EP0897086B1 - Procédé de détermination du rayonnement moyen d'un lit de combustion dans un système d'incinération et la commande du processus de la combustion - Google Patents

Procédé de détermination du rayonnement moyen d'un lit de combustion dans un système d'incinération et la commande du processus de la combustion Download PDF

Info

Publication number
EP0897086B1
EP0897086B1 EP98112509A EP98112509A EP0897086B1 EP 0897086 B1 EP0897086 B1 EP 0897086B1 EP 98112509 A EP98112509 A EP 98112509A EP 98112509 A EP98112509 A EP 98112509A EP 0897086 B1 EP0897086 B1 EP 0897086B1
Authority
EP
European Patent Office
Prior art keywords
radiation
temperature
average
combustion
part surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98112509A
Other languages
German (de)
English (en)
Other versions
EP0897086A3 (fr
EP0897086A2 (fr
Inventor
Johannes Josef Edmund Dipl.-Ing. Martin
Walter J. Dipl.-Ing. Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Martin GmbH fuer Umwelt und Energietechnik
Original Assignee
Martin GmbH fuer Umwelt und Energietechnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martin GmbH fuer Umwelt und Energietechnik filed Critical Martin GmbH fuer Umwelt und Energietechnik
Publication of EP0897086A2 publication Critical patent/EP0897086A2/fr
Publication of EP0897086A3 publication Critical patent/EP0897086A3/fr
Application granted granted Critical
Publication of EP0897086B1 publication Critical patent/EP0897086B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/101Arrangement of sensing devices for temperature
    • F23G2207/1015Heat pattern monitoring of flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55009Controlling stoker grate speed or vibrations for waste movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing

Definitions

  • the invention relates to a method for determining the average radiation and that associated with this radiation Average temperature of a surface area of a Burning bed using infrared camera or thermography camera in incineration plants and control of the combustion process at least in the observed area this incinerator.
  • the object of the invention is a method of the above specified type so that the interference by Flame radiation, radiation of those present in the exhaust gases Gases and solid-state radiation of soot particles and the like. Largely be excluded.
  • This task is based on a process of the beginning explained type solved according to the invention in that the Measurement is limited to a waveband that the Corresponds to the minimum of the disturbing gases above the combustion bed, that the area to be recorded in an area grid is divided with several sub-areas that in one Period in which in the area to be recorded the burning bed as still and the radiation or temperature of the burning bed can be assumed to be almost constant multiple images taken in time be that by comparing the images of a period of time the sub-areas with each other with a radiation of static radiation media from the partial areas with a Radiation from moving radiation media can be distinguished and that to calculate the average radiation or the average temperature of the surface area only the radiation or temperature of the partial areas of the radiation of stationary radiation media are taken into account.
  • the invention thus makes two fundamental considerations Use, the one basic idea of which is through Spectral analysis the radiation intensity at least the most common gases occur, the minimum to determine this radiation intensity of the gases and the used measuring device in the form of infrared cameras or To tune thermographic cameras to this waveband, in order to eliminate most of the disruptive gas radiation.
  • the second basic idea is that the between Combustion bed and measuring device existing radiation, e.g. of solid particles, in particular of soot or individual gas components, thereby eliminating that you have several pictures of one divided into an area grid Area in short time intervals and thereby those partial areas of the area grid for the averaging is eliminated, the strong fluctuations are subject.
  • Such parameters can be: the total amount of air supplied to the combustion process, the Amount of primary air, the air volume distribution in the primary air, the oxygen concentration of the primary air, the temperature the primary combustion air, the fuel feed quantity overall or on certain sections of the grate related, the stoking speed of the entire grate, the local stoking speed of the grate etc.
  • the controlled variable is an average of the average radiation or the average temperature from several consecutive periods is formed.
  • there a time period can be 0.1 to 5 seconds.
  • the mean of the averages is 5 successive periods of time.
  • the area to be observed should be at least 1m 2 and be subdivided into an area grid with at least 10 partial areas.
  • the area grid corresponds to the primary air zones of the grate area that is active for combustion.
  • the method according to the invention is also particularly suitable advantageous for checking the proper Operation of a grate. For this, at strongly from Average value of a period of time deviating radiation values or temperature values of individual partial areas Radiation or temperature values of the corresponding sub-areas observed over several periods and the corresponding Images of the partial areas with regard to deviations with one another compared. So if a certain sub area over always an average of several times has a significantly different value, for example has a much too high temperature, this can be due to a mechanical defect and a related one indicate poorly distributed air supply. If in contrast an area the temperature is constantly too low, so this is due to constipation and therefore much too low Indicate primary air supply.
  • the infrared camera or thermographic camera used is equipped with filters so that it works in a wave range of 3.5 to 4 ⁇ m. In this area, the emission strength of the gases that normally occur in a furnace is a minimum. These are the gases CO 2 , CO and water vapor.
  • the soot which cannot always be avoided, has a lower value in this wavelength range than in the lower wavelength range, but it is a considerable source of interference, which is eliminated with the aid of the procedural measures explained at the beginning.
  • the evaluation device downstream of the camera with a fuzzy control system is set up in such a way that the images or the measurement signals obtained are fuzzified, subjected to an inference process and then defuzzified.
  • the result is a relative quality of the image information that comes very close to the actual condition of the surface of the burner bed.
  • a threshold is set in the software, below which an infrared image is defined as no longer usable. The radiation information or temperature information obtained is passed on above this threshold without further evaluation of the image quality. If the image quality is poor, for example for more than two minutes, the image control loops override the camera control loops and then reactivate them. This is to prevent that, due to bad images, regulation takes place which does not correspond to the actual conditions. This can be the case, for example, when excessive soot development, which practically forms a gapless layer between the separating bed and the infrared camera, "looking through” this layer does not allow usable image evaluation because of the lack of "windows". Such conditions are only of short duration and, moreover, such conditions can be avoided by arranging a plurality of infrared cameras which are directed at the combustion bed from different angles.
  • the furnace shown in Figure 1 includes one Firing grate 1, a loading device 2, a combustion chamber 3 with subsequent throttle cable 4 and a reversing space 5, in which the exhaust gases into a downward gas train 6 are routed, from which they into the usual, a firing system downstream units, especially steam generators and emission control systems.
  • the furnace grate 1 comprises individual grate levels 7, which in turn formed from individual grate bars lying side by side are. Every second grate level of the designed as a push-back grate Firing grate is marked with a total of 8 Drive connected, which allows the stoking speed adjust. Below the grate 1 are subdivided both in the longitudinal direction and in the transverse direction Underwind chambers 9.1 to 9.5 are provided, which are separated supplied with primary air via individual lines 10.1 to 10.5 become. At the end of the grate, the burned out falls Slag via a slag roller 25 into a slag chute 11, in which possibly also the heavier ones, in the lower one Reversing space 12 from the exhaust gas separated solids reach.
  • the firebox 3 there are several rows of secondary air nozzles 13, 14 and 15 aligned for controlled combustion of flammable gases and those in the air Fuel parts by supplying so-called secondary air to care. These secondary air nozzle rows can be controlled separately, since different conditions are spread over the firebox to rule.
  • the feed device 2 comprises a feed hopper 16, a feed chute 17, a feed table 18 and one or several side by side, possibly independent of each other controllable feed piston 19, which in the feed chute 17th falling garbage over the loading edge 20 of the feed table 18 in the firebox on the grate 1.
  • an infrared camera 22 In the ceiling 21, which closes the upper reversal space 5 an infrared camera 22 is mounted, which has a device 23 is connected, which is used to evaluate the received Images, formation of a controlled variable and output of control commands for the various furnishing systems serves to influence the combustion process. At 23 is thus referred to an evaluation and control device.
  • the infrared camera 22 is used to determine the on the combustion bed 1 located combustion bed 24 outgoing Radiation or to determine the combustion bed temperature, the is assigned to the combustion bed radiation. This will cause disruptions by the flame 24a or those contained in the exhaust gases gaseous and solid components largely excluded, as explained in more detail below.
  • the heaped up bed and the burning bed 24 fuel is pre-dried through the downwind zone 9.1 and the radiation in the combustion chamber warmed and ignited.
  • the area of the underwind zones 9.2 and 9.3 is the main fire zone, while in the underwind zone 9.4 and 9.5 the slag that forms burns out and then got into the slag chute.
  • the one from the burning bed rising gases still contain combustible parts that by supplying secondary air through the rows of secondary air nozzles 13 to 15 are completely burned.
  • the regulation the feed quantity of the fuel, the primary air quantities in the individual underwind zones and their composition regarding the oxygen content will be dependent the burning behavior, which depends on the calorific value of the fuel depends, and subject to large fluctuations in waste is regulated, whereby to record the necessary controlled variable the radiation emanating from the burning bed and the associated temperature is used, which with Help of the infrared camera 22 detected and by the evaluation and control device 23 evaluated and sent to the corresponding Actuators is passed on.
  • actuators are shown in schematic form in Figure 1 indicated, with 29 the actuator for Influencing the rust speed, with 30 the adjusting device for influencing the speed of the slag roller, at 31 the control device for influencing the grate speeds regarding different courses, with 32 the Actuator for the switch-on and switch-off frequency or the Speed of the feed piston, at 33 the actuator for setting the primary air volume, with 34 the control device for adjusting the composition of the Primary air with regard to the oxygen content and with 35 die Actuator for setting the temperature of an air preheater are designated for the primary air.
  • the infrared camera 22 and its orientation on the burning bed is shown.
  • FIG. 2 it is examined how the radiation behavior of the gases and solid particles encountered in the combustion chamber 3 is developed. According to FIG. 2, it is found that there is a minimum of infrared radiation for the gases CO 2 , CO and H 2 O occurring in high concentrations in the wave range between 3.5 and 4 ⁇ m due to the drying and combustion reaction of the fuel. Accordingly, the infrared camera is equipped with a wavelength-selective filter that works in the minimum of these interfering gases, ie in the range from 3.5 to 4 ⁇ m. It can also be seen from FIG.
  • FIG. 3 shows an area monitored by an infrared camera, which is subdivided into 25 partial areas according to an area grid.
  • the dark partial areas represent those areas which have a significantly higher radiation intensity and thus a higher temperature than the light partial areas. The reason for this is that the surface of the combustion bed is relatively cool compared to the gas atmosphere above. If one now considers FIG. 4, it is found that other partial areas have this high radiation intensity or temperature.
  • FIG. 4 shows a recording which was taken a few tenths of a second later and thus captures those changes which can occur within this short period of time. If it is found that there is a different radiation or temperature distribution in FIG. 4 than in FIG. 3, these deviations can only result from those radiating media which can change both their temperature and their position within a short time.
  • a controlled variable which is output by the evaluation and control device 23 to the various actuating devices
  • seven pictures are taken within 3.5 seconds and an average value is formed from this in accordance with the comparison shown in FIGS. 3 to 5.
  • Five such averages are then combined into a controlled variable.
  • the time intervals within which the individual recordings are made can be adapted to the respective conditions, so that it is also possible to work with much shorter time intervals.
  • the partial area that is observed by an infrared camera corresponds in practice to the area that occupies at least two underwind zones up to 15 underwind zones.
  • the area of a sub-wind zone area is about 2-4 m 2 , this area then being divided according to the actually existing primary air zones observed by the camera and then each of these image segments corresponding to a primary air zone for evaluation in accordance with the explanations in connection with the figures 3 to 5 is divided into approx. 25 subareas. This subdivision and the specified time intervals for two consecutive recordings have proven to be sufficient in connection with a firing system with sliding grate to determine the combustion bed temperature.
  • Control variables serve to influence the individual control devices, as shown in a schematic overview is shown in Figure 6. According to this, the control device 23 the adjusting devices for the grate speed 29 influenced up to the temperature in the air preheater 35 that has already been specified above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)
  • Control Of Combustion (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Radiation Pyrometers (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Claims (9)

  1. Procédé de détermination du rayonnement moyen et par ce rayonnement de la température moyenne d'un secteur de surface d'un lit de combustion au moyen d'une caméra infra-rouge, telle qu'une caméra thermo-graphique, dans une installation d'incinération et de régulation du processus d'incinération au moins dans le secteur de surface observé de l'installation d'incinération, caractérisé en ce que la mesure est limitée à une bande de fréquence qui correspond au minimum de perturbation par les gaz au dessus du lit de combustion, que le secteur de la surface de saisie est subdivisée en plusieurs zones selon une grille, que, dans un intervalle de temps pendant lequel le lit de combustion peut être considéré comme immobile et que le rayonnement, et par conséquent la température du lit fluidisé, peut être considéré comme constant, plusieurs images successives peuvent être prises, que les subdivisions avec un rayonnement émis par un élément fixe peuvent être différenciées des subdivisions avec un rayonnement émis par un élément en mouvement par la comparaison d'images successives, et que seul le rayonnement et par conséquent la température des zones dont le rayonnement est émis par un élément fixe est pris en considération pour la détermination du rayonnement moyen et donc de la température moyenne du secteur de surface.
  2. Procédé selon la revendication 1, caractérisé en ce que la variable régulée pour la régulation d'une ou de la totalité des commandes ajustables en dépendance directe ou indirecte de la température d'incinération est établie au moyen de la logique floue à partir des valeurs saisies.
  3. Procédé selon les revendications 1 ou 2, caractérisé en ce qu'une valeur moyenne du rayonnement moyen donc de la température moyenne est établie pour l'optimisation de la variable régulée à partir de plusieurs intervalles de temps successifs.
  4. Procédé selon les revendications 1 à 3, caractérisé en ce qu'un intervalle de temps est compris entre 0,1 et 5 secondes.
  5. Procédé selon la revendication 3, caractérisé en ce que la valeur moyenne des valeurs moyennes est établie pour l'optimisation de la variable régulée à partir de cinq intervalles de temps successifs.
  6. Procédé selon les revendications 1 à 5, caractérisé en ce qu'un secteur de surface observé soit d'au minimum 1 m2 et qu'une grille comporte au moins dix subdivisions.
  7. Procédé selon la revendication 6, caractérisé en ce que au niveau du foyer, la grille de subdivision correspond aux zones d'air primaire de la zone de la grille active pour la combustion.
  8. Procédé selon les revendications 1 à 7, caractérisé en ce que lors d'une variation anormale de la valeur moyenne du rayonnement, donc de la température dans un intervalle de temps et sur une seule subdivision, le rayonnement de cette même subdivision est observé sur plusieurs intervalles et les images correspondantes des subdivisions sont comparées ensemble par rapport à l'anomalie.
  9. Procédé selon les revendications 1 à 8, caractérisé en ce que la mesure du rayonnement est effectuée dans le spectre de 3,5 à 4 µm.
EP98112509A 1997-08-13 1998-07-06 Procédé de détermination du rayonnement moyen d'un lit de combustion dans un système d'incinération et la commande du processus de la combustion Expired - Lifetime EP0897086B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19735139A DE19735139C1 (de) 1997-08-13 1997-08-13 Verfahren zum Ermitteln der durchschnittlichen Strahlung eines Brennbettes in Verbrennungsanlagen und Regelung des Verbrennungsvorganges
DE19735139 1997-08-13

Publications (3)

Publication Number Publication Date
EP0897086A2 EP0897086A2 (fr) 1999-02-17
EP0897086A3 EP0897086A3 (fr) 2001-03-14
EP0897086B1 true EP0897086B1 (fr) 2002-06-05

Family

ID=7838890

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98112509A Expired - Lifetime EP0897086B1 (fr) 1997-08-13 1998-07-06 Procédé de détermination du rayonnement moyen d'un lit de combustion dans un système d'incinération et la commande du processus de la combustion

Country Status (16)

Country Link
US (1) US5890444A (fr)
EP (1) EP0897086B1 (fr)
JP (1) JP3111177B2 (fr)
AT (1) ATE218688T1 (fr)
BR (1) BR9803742B1 (fr)
CA (1) CA2244704C (fr)
CZ (1) CZ291661B6 (fr)
DE (2) DE19735139C1 (fr)
DK (1) DK0897086T3 (fr)
ES (1) ES2176860T3 (fr)
NO (1) NO313215B1 (fr)
PL (1) PL327965A1 (fr)
PT (1) PT897086E (fr)
RU (1) RU2144645C1 (fr)
SG (1) SG63854A1 (fr)
TW (1) TW357247B (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1014515C2 (nl) * 1999-06-04 2000-12-06 Tno Systeem voor continue thermische verbranding van materie zoals afval.
WO2001065178A1 (fr) * 2000-02-28 2001-09-07 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Systeme de combustion thermique de matiere, telle que des dechets
DE10058762B4 (de) * 2000-11-27 2005-03-10 Martin Umwelt & Energietech Verfahren und Vorrichtung zum Betreiben von Verbrennungsanlagen
US6497187B2 (en) * 2001-03-16 2002-12-24 Gas Technology Institute Advanced NOX reduction for boilers
HK1036735A2 (en) * 2001-08-24 2001-12-21 Koon Kwan Lo An interlinked synthetic garbage incinerator
DE10302175B4 (de) * 2003-01-22 2005-12-29 Forschungszentrum Karlsruhe Gmbh Verfahren zur Erkennung und Identifikation von Brennzonen
DE10347340A1 (de) * 2003-10-11 2005-05-19 Forschungszentrum Karlsruhe Gmbh Vorrichtung und Verfahren zur Optimierung des Abgasausbrandes in Verbrennungsanlagen
DE102005020328B4 (de) * 2005-04-30 2008-04-30 Rag Aktiengesellschaft Temperaturmessung in Verkokungsöfen mittels einer Wärmebildkamera und Steuerungsvorrichtung hierfür
JP4688720B2 (ja) * 2006-04-24 2011-05-25 日立造船株式会社 放射エネルギー検出時における外乱判別方法およびこの判別方法を用いた温度計測方法
ATE404823T1 (de) * 2006-04-25 2008-08-15 Powitec Intelligent Tech Gmbh Verfahren und regelkreis zur regelung eines verbrennungsprozesses
DE102006044114A1 (de) * 2006-09-20 2008-03-27 Forschungszentrum Karlsruhe Gmbh Verfahren zur Charakterisierung der Abgasausbrandqualität in Verbrennungsanlagen
CN102132099B (zh) * 2008-04-22 2013-11-13 巴斯夫欧洲公司 控制辅助燃料添加的方法
JP2010250516A (ja) * 2009-04-15 2010-11-04 Nec Access Technica Ltd 監視システム、監視方法、監視カメラ装置、中央監視装置及びプログラム
JP5510782B2 (ja) * 2009-09-16 2014-06-04 新日鉄住金エンジニアリング株式会社 廃棄物溶融処理方法および廃棄物溶融処理装置
JP5574475B2 (ja) * 2009-09-16 2014-08-20 新日鉄住金エンジニアリング株式会社 廃棄物溶融処理方法および廃棄物溶融処理装置
WO2011032236A1 (fr) * 2009-09-21 2011-03-24 Kailash & Stefan Pty Ltd Système de commande de combustion
TWI421721B (zh) * 2010-12-09 2014-01-01 Ind Tech Res Inst 燃燒火焰診斷方法
JP5804255B2 (ja) * 2011-07-13 2015-11-04 東京電力株式会社 透過部材
CN105042599A (zh) * 2015-06-18 2015-11-11 惠州东江威立雅环境服务有限公司 焚烧炉回转窑安全监控及应急处理方法
US10920982B2 (en) * 2015-09-28 2021-02-16 Schlumberger Technology Corporation Burner monitoring and control systems
GB201620863D0 (en) * 2016-12-08 2017-01-25 Land Instr Int Ltd Control system for furnace
JP7256016B2 (ja) * 2019-01-25 2023-04-11 日立造船株式会社 予測モデル生成装置、予測モデル生成装置による予測モデル生成方法、及び予測装置
DE102020000980A1 (de) 2020-02-14 2021-08-19 Martin GmbH für Umwelt- und Energietechnik Verfahren zum Betreiben einer Feuerungsanlage

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539588A (en) * 1983-02-22 1985-09-03 Weyerhaeuser Company Imaging of hot infrared emitting surfaces obscured by particulate fume and hot gases
USRE33857E (en) * 1983-02-22 1992-03-24 Weyerhaeuser Company Imaging of hot infrared emitting surfaces obscured by particulate fume and hot gases
FI79622C (fi) * 1986-01-27 1990-01-10 Nokia Oy Ab Foerfarande foer generering av i realtidsreglerparametrar med hjaelp av en videokamera foer roekgenererande foerbraenningsprocesser.
DE3904272C3 (de) * 1989-02-14 1998-01-08 Steinmueller Gmbh L & C Verfahren zum Erfassen der von mindestens zwei räumlich getrennten Stellen mindestens einer Verbrennungszone auf einem Rost ausgehenden Strahlung und Vorrichtung zum Erfassen einer solchen Strahlung
US5139412A (en) * 1990-05-08 1992-08-18 Weyerhaeuser Company Method and apparatus for profiling the bed of a furnace
DE4220149C2 (de) * 1992-06-19 2002-06-13 Steinmueller Gmbh L & C Verfahren zum Regelung der Verbrennung von Müll auf einem Rost einer Feuerungsanlage und Vorrichtung zur Durchführung des Verfahrens
JPH0618025A (ja) * 1992-07-02 1994-01-25 Ishikawajima Harima Heavy Ind Co Ltd 火炉壁面温度計測方法
DE4344906C2 (de) * 1993-12-29 1997-04-24 Martin Umwelt & Energietech Verfahren zum Regeln einzelner oder sämtlicher die Verbrennung auf einem Feuerungsrost beeinflussender Faktoren
DE4428159C2 (de) * 1994-08-09 1998-04-09 Martin Umwelt & Energietech Verfahren zur Regelung der Feuerung bei Verbrennungsanlagen, insbesondere Abfallverbrennungsanlagen
US5794549A (en) * 1996-01-25 1998-08-18 Applied Synergistics, Inc. Combustion optimization system

Also Published As

Publication number Publication date
NO983679D0 (no) 1998-08-11
ES2176860T3 (es) 2002-12-01
CZ251498A3 (cs) 1999-03-17
EP0897086A3 (fr) 2001-03-14
BR9803742A (pt) 1999-11-09
CZ291661B6 (cs) 2003-04-16
SG63854A1 (en) 1999-03-30
NO983679L (no) 1999-02-15
BR9803742B1 (pt) 2012-01-10
PT897086E (pt) 2002-11-29
ATE218688T1 (de) 2002-06-15
RU2144645C1 (ru) 2000-01-20
TW357247B (en) 1999-05-01
DE59804291D1 (de) 2002-07-11
CA2244704C (fr) 1999-11-30
JP3111177B2 (ja) 2000-11-20
JPH11118146A (ja) 1999-04-30
NO313215B1 (no) 2002-08-26
DE19735139C1 (de) 1999-02-25
EP0897086A2 (fr) 1999-02-17
US5890444A (en) 1999-04-06
PL327965A1 (en) 1999-02-15
DK0897086T3 (da) 2002-09-30

Similar Documents

Publication Publication Date Title
EP0897086B1 (fr) Procédé de détermination du rayonnement moyen d'un lit de combustion dans un système d'incinération et la commande du processus de la combustion
EP0661500B1 (fr) Procédé de réglage d'un ou de plusieurs paramètres de la combustion sur une grille d'un foyer
EP1698827B1 (fr) Procédé pour brûler des combustibles et plus particulièrement des déchets
DE3208567C2 (de) Verfahren zur Regelung einer Dampfkesselfeuerung
EP0612961B1 (fr) Procédé de détermination de propriétés caractéristiques de processus formant des radicaux
DE4428159C2 (de) Verfahren zur Regelung der Feuerung bei Verbrennungsanlagen, insbesondere Abfallverbrennungsanlagen
EP0317731B1 (fr) Procédé de contrôle de la combustion de carburant possédant un pouvoir calorifique fortement variable
DE3904272C3 (de) Verfahren zum Erfassen der von mindestens zwei räumlich getrennten Stellen mindestens einer Verbrennungszone auf einem Rost ausgehenden Strahlung und Vorrichtung zum Erfassen einer solchen Strahlung
DE19820038C2 (de) Verfahren zum Regeln der Feuerleistung von Verbrennungsanlagen
DE4312820A1 (de) Verfahren zum Verbrennen von Brennstoffen, insbesondere Abfall
DE3825931A1 (de) Verfahren und vorrichtung zur regelung der feuerungsleistung von verbrennungsanlagen
DE3515209C2 (fr)
DE19919222C1 (de) Verfahren zum Steuern der Verbrennung von Brennstoff mit variablem Heizwert
EP0499976B1 (fr) Procédé pour fonctionnement d'une installation d'incinération
EP2064490B1 (fr) Procédé de caractérisation de la qualité de combustion des gaz d'échappement dans des installations de combustion
EP1489355B1 (fr) Procédé et appareil pour réguler la puissance thermique d'un incinérateur
EP3964752B1 (fr) Procédé de fonctionnement d'une installation de combustion
AT412903B (de) Verfahren zur steuerung bzw. regelung von feuerungsanlagen sowie danach regelbare feuerungsanlage
WO2005038345A2 (fr) Dispositif et procede pour optimiser le degre de combustion des gaz d'echappement dans des installations de combustion
DE69204960T2 (de) Verfahren und Einrichtung zur Lastregelung von Kesseln mit mechanischem Wanderrost
DE102006022628B4 (de) Verfahren zum Betrieb einer Anordnung von Staubbrennern
EP2784392B1 (fr) Détecteur de flamme
WO1991000978A1 (fr) Dispositif pour la regulation d'installations de chauffe
AT402555B (de) Verbrennungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GBC Gb: translation of claims filed (gb section 78(7)/1977)
EL Fr: translation of claims filed
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 23N 5/08 A, 7F 23G 5/50 B

17P Request for examination filed

Effective date: 20010222

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FR GB IT LI LU NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020131

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL PT SE

REF Corresponds to:

Ref document number: 218688

Country of ref document: AT

Date of ref document: 20020615

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59804291

Country of ref document: DE

Date of ref document: 20020711

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI & CIE INGENIEURS-CONSEILS

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020830

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20020904

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2176860

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030306

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20170719

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170719

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170719

Year of fee payment: 20

Ref country code: DE

Payment date: 20170724

Year of fee payment: 20

Ref country code: ES

Payment date: 20170825

Year of fee payment: 20

Ref country code: FR

Payment date: 20170724

Year of fee payment: 20

Ref country code: IT

Payment date: 20170728

Year of fee payment: 20

Ref country code: CH

Payment date: 20170719

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20170704

Year of fee payment: 20

Ref country code: BE

Payment date: 20170719

Year of fee payment: 20

Ref country code: AT

Payment date: 20170720

Year of fee payment: 20

Ref country code: DK

Payment date: 20170719

Year of fee payment: 20

Ref country code: SE

Payment date: 20170719

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59804291

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20180706

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20180705

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 218688

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180706

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20180706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180705

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180707