EP0893941B1 - Procédé et système pour alimenter et superviser des charges électriques alimentées de manière discontinue, via leur réseau de distribution - Google Patents

Procédé et système pour alimenter et superviser des charges électriques alimentées de manière discontinue, via leur réseau de distribution Download PDF

Info

Publication number
EP0893941B1
EP0893941B1 EP98113454A EP98113454A EP0893941B1 EP 0893941 B1 EP0893941 B1 EP 0893941B1 EP 98113454 A EP98113454 A EP 98113454A EP 98113454 A EP98113454 A EP 98113454A EP 0893941 B1 EP0893941 B1 EP 0893941B1
Authority
EP
European Patent Office
Prior art keywords
voltage
operating
power
waves
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98113454A
Other languages
German (de)
English (en)
Other versions
EP0893941A3 (fr
EP0893941A2 (fr
Inventor
Rolf Prof. Dr.-Ing. Grohmann
Frank Dipl.-Ing. Friedrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elektrobau Oschatz GmbH and Co KG
Original Assignee
Elektrobau Oschatz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elektrobau Oschatz GmbH and Co KG filed Critical Elektrobau Oschatz GmbH and Co KG
Publication of EP0893941A2 publication Critical patent/EP0893941A2/fr
Publication of EP0893941A3 publication Critical patent/EP0893941A3/fr
Application granted granted Critical
Publication of EP0893941B1 publication Critical patent/EP0893941B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/21Responsive to malfunctions or to light source life; for protection of two or more light sources connected in parallel
    • H05B47/22Responsive to malfunctions or to light source life; for protection of two or more light sources connected in parallel with communication between the lamps and a central unit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/185Controlling the light source by remote control via power line carrier transmission

Definitions

  • the invention relates both to a method and a system or a circuit arrangement with or the consumer to be discontinued, in particular lighting devices, control and monitor to let.
  • the invention is particularly suitable for urban or street lighting systems in which Daily recurring periods are present in which all consumers, in particular all lighting equipment, are switched off.
  • Street lighting systems usually belong Relatively many single lights, the different Locations of the city are arranged. Dependent on the place of installation As a rule, different requirements arise in terms of brightness and brightness during the lighting time. For example, it may be in Residential areas may well be desirable, the brightness of the Street lighting in certain periods, for example after 24 o'clock, to lessen. On the other hand it can busy intersections or elsewhere be quite appropriate, the lighting always with full To operate power. In addition, areas can occur in which the lighting is only in shortened or restricted Is to operate periods.
  • the lamps of a street lighting according to the special requirements to be able to control.
  • Existing cable networks carry that but usually not bill.
  • the street lighting will divided into more or less large areas by a central control room or an automatic switch be switched on and off.
  • the individual consumers are on the lines of a supply network connected in parallel with each other. With the switching of a Circuit will thus all consumers simultaneously on or off. Separate control lines, with which individual consumers are addressed individually could be, especially in Altinstallationen in the Usually not available.
  • Street lighting usually contains discharge lamps, the already in the absence of a single mains voltage half-wave extinguished. After extinguishing need Discharge lamps usually take a few minutes to get them have ignited again and shine with full power. The temporary extinction of street lighting can but can not be accepted.
  • DE 44 13 513 A1 discloses a method and a Device for controlling and monitoring electrical Consumers known in DC networks.
  • the to DC power supply used source of power has on the output side electronic switches with which the voltage supply to the consumer briefly interrupted can be. Through a series of short-term Power interruptions will be the desired consumer told what action to take. Is the Consumer is a stepper motor, it will increase the number of notified steps to be followed, which then after End of the power interruptions.
  • This principle finds its limits when the end the operation or action of the consumer at the time his programming is not yet predictable and get another transfer of information during the Operation of the consumer forbids. For example, can usually can not be accurately predicted when a Turn off street lighting. This depends on the Lighting conditions, which vary depending on the weather.
  • From DE-A-41 36 673 is a light switch with a Pulse generator known to the multiple lamps or groups of lamps can be assigned.
  • the lamps or groups of lamps contain electronic modules that the number of Pulses that the pulse generator immediately at power give, count by the number of pulses one activate selected lamp or lamp group.
  • the Signal transmission takes place in each case when switching on a desired lamp or group of lamps, i. even if already burning other lamps or groups of lamps.
  • These Type of lamp selection for switching on and off is suitable not for lighting systems, the high-pressure gas discharge lamps contain. Hidden impulses would be here for Extinguishing already burning high pressure gas discharge lamps to lead.
  • EP-A-0 038 877 also discloses the transfer data during operation of a lamp. To do this Parts of a half-wave or whole half-waves or wave trains hidden. Within these power interruptions so generated for example, information transmitted by means of a high-frequency signal.
  • US-A-5 107 184 discloses the controller a lamp ballast with regard to lamp brightness by hiding operating voltage pulses. This method is not suitable for controlling High-pressure gas discharge lamps because they are sensitive to Voltage fluctuations or interruptions react.
  • WO-A-97/06655 discloses a ballast which during operation by influencing individual half-waves dimmed or otherwise influenced. This is also apparent from US-A-4,348,582.
  • the information transmission made over the wires, over the the operating power (AC operating voltage) to the individual consumers in the network is limited to periods in which all consumers are switched off or switched off can. These periods, so-called breaks, are in street lighting, for example, times of day, too which the existing natural lighting with security No additional artificial lighting required. there is ensured by appropriate circuitry measures, that the transmission of information from permanent to be operated lighting systems, for example Illuminations in tunnels or underpasses, separated and is kept away.
  • pauses allow encryption the information to be transmitted by lowering or Hiding individual half-waves or half-wave groups.
  • the network is essentially at this time idle. Consumers, usually one are mixed ohmic-inductive load, are switched off. As a result, the voltage conditions are also in extended networks relatively well manageable and the Hiding individual voltage half-waves or periods can be done low power.
  • the information is preferably as a binary signal transmit, wherein a binary value, for example by a or more lowered voltage half-waves and another Binary value due to one or more unchanged voltage half-waves be marked.
  • a binary value for example by a or more lowered voltage half-waves and another Binary value due to one or more unchanged voltage half-waves be marked.
  • an odd Number of voltage half-waves preferably one only hide, with after each hide one even number of unchanged half-waves is sent.
  • the other binary value is then preferred also by an even number of voltage half-waves characterized. This causes hidden Voltage halfwaves always alternate in polarity. With any binary sequence is achieved the hidden ones that identify a particular binary value Voltage half-waves (these indicate either Zero or one) are alternately positive and negative. On this way, DC components in the network suppressed.
  • the number of for a binary value influenced voltage halfwaves One smaller than the number of unaffected halfwaves for the other binary value.
  • the voltage and time window is preferably placed in such a period in which the effect of the influence, in particular suppression, the half-wave of the AC mains voltage best detectable is.
  • the time window preferably immediately after the next expected peak value of the mains voltage placed.
  • These time windows can be determined by voltage zero crossings the AC mains voltage are detected.
  • capacitive networks can have individual zero crossings fail or be delayed greatly. This is especially true for zero crossings before hidden voltage periods. In this case, as the zero crossing time preferably the time taken for the zero crossing would have been expected.
  • the zero crossings can be generated by a generator, which is used by the actually existing zero crossings synchronized becomes. This generator can in a microprocessor software will be realized.
  • At least some consumers switch-on and other Information such as times when the Performance is to be reduced or increased, or interim shutdown and reconnect times, but not Transmit end times.
  • the lighting works thus in the dark timergesteurt (programmatically) during the beginning and end of the entire operating cycle ambient light-controlled (event-controlled). On This way will prevent a lighting switches off programmatically, although the natural brightness, For example, due to dense clouds, not sufficient.
  • the shutdown of all consumers for example simply by switching off the mains AC voltage respectively.
  • the control of the consumers (lamps) is thus mixed by transmitted information and by switching off the transmitted power.
  • the system is preferably hierarchically structured.
  • individual consumers are assigned several addresses.
  • each consumer has a single address, via which he can be addressed separately is.
  • consumer groups can have group addresses be associated with which consumers as a group can be addressed.
  • the consumers preferably via a common address in total accessible, for example, all consumers at the same time to turn on or one and the same information to be able to transfer all consumers. With it reduced the effort to transfer information considerably. For example, all consumers, one and the same On and off time and same other conditions to be grouped together. This applies, for example, to the illumination of a square, a shopping arcade, a street train or a Crossing or several intersections.
  • control signals via the existing power line to slave modules sent, which are present in all consumers. Consumers are via individual and group addresses of Master module from unidirectionally addressable.
  • the information transfer takes place preferably by hiding or changing half-waves while selected Periods, especially during breaks.
  • a lighting system 1 is schematized illustrates to which a three-phase line network 2 belongs. This will be from a not further illustrated Power source 3, for example a transformer station, via a serving for switching lights 4 Master module 5 fed.
  • Power source 3 for example a transformer station
  • Master module 5 fed.
  • the switch unit 6 contains electronic controllable valves or switches, for example triacs, can switch the individual half-waves.
  • the consumer 4 for example switched against a neutral wire N.
  • a slave module 12 is connected upstream, in turn connected to one of the phase lines L1 *, L2 *, L3 * is, which are controlled via the switching unit 6.
  • the Phase lines L1 *, L2 *, L3 * carry AC operating voltage and feed the slave modules 12 with this. Furthermore carry information from the slave modules 12 be read and at least to turn on the consumer 4 can lead.
  • Fig. 2 is the hierarchical order of Appendix 1 seen.
  • the master module 5 transmits over the phase lines L1 *, L2 *, L3 * network synchronous information to the Slave modules 12, which have different individual addresses can.
  • the slave modules 12 can not Send information back so that both the information flow as well as the energy flow is unidirectional.
  • the individual address of each slave module is hardware-technical established.
  • the individual address can by Wire bridges or switches adjustable or in one stored electronic memory.
  • the group addresses, the selected slave module groups are software addresses, preferably programmable, if necessary also remote programmable are. If necessary, the group addresses like the Individual addresses also set or fixed by hardware become. It is more advantageous, however, this through Set the programming of the individual slave modules whereby after construction and installation of the lighting system 1 without manual access to individual slave modules 12 this software address can be assigned. These are addressed on the basis of their individual address, after which the software address is communicable.
  • the master module 5 and a slave module 12 are shown in FIG. 3 separately illustrated.
  • the master module 5 is input side with a feeding AC or three-phase network N, L1, L2, L3 and via this with the energy source 3 (Fig. 1) connected.
  • the master module 5 via the line network N, L1 *, L2 *, L3 * with inputs of the Slave modules 12 connected.
  • a light sensor 14 which is connected to a control input of the Master module 5 is connected.
  • Centerpiece of the Master Module 5 is a computer module 15 that receives signals from a real-time clock 16, of voltage sensors 17, for example, the monitor lines L1 *, L2 *, L3 *, and get current sensors 18 that are in just this Lines capture the currents. Belongs to the master module 5 also a power supply module 19, the operating voltage for all modules of the master module 5 provides.
  • the computer module 15 controls a main switch 21, which in a power path 22 between the network N, L1, L2, L3 and the network N, L1 *, L2 *, L3 * is located.
  • the main switch 21 are a power section 23 and a parallel switch 24 connected downstream.
  • the power section 23 contains electronic controllable switches (valves, triacs) that when not be ignited, can hide individual network half-waves. Parallel to this, the parallel switch 24 is arranged, for example, a three-phase contactor for bridging contains the triacs.
  • the slave modules 12 each have a programmable Circuit 26, which from a power supply 27th is powered and operates a switching unit 28, the On and off the consumer 4, for example Gas discharge lamps 4, serves.
  • the programmable circuit 26 and controlled by this switching unit 28th can be constructed as shown in FIG. After that, the programmable Circuit 26 through a Einchipmikrorechner 31 be formed, the input side to the power network N, L1 *, L2 *, L3 * is connected. To capture Net zero crossings can in this case the illustrated in Fig. 5 Serve circuit.
  • the single-chip microcomputer 31 is with a dedicated input to the output of a Zero crossing detector circuit 32 connected. To this includes a Grfordmaschine 33, the input side a corresponding phase line L1 *, L2 * or L3 * connected is.
  • the master module 5 takes over the power control and functional control of the resources, i. the consumer 4 and can therefore also as Powercontrol- and Service Manager (PCS Manager).
  • PCS Manager Powercontrol- and Service Manager
  • the slave module can also be called a PCS controller.
  • Fig. 4 are on the Einchipmikrorechner 31 on the output side, a relay 35, the Power flow controls the consumer 4, as well as a triac 36 or another electronic switch, with the power of the consumer 4 influenced is.
  • This is a corresponding ballast 37 upstream, which is a power switching allowed.
  • slave module 12 (PCS controller) shown in FIG. takes over the Einchipmikrorechner 31 except the Control of the relay 35 and the triac 36, the signal evaluation and signal storage to the consumer 4 after switching on self-sufficient without further programming through the PCS manager.
  • In the present embodiment is a street lighting system based on, based on their local situation and the existing municipal functional units into five groups. These are Road junction, main street, side street, theater square and school. This results in five software addresses, to realize with them different lighting tasks are. In other words, all consumers are 4 each assigned to one of the five groups, all of them Consumers of the respective group the same software address exhibit.
  • the intersection areas are assigned to the group address 1 of the highest priority.
  • the associated group consumers 4 are a * t up from work over the entire switching time of t at full power.
  • the group address is 1.
  • the second highest priority is the main road and assigned to the school. These therefore receive the group or software addresses 2 and 3.
  • the consumers of the group address 2 shine over the entire time, with between 22.oo h and 2.oo h reduced-power operation is set or programmed.
  • the consumers of Group address 3 are meanwhile switched off, whereby before and after in a reduced performance Go over to operation.
  • the computer module 15 of the PCS manager at time t a, the front of a switch-on time t a * (Fig. 6), or a time point E a (Fig. 7) either by agreement between the programmed time and the real time clock 16, or triggered by a signal from the light sensor 14 indicating that the existing brightness has fallen below or approaches a threshold G ( Figure 7).
  • the computer module 15 if it has been triggered by a sensor signal, checks whether twilight is to be expected according to the time of day. If yes includes the computer module 15 to a in Fig. 6, indicated at time t on the main switch 21 and checks the terminal voltages by the voltage sensor 17.
  • the single-chip microcontrollers 31 After closing of the main switch 21 and through-connection of the power unit 23 is initially operating voltage to the PCS controllers 12 are provided. As a result, the single-chip microcontrollers 31 perform a power-on reset while blocking the outputs via the relay 35 and the triac 36. Thereafter, the single-chip microcomputer 31 waits for the signals sent from the PCS manager 5.
  • the PCS manager 5 If the PCS manager 5 does not detect any irregularities in the operating voltage and the operating currents when the lighting system is switched off, it opens the initially closed parallel switch 24 and transmits with the power unit 23 all programming commands stored in its program memory to all groups or software addresses.
  • the programming commands include information about the on-time E a and other group-specific on and off times as well as group-specific start and end times for phases with reduced-power operation.
  • the Power section 23 connected to the downstream network L1 *, L2 *, L3 * reaching AC voltage, as explained later, so modulates that the slave modules 12 or PCS controller the required operating information received.
  • group addresses set in a programming, preferably already made and not changed be successively, the group addresses and the associated data sent. For example, be first sent the group address 1, causing all slave modules 12 Group 1 and the following Data stream received. Thereafter, the group address becomes 2 sent, after which their slave modules through a data stream be programmed. This process continues until all group addresses have been processed.
  • the slave modules 12 are now in timer mode. In this they are not further on signal reception, but work unaffected from the outside, in a way self-sufficient, you have received Time program.
  • the PCS controllers 12 carry the im Single-chip microcomputer 31 stored time and RAM Command sequences such that the relay 35 and the triac 36 the connected lights 4 in the operating states switch "on", "off” or "reduced power". Of the Timer mode is retained until the timer program has been processed, the operating voltage is switched off or a new power-on reset takes place.
  • the switching off of the operating voltage for the end shutdown of the lighting system is preferably carried out as a function of the existing natural brightness. If this reaches the limit value G in the morning, as shown in FIG. 7, this is detected by the computer module 15 on the basis of the signal of the light sensor 14. The computer module 15 then opens the main switch 21 and / or the power unit 23 and the parallel switch 24. The consumer 4 are thereby at the time A a dead.
  • brightness values may also occur during the day which are below the limit value G and require additional illumination. If such an event occurs before 4.00 pm or any other time-dependent time limit Z, the computer module recognizes that it is an "unscheduled" twilight or darkness and not the onset of the night. The consumers are therefore turned on at the time E b unprogrammed by the model module 15 sends the command address, which responds to all slave modules 12, and subsequently a power-on command. At the end of the dark phase, the computer module 15 detects the reaching or exceeding of the brightness limit value G with the light sensor 14 and switches off the consumers 4 again.
  • the signal transmission works as follows:
  • the information transfer from the master module 5 to the slave modules 12 takes place during the break in operation, i.e. when switched off consumers 4 as shown in FIG the alternating voltage present on a line (underground network) are used to identify the binary value "High" (logical "1") voltage half-waves are hidden. Preferably while only a single half-wave hidden, However, if necessary, several, preferably one odd number are hidden.
  • On the sent logical "1" (hidden half wave) follows an unchanged one Voltage period, which has no information content wearing. After this voltage period, for example, becomes a logical "O" sent, resulting in an unchanged voltage period is signaled.
  • the next logical "1" is turn a hidden half-wave, which now due the meantime transmitted even number of Half-waves is a hidden negative half-wave, while the first sent logical "1" is a hidden one positive half-wave was.
  • the inserted voltage period serves, also at longer sequences of logical ones a synchronization the slave module 12 to reach the AC line voltage and a non-zero voltage RMS value transferred as well as power supply to the slave modules 12 to to reach.
  • FIG. 10 The detection of the hidden or attenuated voltage half-waves takes place as shown in FIG. 10 or 11.
  • FIG. 10 voltage profiles in a mainly ohmic-inductive network are plotted over time t. If, after a few voltage halfwaves have been transmitted, a voltage half-wave is faded out from a time t 0 , the existing currents I are not zero at this time because of the phase offset between current and voltage. By induction effect on the existing inductors thus results in a voltage waveform with a true zero crossing.
  • the circuit according to FIG. 5 derives therefrom U SYNC , which identifies the zero crossings and represents an evaluable image of the mains voltage.
  • t 2 within the hidden half-wave can therefore be checked whether the existing voltage is below a limit U S or outside a predetermined voltage window. If this is the case, the examined half wave is detected as hidden.
  • the situation is different in a capacitive network.
  • This is, for example, an extensive cable network that operates essentially at idle.
  • the conditions are indicated in FIG. 11. If the network half-wave is suppressed at a time t 0, the thyristors or triacs of the power unit 23 become high-impedance for this purpose. They essentially extinguish at the zero crossing of the current when it falls below the holding current value of the respective thyristor or triac.
  • the master module 5 is thus relatively high-impedance on the output side.
  • the present at the loads or slaves 12 voltage can now, as indicated by the voltage waveform on the line L1 *, only relatively slowly decay.
  • the decay can be accelerated if the power unit 23 produces a lead-off connection, for example, to the neutral conductor N. This can be done with a resistance to the neutral and / or via suitable switch. Nevertheless, a certain time remains from t 0 , in which the decaying voltage is not zero. However, the amount of decaying voltage in the time window t 1 , t 2 has fallen below the magnitude of the threshold voltage, so that the hidden mains half-wave is recognized as such.
  • the zero crossing t 0 at the slave module 12 can not be recognized as a voltage zero crossing when the mains half-waves are hidden, as can be seen from FIG. 11.
  • the slave module 12 must poll the time window t 1 , t 2 at a fixed distance from the zero crossing t 0 .
  • the circuit of FIG. 5 serves this purpose. Via the Graetz bridge 33 and the downstream network, pulses are generated at each regular zero crossing in which the voltage, which is otherwise limited to Z voltage, becomes zero for a short time.
  • the microprocessor 31 recognizes these zero crossings on the basis of the short zero pulses.
  • each detected zero crossing determines on the basis of the known duration of a network half-wave the next time at which the next zero crossing is to be expected. If such a zero crossing does not occur, after a short tolerance period of, for example, 100 ⁇ s, a zero crossing event t 0 is assumed and a timer is started which runs for a few milliseconds up to t 1 . If t 1 is reached, the time window begins in which the existing voltage is examined for whether it falls below the threshold voltage U S.
  • a service interval is processed with each single defective slave module 12 or any defective consumer 4 can be detected.
  • the operating mode service operation differs from timer operation in that the sending of the timer command sequence is omitted and exclusively the command address sent with a service command becomes.
  • all Luminaires 4 are switched on and off briefly one after the other.
  • the current sensors 18 (FIG. 3) determine whether and how much power is fed into the grid L1 *, L2 *, L3 * and thus how much power the relevant slave module 12 and the concerned consumers 4.
  • the current sensor 18 can thus simply the function of the lamp as a yes-no-Aaussage be determined.
  • a Operating state is the service at the hardware address intended.
  • the hardware address single address
  • the addressed slave module 12 switches the assigned and via the hardware address addressed light 8 via the Relay 35 in the on state until the PCS manager 1 a power-on reset is triggered.
  • the computer module In this Time, the computer module 15, the current profile of the lamp accurately measure and evaluate.
  • the results can be sent to a serial or at a parallel interface provided and additionally or alternatively in a memory filed or otherwise displayed. Moreover, it is a special test of individual consumers 4 and slave modules 12 possible. For example, by sending the command address, the single or hardware address and a third command codes a check of other functions of the Slavemodule 12, for example, the ability to reduce power possible. By applying the test modes mentioned is a complete check of all connected equipment possible. In the service interval, it is recommended that the individual Switch on and off consumers 4 only briefly, by the total time of the service interval at the maximum Hardware address count to a reasonable amount of time too limit.
  • a security feature can also provided that all consumers turn on 4, if after expiration of a waiting time (eg 5 min.) after the Switching on the mains voltage no meaningful or recognizable Command sequences have been sent.
  • the operating regime can be modified to that effect be that each slave module 12 after successful Programming by a command individually in the Timer mode changes.
  • the master module must be programming Make sure that until reaching the programmed Switch on the programming of the remaining other slave modules 12 completed with certainty is.
  • a facility for operating multiple distributed Consumer 4, for example, a street lighting system 1, has a central master module 5, each consumer 4 has a slave module 12.
  • the master module 5 is used to program the slave modules 12, which after successful programming the individual consumers 4 control independently.
  • the programming of the slave modules 12 takes place during breaks with consumers switched off 4 by modulation of the AC operating voltage.
  • the Modulation preferably includes hiding individual or more halfwaves to identify a Binary value during low or unchanged halfwaves mark another binary value. On hidden halfwaves preferably follows a filling period without information content, the maintenance of the operating voltage and enabling the synchronization of the slave modules 12 serves.

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Burglar Alarm Systems (AREA)

Claims (11)

  1. Procédé pour commander des appareils consommateurs d'énergie électrique et pour leur transmettre des informations dans un réseau de transmission de puissance, par l'intermédiaire de la tension alternative de service de ce réseau, caractérisé en ce que :
    il est prévu des pauses de service pendant lesquelles tous les appareils consommateurs (4) sont coupés et la tension alternative de service est appliquée au moins par instant au réseau de transmission de puissance,
    pour transmettre l'information pendant les pauses de service, des demi-ondes individuelles ou des groupes de demi-ondes de la tension alternative de service ont leur amplitude totalement modifiée,
    l'information est transmise exclusivement au cours de pauses de service sous la forme de signal binaire, et pour la transmission d'une valeur binaire, l'amplitude d'un nombre impair de demi-ondes est abaissée ou amenée à zéro,
    pour transmettre une autre valeur binaire, des demi-ondes sont amenées à une autre valeur ou laissées inchangées, le nombre de ces demi-ondes étant supérieur d'une unité au nombre des demi-ondes influencées de l'autre valeur binaire, et
    après transmission des demi-ondes modifiées d'une valeur binaire, des séries de tension non influencées comprenant un nombre pair de demi-ondes sont appliquées au réseau de transmission de puissance.
  2. Procédé selon la revendication 1, caractérisé en ce que sur les utilisateurs pendant les pauses de service, à un intervalle de temps défini faisant suite à chaque point de passage à zéro de la tension de service, est testé si la tension de service se trouve dans une fenêtre déterminée de tension ou au moins dépasse une valeur de seuil US, et les valeurs binaires du signal deviennent ensuite différentes si la valeur de tension de service à l'instant de mesure ou dans un intervalle de mesure (t1, t2) se trouve ou non à l'intérieur de la fenêtre de tension ou au-dessus de la valeur de seuil (US).
  3. Procédé selon la revendication 2, caractérisé en ce qu'on considère comme instant de passage à zéro l'instant auquel la tension du réseau de transmission de puissance atteint effectivement une valeur proche de zéro et dans le cas où un tel instant se fait attendre, on considère comme instant de passage à zéro l'instant auquel le passage au zéro aurait dû se produire si la tension alternative de service était restée inchangée.
  4. Procédé selon la revendication 1, caractérisé en ce qu'en tant qu'information adressée au consommateur, sont transmis des temps et/ou des ordres de commutation qui, chez les utilisateurs, sont utilisés par l'intermédiaire de dispositifs de commutation comportant une horloge en temps réel, pour enclencher et/ou pour couper et/ou pour influencer la puissance transférée, la coupure finale des utilisateurs à alimenter de manière discontinue étant produite de préférence par coupure de la tension alternative de service.
  5. Procédé selon la revendication 1, caractérisé en ce que les consommateurs peuvent réagir individuellement, en groupes et/ou tous ensemble, et les signaux de commande sont produits aussi bien à l'aide de données saisies actuellement qu'à l'aide de données définies et mémorisées.
  6. Procédé selon la revendication 1, caractérisé en ce que quand des consommateurs (4) individuels sont enclenchés, des valeurs de tension et d'intensité et/ou des valeurs de puissance sont surveillées pour réaliser des contrôles de fonctionnement individuels.
  7. Installation, notamment pour l'éclairage de villes ou de routes, comprenant :
    au moins un dispositif d'alimentation en énergie qui délivre une tension alternative de service, avec une puissance suffisante pour alimenter l'installation (1),
    un réseau de conducteurs (N, L1, L2, L3 ; L, L1*, L2*, L3*) qui peut être alimenté à la tension de service par le dispositif d'alimentation de puissance (3),
    des consommateurs (4), raccordés au réseau de conducteurs (N, L1, L2, L3 ; L, L1 *, L2*, L3*) et qui peuvent être alimentés par ce réseau à la puissance de service,
    un module-maítre (5) qui permet de moduler la tension alternative délivrée par le dispositif d'alimentation (3) de manière à transmettre, pendant les pauses de service au cours desquelles tous les consommateurs (4) sont coupés, l'information de commutation,
    caractérisée en ce que le module-maítre (5) contient un modulateur (23) qui pour la transmission d'informations binaires diminue ou amène à zéro l'amplitude d'un nombre impair de demi-ondes de tension pour obtenir un signal caractérisant une des valeurs binaires et qui, pour coder l'autre valeur binaire, émet un nombre de demi-ondes de tension modifiées à une autre valeur ou laissées inchangées, le nombre de ces demi-ondes dépassant d'une unité le nombre impair de l'autre valeur binaire et le modulateur, après une ou plusieurs demi-ondes modifiées, produit un nombre pair de demi-ondes non modifiées en tant que périodes de remplissage ne contenant pas d'information, et il existe des modules esclaves (12) qui sont associés aux consommateurs (4) et peuvent chacun être commandés et/ou être programmés par des informations de commutation émises par le module-maítre.
  8. Installation selon la revendication 7, caractérisée en ce que
    le module-maítre (5) est relié à un réseau d'alimentation à une ou plusieurs phases ainsi qu'au module-esclave (12) par l'intermédiaire du réseau de transmission de puissance,
    le module-maítre (5) présente une ou plusieurs unités de calcul (15), au moins un capteur de lumière (14), des capteurs de tension et/ou d'intensité (17, 18) et/ou au moins un élément de puissance (23) formant un modulateur,
    les modules-esclaves (12) comprennent chacun au moins une unité de calcul (31) qui est alimentée en tension alternative de service par l'intermédiaire d'un module de distribution de tension et qui est relié à une horloge en temps réel.
  9. Installation selon la revendication 7, caractérisée en ce que la tension alternative délivrée par le dispositif d'alimentation de puissance (3) est une tension alternative polyphasée et le module-maítre (5) module toutes les phases de la tension alternative polyphasée avec la même information.
  10. Installation selon la revendication 7, caractérisée en ce que l'information de commutation contient au moins un instant d'enclenchement et chaque module-esclave présente un dispositif interne de commutation pour commuter l'utilisateur (4) à l'instant programmé, ce module, après programmation effectuée du consommateur (4) ou après réception d'un ordre de libération, est avantageusement bloqué de manière à ne pas pouvoir recevoir d'autres informations.
  11. Installation selon la revendication 7, caractérisée en ce que le module-maítre (5) contient un dispositif (15) de production d'un signal qui décrit la luminosité naturelle à attendre en fonction de la période de l'année et/ou de l'instant du jour, le module-maítre (12) contient un dispositif de mémorisation dans lequel peuvent être lues des informations concernant le besoin de lumière au niveau des différents consommateurs et le module-maítre (5) présente au moins un capteur (14) pour capter les conditions actuelles.
EP98113454A 1997-07-21 1998-07-18 Procédé et système pour alimenter et superviser des charges électriques alimentées de manière discontinue, via leur réseau de distribution Expired - Lifetime EP0893941B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19731150A DE19731150A1 (de) 1997-07-21 1997-07-21 Verfahren und Schaltungsanordnung zum Betreiben und Überwachen diskontinuierlich betriebener elektrischer Verbraucher über Starkstromleitungen
DE19731150 1997-07-21

Publications (3)

Publication Number Publication Date
EP0893941A2 EP0893941A2 (fr) 1999-01-27
EP0893941A3 EP0893941A3 (fr) 2000-12-13
EP0893941B1 true EP0893941B1 (fr) 2005-11-30

Family

ID=7836327

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98113454A Expired - Lifetime EP0893941B1 (fr) 1997-07-21 1998-07-18 Procédé et système pour alimenter et superviser des charges électriques alimentées de manière discontinue, via leur réseau de distribution

Country Status (5)

Country Link
EP (1) EP0893941B1 (fr)
AT (1) ATE311735T1 (fr)
DE (2) DE19731150A1 (fr)
DK (1) DK0893941T3 (fr)
ES (1) ES2251751T3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011053688B3 (de) * 2011-09-16 2013-03-21 Vossloh-Schwabe Deutschland Gmbh Betriebssteuervorrichtung und Verfahren zur Steuerung mehrerer Leuchten

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19925597C2 (de) * 1999-06-04 2003-09-25 Eberhard Issendorff System zur Überwachung von Außenleuchten sowie Datenmodul mit einem Überwachungssensor
DE19944023A1 (de) * 1999-09-14 2001-03-15 Siemens Ag Verfahren zum Betreiben eines Gebäude-Installationssystems
DE10121048A1 (de) * 2001-04-28 2002-10-31 Abb Patent Gmbh Anordnung und Verfahren zur Verbreitung von Informationen über das Stromnetz
DE10128258A1 (de) * 2001-06-12 2002-12-19 Luxmate Controls Gmbh Dornbirn Powerline-Steuersystem
DE10357312B4 (de) * 2003-12-09 2007-05-16 Elero Gmbh Antriebstechnik Vorrichtung zum Betrieb eines Stellsystems
DE102005029728B4 (de) * 2005-06-24 2007-06-06 Baumeister, Jörg Anordnung zur Steuerung der Straßenbeleuchtung
DE102007062999B3 (de) * 2007-12-21 2009-07-02 Rp-Technik E.K. Sicherheitsbezogenes Kommunikationsverfahren auf Energieversorgungsleitungen und ein dazugehöriges Netz
EP2182778B1 (fr) 2008-10-29 2020-09-02 SITECO GmbH Procédé de commande d'une lampe extérieure et lampe correspondante
DE102009034801A1 (de) * 2009-07-25 2011-01-27 Abb Ag Verfahren zur Ansteuerung einer Leuchte
DE102009035169A1 (de) * 2009-07-29 2011-02-10 Abb Ag Verfahren zur Einstellung der Ansteuerung mehrerer Leuchten
SK6029Y1 (sk) * 2011-04-08 2012-03-02 Jozef Sedlak Involvement of programmable electronic ballast to supply lines for light sources
DE102012008215B4 (de) 2012-04-18 2019-06-13 Heribert Oechsler Vorrichtung zur Realisierung einer Referenzuhr mit selbsttätiger Anbindung der internen Systemzeit an die Erdrotation
CN118092980B (zh) * 2024-04-18 2024-06-28 福建时代星云科技有限公司 一种pcs远程升级方法及终端

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1341025A (en) * 1970-11-17 1973-12-19 English Electric Co Ltd Data transmission over mains supplies
GB1600056A (en) * 1978-03-14 1981-10-14 Texas Instruments Ltd Communication via an electricity supply main
EP0038877B1 (fr) * 1980-04-28 1985-06-26 Paul Rouet Procédé et installation pour la transmission d'informations et de commandes sur un réseau de distribution d'énergie électrique alternative
FR2633140B1 (fr) * 1988-06-15 1996-04-26 Forclum Force Lumiere Elect Procede et systeme de surveillance des defaillances d'au moins une source lumineuse
FR2649267B2 (fr) * 1988-10-10 1991-09-13 Ruaux Christian Dispositif et procede perfectionnes de transmission d'informations sur ligne electrique
DE3907652A1 (de) * 1989-03-09 1990-09-13 Siemens Ag Schaltungsanordnung zum uebertragen von binaeren signalen und energie ueber eine leitung
US5107184A (en) * 1990-08-13 1992-04-21 Electronic Ballast Technology, Inc. Remote control of fluorescent lamp ballast using power flow interruption coding with means to maintain filament voltage substantially constant as the lamp voltage decreases
DE4214882A1 (de) * 1991-07-21 1993-01-28 Schmidt Hartmut Dipl Phys Halbwellenaustastvorrichtung fuer elektrische gluehlampen und andere wechselstrombetriebene verbraucher
DE4136673C2 (de) * 1991-11-05 1994-08-25 Eugen Ringwald Lichtschalter zur selektiven Ansteuerung einer Lampe oder Lampengruppe eines Lampensystems mit Taktimpulsen
BE1006362A3 (fr) * 1991-12-30 1994-08-02 Macq Electronique S A Nv Systeme de commande de zones d'eclairage.
SE9400847D0 (sv) * 1994-03-11 1994-03-11 Airport Tech Scandinavia Kommunikation på kraftkabel
DE4413513A1 (de) * 1994-04-19 1995-10-26 Sitronic Elektrotech Ausruest Verfahren und Einrichtung zur Ansteuerung und Überwachung von elektrischen Verbrauchern
DE4425876A1 (de) * 1994-07-09 1996-01-11 Wolfgang Dipl Jur Reimann Intelligente Steckdose
DE4444259C1 (de) * 1994-12-13 1995-10-26 Josef Horstmann Elektronische Schaltung zur definierten selektiven Inbetriebsetzung bzw. Ansteuerung von 230V-Wechselstromverbrauchern durch eine mit dem Lichtschalter zu schaltende Schaltleitung
US5691605A (en) * 1995-03-31 1997-11-25 Philips Electronics North America Electronic ballast with interface circuitry for multiple dimming inputs
DE19539452C1 (de) * 1995-10-24 1997-01-30 Leuze Electronic Gmbh & Co Sensor-Aktuator-Bussystem

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011053688B3 (de) * 2011-09-16 2013-03-21 Vossloh-Schwabe Deutschland Gmbh Betriebssteuervorrichtung und Verfahren zur Steuerung mehrerer Leuchten

Also Published As

Publication number Publication date
EP0893941A3 (fr) 2000-12-13
DE19731150A1 (de) 1999-02-25
EP0893941A2 (fr) 1999-01-27
DE59813236D1 (de) 2006-01-05
ATE311735T1 (de) 2005-12-15
ES2251751T3 (es) 2006-05-01
DK0893941T3 (da) 2006-03-27

Similar Documents

Publication Publication Date Title
EP0893941B1 (fr) Procédé et système pour alimenter et superviser des charges électriques alimentées de manière discontinue, via leur réseau de distribution
DE19807844C5 (de) Einrichtung zur zentralen Notlichtversorgung
EP1794895B1 (fr) Procede et systeme de transmission de donnees pour reseaux a tension alternative
DE102007062999B3 (de) Sicherheitsbezogenes Kommunikationsverfahren auf Energieversorgungsleitungen und ein dazugehöriges Netz
EP1247431B1 (fr) Dispositif et procede pour commander des moyens d'exploitation pour au moins un moyen d'eclairage electrique
EP1675274B1 (fr) Procédé de transmission de données sur une ligne de puissance à courant alternatif
WO1998007300A1 (fr) Procede et dispositif pour le reglage de la luminosite de tubes fluorescents
DE60207396T2 (de) Einrichtung zur verminderung des energieverbrauchs im zustand der betriebsbereitschaft in dali
DE4425876A1 (de) Intelligente Steckdose
EP2596682B1 (fr) Dispositif de commande et procédé de détection d'un type de charge
WO2011121011A1 (fr) Branche émettrice de tension de réseau d'une interface d'un appareil de commande pour moyen d'éclairage
DE69526932T2 (de) Kommunikation ueber eine serienleitung
DE202012004412U1 (de) Netzübertragungssystem mit Steuerung, Leitung und Empfänger
DE60219066T2 (de) Programmierbares system zur spannungsstabilisierung und regelung insbesondere zur verbesserten verwaltung von beleuchtungseinheiten mit leuchtstofflampen und ähnlichem
DE102010052661B3 (de) Kommunikationssystem zur Steuerung von elektrischen Lasten
EP2704332B1 (fr) Installation d'éclairage de secours/de sécurité et son procédé de commande
EP3651313B1 (fr) Unité de lumière de secours, installation d'éclairage de secours et élément de lumière de secours
DE102010017112B4 (de) Verfahren zum Betreiben eines elektrischen Installationssystems umfassend eine Hauptstelle und eine daran angeschlossene Nebenstelle
EP0871103A1 (fr) Appareil de commande d'éclairage
EP2477462B1 (fr) Système d'alimentation centrale et procédé d'atténuation simultanée d'une multitude de lampes
EP2182778B1 (fr) Procédé de commande d'une lampe extérieure et lampe correspondante
EP3764746A1 (fr) Appareil de commande
DE112009002523B4 (de) Verfahren zur Ansteuerung von Leuchtmittelbetriebsgeräten, Computersoftware-Programmprodukt, Leuchtmittelbetriebsgerät und System zur Ansteuerung von Leuchtmittelbetriebsgeräten
DE102017126742B4 (de) Schaltungsanordnung mit einem Betriebsschaltkreis sowie Verfahren zur Programmierung oder Aktualisierung wenigstens eines Betriebskennwerts des Betriebsschaltkreises
EP2263421A1 (fr) Détection de la polarité de raccordement d'un ballast pour appareils d'éclairage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE DK ES FI FR GB GR IE IT LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 05B 37/02 A, 7H 02J 13/00 B, 7H 04B 3/54 B

17P Request for examination filed

Effective date: 20010605

AKX Designation fees paid

Free format text: AT BE DE DK ES FI FR GB GR IE IT LU NL PT SE

17Q First examination report despatched

Effective date: 20030212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE DK ES FI FR GB GR IE IT LU NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 59813236

Country of ref document: DE

Date of ref document: 20060105

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060228

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060322

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2251751

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060502

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070713

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20070720

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070727

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20070713

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070720

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070712

Year of fee payment: 10

Ref country code: NL

Payment date: 20070716

Year of fee payment: 10

Ref country code: IT

Payment date: 20070723

Year of fee payment: 10

Ref country code: BE

Payment date: 20070802

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070710

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060718

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080718

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090201

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090201

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080718

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080718

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080719

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130711

Year of fee payment: 16

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 311735

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150630

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59813236

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201