canaux de refroidissement (14, 15) parallèles l'un à l'autre et connectés l'un à l'autre par le biais de plusieurs ouvertures d'alimentation (18). - Aube de turbine selon la revendication 2,
caractérisée en ce que
les trous de refroidissement à film (22) sont disposés partant tangentiellement depuis le premier canal de refroidissement (14) voisin du bord d'entrée d'aube (6), les ouvertures d'alimentation (18) sont disposées partant tangentiellement du deuxième canal de refroidissement (15) et débouchant également tangentiellement dans le premier canal de refroidissement (14). - Aube de turbine selon la revendication 3,
caractérisée en ce que
le premier canal de refroidissement (14) est réalisé avec une forme en section transversale au moins approximativement circulaire. - Aube de turbine selon la revendication 4,
caractérisée en ce que
les trous de refroidissement à film (22) sont orientés vers la paroi du côté aspiration (4) et au moins approximativement dans le sens d'écoulement (12) du fluide de travail (13). - Aube de turbine selon l'une quelconque des revendications précédentes,
caractérisée en ce que
le canal de refroidissement de sortie (10, 27, 28) est disposé adjacent au bord de sortie d'aube (7). - Aube de turbine selon la revendication 6,
caractérisée en ce que
le canal de refroidissement d'entrée (10, 27, 28) est disposé entre le canal de refroidissement de sortie (10, 27, 28) et le système de refroidissement ouvert (11). - Aube de turbine selon l'une quelconque des revendications précédentes,
caractérisée en ce que
au moins une ouverture de sortie (33) pour des particules étrangères est disposée à l'intérieur du système de refroidissement à vapeur fermé (9) au niveau de la pointe de l'aube. - Aube de turbine selon l'une quelconque des revendications précédentes,
caractérisée en ce que
l'on peut utiliser comme fluide de refroidissement (23) dans le système de refroidissement ouvert (11) de l'air ou de la vapeur. - Aube de turbine selon l'une quelconque des revendications précédentes,
caractérisée en ce que
l'aube de turbine est une aube mobile.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19738065A DE19738065A1 (de) | 1997-09-01 | 1997-09-01 | Turbinenschaufel einer Gasturbine |
DE19738065 | 1997-09-01 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0899425A2 EP0899425A2 (fr) | 1999-03-03 |
EP0899425A3 EP0899425A3 (fr) | 2000-07-05 |
EP0899425B1 true EP0899425B1 (fr) | 2003-12-03 |
Family
ID=7840791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98810770A Expired - Lifetime EP0899425B1 (fr) | 1997-09-01 | 1998-08-11 | Aube pour une turbine à gaz |
Country Status (5)
Country | Link |
---|---|
US (1) | US6033181A (fr) |
EP (1) | EP0899425B1 (fr) |
JP (1) | JPH11132003A (fr) |
CN (1) | CN1120287C (fr) |
DE (2) | DE19738065A1 (fr) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1342882B1 (fr) * | 1998-12-10 | 2006-05-17 | ALSTOM Technology Ltd | Procédé de fabrication d'un rotor soudé de turbomachine |
DE19902437C5 (de) | 1999-01-22 | 2017-01-12 | General Electric Technology Gmbh | Verfahren und Vorrichtung zum schnellen Anfahren und zur schnellen Leistungssteigerung einer Gasturbinenanlage |
DE10027833A1 (de) | 2000-06-05 | 2001-12-13 | Alstom Power Nv | Verfahren zum Kühlen einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens |
DE10027842A1 (de) | 2000-06-05 | 2001-12-20 | Alstom Power Nv | Verfahren zum Kühlen einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens |
GB0025012D0 (en) * | 2000-10-12 | 2000-11-29 | Rolls Royce Plc | Cooling of gas turbine engine aerofoils |
DE10053356A1 (de) * | 2000-10-27 | 2002-05-08 | Alstom Switzerland Ltd | Gekühltes Bauteil, Gusskern für die Herstellung eines solchen Bauteils, sowie Verfahren zum Herstellen eines solchen Bauteils |
EP1321627A1 (fr) * | 2001-12-21 | 2003-06-25 | Siemens Aktiengesellschaft | Aube de turbine à refroidissement à air et à vapeur et procédé de refroidissement |
JP2003200936A (ja) * | 2001-12-28 | 2003-07-15 | Toyo Roki Mfg Co Ltd | 容器の水抜き穴形状 |
US6932573B2 (en) * | 2003-04-30 | 2005-08-23 | Siemens Westinghouse Power Corporation | Turbine blade having a vortex forming cooling system for a trailing edge |
US20050265839A1 (en) | 2004-05-27 | 2005-12-01 | United Technologies Corporation | Cooled rotor blade |
US7195448B2 (en) * | 2004-05-27 | 2007-03-27 | United Technologies Corporation | Cooled rotor blade |
US7198468B2 (en) * | 2004-07-15 | 2007-04-03 | Pratt & Whitney Canada Corp. | Internally cooled turbine blade |
US7097419B2 (en) * | 2004-07-26 | 2006-08-29 | General Electric Company | Common tip chamber blade |
EP1621730B1 (fr) | 2004-07-26 | 2008-10-08 | Siemens Aktiengesellschaft | Element refroidi d'une turbomachine et procédé pour le moulage de cet élement |
GB0418914D0 (en) * | 2004-08-25 | 2004-09-29 | Rolls Royce Plc | Turbine component |
US7128533B2 (en) * | 2004-09-10 | 2006-10-31 | Siemens Power Generation, Inc. | Vortex cooling system for a turbine blade |
US7217097B2 (en) * | 2005-01-07 | 2007-05-15 | Siemens Power Generation, Inc. | Cooling system with internal flow guide within a turbine blade of a turbine engine |
US7189060B2 (en) * | 2005-01-07 | 2007-03-13 | Siemens Power Generation, Inc. | Cooling system including mini channels within a turbine blade of a turbine engine |
US7632071B2 (en) * | 2005-12-15 | 2009-12-15 | United Technologies Corporation | Cooled turbine blade |
WO2009016744A1 (fr) * | 2007-07-31 | 2009-02-05 | Mitsubishi Heavy Industries, Ltd. | Pale pour turbine |
US8376706B2 (en) * | 2007-09-28 | 2013-02-19 | General Electric Company | Turbine airfoil concave cooling passage using dual-swirl flow mechanism and method |
US10286407B2 (en) | 2007-11-29 | 2019-05-14 | General Electric Company | Inertial separator |
US8393157B2 (en) * | 2008-01-18 | 2013-03-12 | General Electric Company | Swozzle design for gas turbine combustor |
US8511968B2 (en) * | 2009-08-13 | 2013-08-20 | Siemens Energy, Inc. | Turbine vane for a gas turbine engine having serpentine cooling channels with internal flow blockers |
DE102010046331A1 (de) * | 2010-09-23 | 2012-03-29 | Rolls-Royce Deutschland Ltd & Co Kg | Gekühlte Turbinenschaufeln für ein Gasturbinentriebwerk |
CH705181A1 (de) | 2011-06-16 | 2012-12-31 | Alstom Technology Ltd | Verfahren zum Kühlen einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens. |
US8840370B2 (en) | 2011-11-04 | 2014-09-23 | General Electric Company | Bucket assembly for turbine system |
CN104204412B (zh) | 2012-03-22 | 2016-09-28 | 通用电器技术有限公司 | 涡轮叶片 |
CN103806951A (zh) * | 2014-01-20 | 2014-05-21 | 北京航空航天大学 | 一种缝气膜冷却加扰流柱的组合式涡轮叶片 |
US9915176B2 (en) | 2014-05-29 | 2018-03-13 | General Electric Company | Shroud assembly for turbine engine |
EP3149310A2 (fr) | 2014-05-29 | 2017-04-05 | General Electric Company | Moteur à turbine, composants et leurs procédés de refroidissement |
US11033845B2 (en) | 2014-05-29 | 2021-06-15 | General Electric Company | Turbine engine and particle separators therefore |
CA2949547A1 (fr) | 2014-05-29 | 2016-02-18 | General Electric Company | Moteur de turbine, et epurateurs de particules pour celui-ci |
US10167725B2 (en) | 2014-10-31 | 2019-01-01 | General Electric Company | Engine component for a turbine engine |
US10036319B2 (en) | 2014-10-31 | 2018-07-31 | General Electric Company | Separator assembly for a gas turbine engine |
CN104696018B (zh) * | 2015-02-15 | 2016-02-17 | 德清透平机械制造有限公司 | 一种高效汽轮机叶片 |
US10174620B2 (en) | 2015-10-15 | 2019-01-08 | General Electric Company | Turbine blade |
US9988936B2 (en) | 2015-10-15 | 2018-06-05 | General Electric Company | Shroud assembly for a gas turbine engine |
US10428664B2 (en) | 2015-10-15 | 2019-10-01 | General Electric Company | Nozzle for a gas turbine engine |
CN105840315B (zh) * | 2016-03-15 | 2017-10-31 | 哈尔滨工程大学 | 一种应用于气膜冷却技术的旋流冷气腔结构 |
CN105909318B (zh) * | 2016-04-26 | 2017-09-26 | 西北工业大学 | 一种用于涡轮叶片气膜冷却出口上游扩张孔结构 |
US10704425B2 (en) | 2016-07-14 | 2020-07-07 | General Electric Company | Assembly for a gas turbine engine |
FR3062675B1 (fr) * | 2017-02-07 | 2021-01-15 | Safran Helicopter Engines | Aube haute pression ventilee de turbine d'helicoptere comprenant un conduit amont et une cavite centrale de refroidissement |
US10801724B2 (en) * | 2017-06-14 | 2020-10-13 | General Electric Company | Method and apparatus for minimizing cross-flow across an engine cooling hole |
EP3425165B1 (fr) | 2017-07-05 | 2022-08-31 | General Electric Technology GmbH | Composant mécanique |
CN109812301A (zh) * | 2019-03-06 | 2019-05-28 | 上海交通大学 | 一种具有横向通气孔的涡轮叶片双层壁冷却结构 |
CN112483191B (zh) * | 2020-11-30 | 2022-07-19 | 日照黎阳工业装备有限公司 | 一种适用于燃气轮机具备对流换热功能的涡轮叶片 |
CN115234306A (zh) * | 2022-09-21 | 2022-10-25 | 中国航发燃气轮机有限公司 | 一种燃气轮机透平气冷叶片 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB856674A (en) * | 1958-06-18 | 1960-12-21 | Rolls Royce | Blades for gas turbine engines |
FR90542E (fr) * | 1965-08-02 | 1967-12-29 | Snecma | Perfectionnement aux moyens de refroidissement d'aubes de turbine ou autres pièces |
US4565490A (en) * | 1981-06-17 | 1986-01-21 | Rice Ivan G | Integrated gas/steam nozzle |
DE3211139C1 (de) * | 1982-03-26 | 1983-08-11 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Axialturbinenschaufel,insbesondere Axialturbinenlaufschaufel fuer Gasturbinentriebwerke |
US4770608A (en) | 1985-12-23 | 1988-09-13 | United Technologies Corporation | Film cooled vanes and turbines |
JPS62294703A (ja) * | 1986-06-13 | 1987-12-22 | Jinichi Nishiwaki | 蒸気タ−ビンのブレ−ドを冷却する方法 |
GB2202907A (en) * | 1987-03-26 | 1988-10-05 | Secr Defence | Cooled aerofoil components |
US5253976A (en) * | 1991-11-19 | 1993-10-19 | General Electric Company | Integrated steam and air cooling for combined cycle gas turbines |
US5320483A (en) * | 1992-12-30 | 1994-06-14 | General Electric Company | Steam and air cooling for stator stage of a turbine |
US5634766A (en) * | 1994-08-23 | 1997-06-03 | General Electric Co. | Turbine stator vane segments having combined air and steam cooling circuits |
US5603606A (en) * | 1994-11-14 | 1997-02-18 | Solar Turbines Incorporated | Turbine cooling system |
JP3781832B2 (ja) * | 1996-08-29 | 2006-05-31 | 株式会社東芝 | ガスタービン |
WO1998045577A1 (fr) * | 1997-04-07 | 1998-10-15 | Siemens Aktiengesellschaft | Procede pour refroidir une aube de turbine |
-
1997
- 1997-09-01 DE DE19738065A patent/DE19738065A1/de not_active Ceased
-
1998
- 1998-08-11 EP EP98810770A patent/EP0899425B1/fr not_active Expired - Lifetime
- 1998-08-11 DE DE59810315T patent/DE59810315D1/de not_active Expired - Lifetime
- 1998-08-28 CN CN98116951A patent/CN1120287C/zh not_active Expired - Fee Related
- 1998-08-28 US US09/141,586 patent/US6033181A/en not_active Expired - Lifetime
- 1998-08-31 JP JP10245038A patent/JPH11132003A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
EP0899425A2 (fr) | 1999-03-03 |
CN1211667A (zh) | 1999-03-24 |
JPH11132003A (ja) | 1999-05-18 |
US6033181A (en) | 2000-03-07 |
CN1120287C (zh) | 2003-09-03 |
DE19738065A1 (de) | 1999-03-04 |
EP0899425A3 (fr) | 2000-07-05 |
DE59810315D1 (de) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0899425B1 (fr) | Aube pour une turbine à gaz | |
DE3248161C2 (fr) | ||
DE69923746T2 (de) | Gasturbinenschaufel mit serpentinenförmigen Kühlkanälen | |
DE60025988T2 (de) | Strömungsmaschinenschaufel mit mehrfacher Prallkühlung | |
DE10001109B4 (de) | Gekühlte Schaufel für eine Gasturbine | |
EP0798448B1 (fr) | Système et dispositif pour réfroidir une paroi chauffée d'un côté par un gaz chaud | |
DE60027679T2 (de) | Gekühlte Turbinenschaufel mit schrägen und sparrenförmige Wirbelerzeugern | |
DE2320581C2 (de) | Gasturbine mit luftgekühlten Turbinenlaufschaufeln | |
DE60031077T2 (de) | Turbinenschaufel mit unterschiedlich geneigten Filmkühlungsöffnungen | |
DE69320203T2 (de) | Struktur für eine gekühlte schaufel | |
DE3248162C2 (de) | Kühlbare Schaufel | |
DE3248163C2 (fr) | ||
DE69822100T2 (de) | Turbinenschaufel | |
DE602004000633T2 (de) | Turbinenschaufel | |
DE69414209T2 (de) | Kühlung der Vorderkante einer Schaufel | |
DE69908603T2 (de) | Dampfgekühlte statorschaufel einer gasturbine | |
DE60224339T2 (de) | Kühleinsatz mit tangentialer Ausströmung | |
DE69718673T2 (de) | Kühlbare schaufelstruktur für eine gasturbine | |
EP2255072B1 (fr) | Aube directrice pour turbine à gaz et turbine à gaz dotée d'une aube directrice de ce type | |
DE60122050T2 (de) | Turbinenleitschaufel mit Einsatz mit Bereichen zur Prallkühlung und Konvektionskühlung | |
DE69923914T2 (de) | Strömungsmaschinenschaufel mit aparter Kühlung der Anströmkante | |
DE102005044183A1 (de) | Vorrichtung und Verfahren zur Kühlung von Turbinenschaufelplattformen | |
DE60027390T2 (de) | Gekühlte Gasturbinenschaufel und deren Herstellungsmethode | |
DE1601561C3 (de) | Gekühlte Schaufel mit Tragflächenprofil für eine Axialströmungsmaschine | |
WO2003052240A2 (fr) | Systeme de turbine a gaz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20001027 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ABB (SCHWEIZ) AG |
|
AKX | Designation fees paid |
Free format text: DE GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM |
|
17Q | First examination report despatched |
Effective date: 20020701 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
REF | Corresponds to: |
Ref document number: 59810315 Country of ref document: DE Date of ref document: 20040115 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040415 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040906 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59810315 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59810315 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 59810315 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160819 Year of fee payment: 19 Ref country code: DE Payment date: 20160822 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59810315 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59810315 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59810315 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180301 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170811 |