EP0889146B1 - Heat resistant chromized steel, process for the production thereof and its use in anti-coking applications - Google Patents
Heat resistant chromized steel, process for the production thereof and its use in anti-coking applications Download PDFInfo
- Publication number
- EP0889146B1 EP0889146B1 EP98401567A EP98401567A EP0889146B1 EP 0889146 B1 EP0889146 B1 EP 0889146B1 EP 98401567 A EP98401567 A EP 98401567A EP 98401567 A EP98401567 A EP 98401567A EP 0889146 B1 EP0889146 B1 EP 0889146B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coking
- reactors
- coated
- article according
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/14—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
- C10G9/18—Apparatus
- C10G9/20—Tube furnaces
- C10G9/203—Tube furnaces chemical composition of the tubes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/28—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
- C23C10/34—Embedding in a powder mixture, i.e. pack cementation
- C23C10/36—Embedding in a powder mixture, i.e. pack cementation only one element being diffused
- C23C10/38—Chromising
- C23C10/40—Chromising of ferrous surfaces
- C23C10/42—Chromising of ferrous surfaces in the presence of volatile transport additives, e.g. halogenated substances
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/028—Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
Definitions
- the invention relates to steel objects having anti-coking properties, as well as the process used to obtain such objects by depositing a coating anti-coking on a matrix made of a steel, in general a refractory steel.
- the process is used for the production of parts that must resist coking in various refining or petrochemical processes.
- the coated parts of the invention can be used for various processes of the refining and petrochemicals involving temperatures above 350 ° C: steam reforming, dehydrogenation, visbreaking, among others. More specifically, the invention applies to the manufacture of tubular steam cracking ovens intended for a long-term service at temperatures of the order of 800 to 1100 ° C.
- coke The carbonaceous deposit that develops in the ovens during the conversion of hydrocarbon is generally called coke.
- This deposit of coke is harmful in industrial units. Indeed, the formation of coke on the walls of the tubes and reactors leads in particular to a reduction in heat exchanges, blockages significant and therefore increases in pressure drop. To keep a constant reaction temperature, it may be necessary to increase the temperature of the walls, which risks causing damage to the alloy constituting these walls. There is also a decrease in the selectivity of the installations and consequently of the performance.
- the coke formation during thermal cracking of hydrocarbons is a phenomenon complex involving different mechanisms, at least one of which involves reactions catalyzed by the presence of oxides of metallic elements such as nickel, iron or cobalt on the wall of the devices used for the implementation of said processes.
- metallic elements are generally contained in large quantities in the refractory superalloys used due in particular to the thermal levels encountered at the wall of these devices.
- This catalytic mechanism is very preponderant: observations have shown that if this mechanism was inhibited, it was possible in the case steam cracking to increase by a factor of at least about 3 the cycle time between two stops for decoking the ovens necessary for the implementation of this process.
- the deposited silicon carbide is a compound with a low coefficient of expansion, whereas the substrate employed usually has a coefficient much higher expansion, which leads over time and heating and cooling cycles a significant risk of loss of sealing, at least at certain points, of the coating of silicon carbide and consequently contact between the hydrocarbons and the superalloy which leads to an increase in the coking speed of the apparatus.
- the substrate generally consists of a refractory steel, containing preferably from 0.20 to 0.80% (percent) by mass of carbon.
- this steel has grains of austenitic structure at ambient temperature.
- a specific family of steel considered in the invention is that Manaurite® (registered trademark of MANOIR INDUSTRIES).
- Typical examples of steels which can be used in the invention have the main characteristics indicated in the following table (the compositions are in% by weight): VS mn Yes Or Cr Fe additions ASTM A297 HK Manaurite 20® 0.30 to 0.65 1-2 1-2.5 18-24 23-36 compl. Ti. Nb. W ASTM A297 HL 0.20 to 0.60 1-2 1-2 18-22 28-32 compl. ASTM A297 HN 0.20-0.50 1-2 1-2 23-27 19-23 compl. ASTM A297 HP 0,35-0.75 1-2 1-2,5 33-37 24-28 compl. Manaurite 36XS® 0.35 to 0.60 1-1.5 1-2 33-38 23-28 compl.
- Nb W Manaurite XM® 0.35 to 0.60 1-1.5 1-2 33-38 23-28 compl.
- Nb Ti, Zr Manaurite XT® 0.35-0.45 1-1.5 1-2 42-46 32-37 compl.
- Nb Manaurite XTM® 0.40 to 0.45 1-2 1-2 43-48 34-37 compl.
- Nb Ti
- the invention is more particularly considered refractory steel objects coated by thermal chromium plating methods, such as chromisation by cementation, in particular by pack cementation or by gas phase carburizing.
- pack-cementation is well known to those skilled in the art. He was described in numerous documents. For example in the United States patent US-A-5,589,220, the authors point out that pack-cementation is a derived process CVD (abbreviation for "Chemical Vapor Deposition”), which consists of heating, in closed or open enclosure containing the metal part to be coated, a "pack” at one high temperature for a fixed period, during which a deposit diffusion occurs on said metal part. The cementation "pack" in the closed or open enclosure is protected from oxidation by an inert atmosphere or reductive.
- CVD abbreviation for "Chemical Vapor Deposition”
- the cementation "pack” consists of a piece or a substrate of metal or of alloy to be coated, surrounded by the elements to be deposited (in the form of a metal or a master alloy), a halide activating salt and a pulverulent filler.
- a inert gas such as argon or hydrogen as the gaseous environment of "pack”.
- a reaction step takes place which results in the deposition of the desired element and in the formation, by diffusion in the solid state of a protective coating on the surface of the metal.
- the surface reaction can be quite complex and involve adsorption, dissociation and / or diffusion of molecular species.
- gas carburization consists of heating to a high temperature in an open enclosure containing the metal part during a fixed duration, during which a diffusion deposit occurs on said piece metallic by a chromium halide gas generated by the action of a halide and / or of its hydride on a bed of chromium or chromium alloy granules from 0.1 mm to 50 mm in diameter.
- This metallizing gas is conveyed by a gas carrying the bed of granules to said piece by a specific distributor-diffuser.
- the carrier gas is a gas such as argon or hydrogen as protective gaseous environment.
- the process of metallizing gas supply to said metal part is governed by the rules of fluid dynamics and limits the formation of chromium deposits.
- the mass concentration of chromium in the granules is at least fifty for hundred.
- the parts to be coated are placed in boxes containing a cement made up chromium powders (30 to 40% by mass) and alumina (60 to 70% by mass) and a activating halide (0.1 to 2% by mass relative to all of the two powders) under an atmosphere, for example hydrogen or argon. Heat treatment isotherm is then carried out at a temperature of 900 to 1200 ° C.
- the objects coated according to the invention can be used in general as building materials for tubular bundles of pyrolysis reactors of hydrocarbons, with or without the presence of water vapor, more particularly for steam reforming or steam cracking reactors. They can also be used as building materials for tube bundles for process furnaces petroleum or petrochemical, such as visbreaking. They can still be used in the coating of ferrules and / or internal of fixed bed reactors for treatments petrochemicals, such as for example dehydrogenation or reforming.
- the coated objects according to the invention exhibit improved anti-coking properties.
- the deposits obtained do not deteriorate during severe thermal cycles between room temperature and for example 1000 ° C., with heating and cooling rates of 500 ° C / h.
- Manaurite XM® refractory steel having the following composition is treated by pack-hardening.
- VS mn Yes Or Cr Fe additions Manaurite XM® 0.35 to 0.60 1-1.5 1-2 33-38 23-28 compl.
- Chromium was deposited electrolytically. To do this, we have immersed a sample of Manaurite XM® refractory steel serving as cathode, in a chromate bath and the chromate ions were reduced to metallic chromium on the cathode. A chromed steel was obtained, designated hereafter by Manaurite XM® chromed by electrolysis.
- a chromium-plated Manaurite XM® refractory steel sample is used as described in Example 1 and, for comparison.
- Manaurite XM® chromized glass of Example 1 leads, at the end of the first coking, to a coking speed much lower than that observed with the Manaurite XM® before chromization (5 times weaker) or that observed with Manaurite XM® electrolytic or that the Manaurite XM® coated with a layer of titanium carbide.
- the ManauriteXM® chromized in Example 1 also gives good results after second coking. For its part, a steel coated with titanium carbide and carbide silicon gives poor results from the second coking.
- Thermal cycling resistance tests were carried out in order to simulate the thermal shocks that industrial steam cracking tubes can undergo. These tests have were carried out in a muffle furnace equipped with an air injection. The samples have undergone 15 thermal heating and cooling cycles, from room temperature to 1000 ° C (and vice versa), with a heating (or cooling) speed of 500 ° C per hour. During the first 15 cycles, the parts are examined after each cycle.
- Example 1 The chromium-coated Manaurite XM® refractory steel as described in Example 1 was evaluated according to the previous protocol. After 145 cycles (which corresponds to cumulative thermal cycling on industrial plant for an estimated service life of 10 years), this steel has not degraded. During the first 15 cycles, the parts are examined after each cycle. Metallographic examinations confirm the integrity of the coating.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Chemical Vapour Deposition (AREA)
Description
L'invention concerne des objets en acier présentant des propriétés anti-cokage, ainsi que le procédé mis en oeuvre pour obtenir de tels objets par dépôt d'un revêtement anti-cokage sur une matrice constituée d'un acier, en général un acier réfractaire. Le procédé est utilisé pour la fabrication de pièces devant résister au cokage dans divers procédés de raffinage ou de pétrochimie.The invention relates to steel objects having anti-coking properties, as well as the process used to obtain such objects by depositing a coating anti-coking on a matrix made of a steel, in general a refractory steel. The process is used for the production of parts that must resist coking in various refining or petrochemical processes.
Les pièces revêtues de l'invention peuvent être utilisées pour divers procédés du raffinage et de la pétrochimie mettant en jeu des températures supérieures à 350 °C : vaporéformage, déshydrogénation, viscoréduction, entre autres. Plus particulièrement, l'invention s'applique à la fabrication de fours tubulaires de vapocraquage destinés à un service de longue durée à des températures de l'ordre de 800 à 1100 °C.The coated parts of the invention can be used for various processes of the refining and petrochemicals involving temperatures above 350 ° C: steam reforming, dehydrogenation, visbreaking, among others. More specifically, the invention applies to the manufacture of tubular steam cracking ovens intended for a long-term service at temperatures of the order of 800 to 1100 ° C.
Le dépôt carboné qui se développe dans les fours lors de la conversion des hydrocarbures est généralement appelé coke. Ce dépôt de coke est néfaste dans les unités industrielles. En effet, la formation du coke sur les parois des tubes et des réacteurs entraíne notamment une diminution des échanges thermiques, des bouchages importants et donc des augmentations de pertes de charge. Pour conserver une température de réaction constante, il peut être nécessaire d'augmenter la température des parois, ce qui risque d'entraíner un endommagement de l'alliage constitutif de ces parois. On observe aussi une diminution de la sélectivité des installations et par conséquent du rendement.The carbonaceous deposit that develops in the ovens during the conversion of hydrocarbon is generally called coke. This deposit of coke is harmful in industrial units. Indeed, the formation of coke on the walls of the tubes and reactors leads in particular to a reduction in heat exchanges, blockages significant and therefore increases in pressure drop. To keep a constant reaction temperature, it may be necessary to increase the temperature of the walls, which risks causing damage to the alloy constituting these walls. There is also a decrease in the selectivity of the installations and consequently of the performance.
Il s'avère donc nécessaire d'arrêter périodiquement les installations afin de procéder à un décokage. Il est donc intéressant économiquement de développer des matériaux ou des revêtements susceptibles de diminuer la formation du coke.It is therefore necessary to periodically stop the installations in order to proceed to a decoking. It is therefore economically interesting to develop materials or coatings capable of reducing the formation of coke.
De très nombreux documents décrivent la réaction de formation de coke dans diverses réactions mettant en contact des hydrocarbures avec des parois à une température élevée. Ce phénomène de cokage est en particulier largement décrit et étudié dans le cadre du craquage thermique d'hydrocarbures. Comme article de fond on peut citer en particulier celui écrit par le professeur FROMENT et paru en 1990 dans le périodique Review of Chemical Engineering, volume 6, numéro 4, pages 292 à 328, dont le titre est "Coke formation in the thermal cracking of Hydrocarbons". On peut également citer un article plus récent de BILLAUD, BROUTIN, BUSSON, GUERET et WEILL, paru dans la Revue de l'Institut Français du Pétrole en 1992, volume 47, numéro 4, pages 537 à 549, sous le titre "Coke Formation during Hydrocarbons Pyrolysis", pour ce qui est de la première partie, et dans la même revue en 1993, volume 48, numéro 2, pages 115 à 125, sous le même titre, pour la deuxième partie. Numerous documents describe the coke formation reaction in various reactions bringing hydrocarbons into contact with walls at an elevated temperature. This coking phenomenon is in particular widely described and studied in the context of thermal cracking of hydrocarbons. As background article we can cite in particular that written by Professor FROMENT and published in 1990 in the periodical Review of Chemical Engineering , volume 6, number 4, pages 292 to 328, whose title is "Coke formation in the thermal cracking of Hydrocarbons ". We can also cite a more recent article by BILLAUD, BROUTIN, BUSSON, GUERET and WEILL, published in the Revue of the Institut Français du Pétrole in 1992, volume 47, number 4, pages 537 to 549, under the title "Coke Formation during Hydrocarbons Pyrolysis ", for the first part, and in the same review in 1993, volume 48, number 2, pages 115 to 125, under the same title, for the second part.
Pour résumer les observations décrites dans l'art antérieur, on peut dire que la formation de coke lors du craquage thermique d'hydrocarbures est un phénomène complexe mettant en jeu différents mécanismes dont l'un au moins met en jeu des réactions catalysées par la présence d'oxydes d'éléments métalliques tels que le nickel, le fer ou le cobalt à la paroi des dispositifs utilisés pour la mise en oeuvre desdits procédés. Ces éléments métalliques sont en général contenus en quantité importante dans les superalliages réfractaires utilisés du fait notamment des niveaux thermiques rencontrés au niveau de la paroi de ces dispositifs. Ce mécanisme catalytique est très prépondérant : des observations ont montré que si ce mécanisme était inhibé, il était possible dans le cas du vapocraquage d'accroítre par un facteur d'au moins environ 3 la durée de cycle entre deux arrêts pour décokage des fours nécessaires pour la mise en oeuvre de ce procédé.To summarize the observations described in the prior art, it can be said that the coke formation during thermal cracking of hydrocarbons is a phenomenon complex involving different mechanisms, at least one of which involves reactions catalyzed by the presence of oxides of metallic elements such as nickel, iron or cobalt on the wall of the devices used for the implementation of said processes. These metallic elements are generally contained in large quantities in the refractory superalloys used due in particular to the thermal levels encountered at the wall of these devices. This catalytic mechanism is very preponderant: observations have shown that if this mechanism was inhibited, it was possible in the case steam cracking to increase by a factor of at least about 3 the cycle time between two stops for decoking the ovens necessary for the implementation of this process.
Un certain nombre de documents font état de méthodes permettant d'inhiber la formation de coke catalytique.A number of documents report methods of inhibiting the formation of catalytic coke.
On connaít notamment la demande JP-03-104843 qui décrit un acier réfractaire anti-cokage pour tube de four de craquage à l'éthylène.We know in particular JP-03-104843 application which describes a refractory steel anti-coking for ethylene cracking oven tube.
On peut citer en outre le brevet US-A-5 208 069, qui décrit une méthode de passivation de la surface métallique des tubes de réacteur entrant en contact avec des hydrocarbures par décomposition in situ (c'est-à-dire dans l'appareil définitivement assemblé) d'un dérivé organométallique non oxygéné du silicium dans des conditions de formation d'une fine couche de matière céramique sur la surface de ces tubes. Cette méthode, dans laquelle le dépôt est effectué à pression atmosphérique ou en légère dépression, ne conduit généralement pas à l'obtention d'un dépôt relativement uniforme sur toute la longueur des tubes car la vitesse de croissance du dépôt n'est pas uniforme tout au long du tube et donc l'épaisseur, voire la qualité du dépôt, varie le long du tube. Ces variations entraínent un risque d'obtention de zones à fortes épaisseurs et donc de faible adhérence et/ou de zones dans lesquelles le dépôt de carbure de silicium est de mauvaise qualité et donc également de faible adhérence. Le niveau de pression auquel - selon les exemples de ce brevet - est opéré le dépôt en phase vapeur d'un dérivé organométallique du silicium est beaucoup trop important ce qui ne permet pas d'avoir un dépôt homogène car les distances de diffusion gazeuse sont beaucoup moins importantes que sous vide c'est-à-dire par exemple à une pression inférieure à 10+4 Pa. Par ailleurs, le carbure de silicium déposé est un composé de faible coefficient de dilatation, alors que le substrat employé a habituellement un coefficient de dilatation bien plus élevé, ce qui entraíne au cours du temps et des cycles de chauffage et de refroidissement un risque non négligeable de perte d'étanchéité, au moins en certains points, du revêtement de carbure de silicium et par voie de conséquence le contact entre les hydrocarbures et le superalliage qui conduit à un accroissement de la vitesse de cokage de l'appareillage.Mention may also be made of US Pat. No. 5,208,069, which describes a method for passivation of the metal surface of reactor tubes coming into contact with hydrocarbons by decomposition in situ (that is to say in the device definitively assembled) of a non-oxygenated organometallic derivative of silicon under conditions of formation of a thin layer of ceramic material on the surface of these tubes. This method, in which the deposition is carried out at atmospheric pressure or under slight depression, generally does not lead to obtaining a relatively uniform deposit over the entire length of the tubes because the rate of growth of the deposit is not uniform along the tube and therefore the thickness, or even the quality of the deposit, varies along the tube. These variations entail a risk of obtaining zones with large thicknesses and therefore of low adhesion and / or of zones in which the deposition of silicon carbide is of poor quality and therefore also of low adhesion. The pressure level at which - according to the examples of this patent - the vapor phase deposition of an organometallic derivative of silicon is much too high which does not allow to have a homogeneous deposition because the gas diffusion distances are much less important than under vacuum, that is to say for example at a pressure of less than 10 + 4 Pa. Furthermore, the deposited silicon carbide is a compound with a low coefficient of expansion, whereas the substrate employed usually has a coefficient much higher expansion, which leads over time and heating and cooling cycles a significant risk of loss of sealing, at least at certain points, of the coating of silicon carbide and consequently contact between the hydrocarbons and the superalloy which leads to an increase in the coking speed of the apparatus.
On peut encore citer la demande internationale WO-A-95/18 849, qui décrit notammant des objets utilisés comme éléments de réacteurs de craquage revêtus d'une couche protectrice vis-àvis du cokage contenant du chrome. Cette couche est appliquée par différenters méthodes de placage ou par peinture. Les revêtements de chrome obtenus ne présentent pas une résistance au cokage suffisante, en particulier dans les cycles alternés de cokage et de décokage.Mention may also be made of international application WO-A-95 / 18,849, which describes including objects used as components of cracking reactors coated with a protective layer against coking containing chromium. This layer is applied by different plating methods or by painting. Chrome coatings obtained do not have sufficient coking resistance, in particular in alternating coking and decoking cycles.
On a maintenant découvert de nouveaux aciers anti-cokage, utilisables notamment dans les applications mentionnées plus haut et qui ne présentent pas les inconvénients précités.We have now discovered new anti-coking steels, which can be used in particular in the applications mentioned above and which do not have the drawbacks supra.
Ainsi, l'invention concerne un objet en acier présentant des propriétés anti-cokage, caractérisé en ce qu'il comprend :
- un substrat en acier réfractaire renfermant au moins 0,2 % en masse de carbone ;
- une barrière de diffusion riche en carbone ;
- et une couche externe ayant une teneur de 90 à 99 % en masse de chrome ; et caractérisé en ce qu'il a été revêtu par une méthode de cémentation.
- a refractory steel substrate containing at least 0.2% by mass of carbon;
- a carbon rich diffusion barrier;
- and an outer layer having a content of 90 to 99% by mass of chromium; and characterized in that it has been coated by a cementation method.
Le substrat (ou matrice) est en général constitué d'un acier réfractaire, contenant de préférence de 0,20 à 0,80 % (pourcent) en masse de carbone.The substrate (or matrix) generally consists of a refractory steel, containing preferably from 0.20 to 0.80% (percent) by mass of carbon.
Plus particulièrement, cet acier présente des grains de structure austénitique à température ambiante. Une famille d'acier spécifique considérée dans l'invention est celle des Manaurite® (marque déposée de la société MANOIR INDUSTRIES).More particularly, this steel has grains of austenitic structure at ambient temperature. A specific family of steel considered in the invention is that Manaurite® (registered trademark of MANOIR INDUSTRIES).
Des exemples typiques d'aciers utilisables dans l'invention présentent les caractéristiques
principales indiquées dans le tableau suivant (les compositions sont en %
poids) :
Comme indiqué précédemment, on considère plus particulièrement dans l'invention les objets en acier réfractaire revêtus par des méthodes de chromisation thermiques, telles que la chromisation par cémentation, en particulier par pack-cémentation ou par cémentation en phase gaz.As indicated above, the invention is more particularly considered refractory steel objects coated by thermal chromium plating methods, such as chromisation by cementation, in particular by pack cementation or by gas phase carburizing.
Le procédé de pack-cémentation est bien connu de l'homme du métier. Il a été décrit dans de nombreux documents. Par exemple dans le brevet des Etats-Unis US-A-5 589 220, les auteurs rappellent que la pack-cémentation est un procédé dérivé de la CVD (abréviation de "Chemical Vapor Deposition"), qui consiste à chauffer, en enceinte fermée ou ouverte contenant la pièce métallique à revêtir, un "pack" à une température élevée pendant une durée déterminée, au cours de laquelle un dépôt diffusionnel se produit sur ladite pièce métallique. Le "pack" de cémentation dans l'enceinte fermée ou ouverte est protégé de l'oxydation par une atmosphère inerte ou réductrice. Le "pack" de cémentation consiste en une pièce ou un substrat de métal ou d'alliage à revêtir, environné des éléments à déposer (sous la forme d'un métal ou d'un alliage-maítre), d'un sel activateur halogénure et d'une charge pulvérulente. On utilise un gaz inerte tel que l'argon ou encore l'hydrogène comme environnement gazeux du "pack". Une fois que le "pack" est chauffé à une température assez élevée, le sel activateur réagit avec la poudre de métal ou d'alliage-maítre pour former des vapeurs d'halogénure métallique. Les vapeurs d'halogénure métallique diffusent vers la surface du métal ou du substrat à travers la phase gazeuse du "pack" poreux. A la surface du substrat, une étape réactionnelle a lieu qui résulte en le dépôt de l'élément désiré et en la formation, par diffusion à l'état solide d'un revêtement protecteur à la surface du métal. La réaction en surface peut être assez complexe et mettre en oeuvre de l'adsorption, de la dissociation et/ou de la diffusion des espèces moléculaires.The pack-cementation process is well known to those skilled in the art. He was described in numerous documents. For example in the United States patent US-A-5,589,220, the authors point out that pack-cementation is a derived process CVD (abbreviation for "Chemical Vapor Deposition"), which consists of heating, in closed or open enclosure containing the metal part to be coated, a "pack" at one high temperature for a fixed period, during which a deposit diffusion occurs on said metal part. The cementation "pack" in the closed or open enclosure is protected from oxidation by an inert atmosphere or reductive. The cementation "pack" consists of a piece or a substrate of metal or of alloy to be coated, surrounded by the elements to be deposited (in the form of a metal or a master alloy), a halide activating salt and a pulverulent filler. We use a inert gas such as argon or hydrogen as the gaseous environment of "pack". Once the "pack" is heated to a fairly high temperature, the salt activator reacts with metal or master alloy powder to form vapors metal halide. The metal halide vapors diffuse towards the surface of the metal or substrate through the gas phase of the porous "pack". On the surface of substrate, a reaction step takes place which results in the deposition of the desired element and in the formation, by diffusion in the solid state of a protective coating on the surface of the metal. The surface reaction can be quite complex and involve adsorption, dissociation and / or diffusion of molecular species.
Par ailleurs, la cémentation en gaz (gas-phase) consiste à chauffer à une température élevée dans une enceinte ouverte contenant la pièce métallique pendant une durée déterminée, au cours de laquelle un dépôt diffusionnel se produit sur ladite pièce métallique par un gaz d'halogénure de chrome généré par l'action d'un halogénure et/ou de son hydrure sur un lit de granules de chrome ou d'alliage de chrome de 0,1 mm à 50 mm de diamètre.In addition, gas carburization consists of heating to a high temperature in an open enclosure containing the metal part during a fixed duration, during which a diffusion deposit occurs on said piece metallic by a chromium halide gas generated by the action of a halide and / or of its hydride on a bed of chromium or chromium alloy granules from 0.1 mm to 50 mm in diameter.
Ce gaz métallisant est véhiculé par un gaz porteur du lit de granules vers ladite pièce par un distributeur-diffuseur spécifique.This metallizing gas is conveyed by a gas carrying the bed of granules to said piece by a specific distributor-diffuser.
Le gaz porteur est un gaz tel que l'argon ou encore l'hydrogène comme environnement gazeux protecteur.The carrier gas is a gas such as argon or hydrogen as protective gaseous environment.
Le processus d'apport gazeux métallisant auprès de ladite pièce métallique est régi par les règles de la dynamique des fluides et limite la formation du dépôt de chrome.The process of metallizing gas supply to said metal part is governed by the rules of fluid dynamics and limits the formation of chromium deposits.
Le choix équilibré des paramètres physiques (température, durée de traitement, débits massiques des espèces gazeuses) et de l'activité chimique de l'halogénure de chrome, optimisé par le ratio des masses solides en présence (halogénure / chrome en granules), avec ou sans présence de son hydrure, stabilise l'activité chimique de l'halogénure métallisant et les conditions de formation du revêtement.The balanced choice of physical parameters (temperature, duration of treatment, mass flows of gaseous species) and of the chemical activity of the halide of chromium, optimized by the ratio of solid masses present (halide / chromium in granules), with or without the presence of its hydride, stabilizes the chemical activity of the metallizing halide and the conditions for forming the coating.
La concentration massique en chrome des granules est d'au moins cinquante pour cent.The mass concentration of chromium in the granules is at least fifty for hundred.
Selon l'invention, on opère plus particulièrement dans les conditions de pack-cémentation indiquées ci-après.According to the invention, one operates more particularly under the conditions of pack-cementation shown below.
Les pièces à revêtir sont placées dans des caissons contenant un cément constitué de poudres de chrome (30 à 40 % en masse) et d'alumine (60 à 70 % en masse) et d'un halogénure activateur (0,1 à 2 % en masse par rapport à l'ensemble des deux poudres) sous atmosphère, par exemple d'hydrogène ou d'argon. Un traitement thermique isotherme est alors réalisé à une température de 900 à 1200 °C. The parts to be coated are placed in boxes containing a cement made up chromium powders (30 to 40% by mass) and alumina (60 to 70% by mass) and a activating halide (0.1 to 2% by mass relative to all of the two powders) under an atmosphere, for example hydrogen or argon. Heat treatment isotherm is then carried out at a temperature of 900 to 1200 ° C.
Les objets revêtus selon l'invention peuvent être utilisés d'une manière générale comme matériaux de constitution de faisceaux tubulaires de réacteurs de pyrolyse d'hydrocarbures, avec ou sans présence de vapeur d'eau, plus particulièrement pour les réacteurs de vaporéformage ou de vapocraquage. Ils peuvent également être utilisés comme matériaux de constitution de faisceaux tubulaires pour fours pour traitements pétroliers ou pétrochimiques, comme la viscoréduction. Ils peuvent encore servir dans le revêtement de virolles et/ou internes de réacteurs en lit fixe pour traitements pétrochimiques, tels que par exemple la déshydrogénation ou le réformage.The objects coated according to the invention can be used in general as building materials for tubular bundles of pyrolysis reactors of hydrocarbons, with or without the presence of water vapor, more particularly for steam reforming or steam cracking reactors. They can also be used as building materials for tube bundles for process furnaces petroleum or petrochemical, such as visbreaking. They can still be used in the coating of ferrules and / or internal of fixed bed reactors for treatments petrochemicals, such as for example dehydrogenation or reforming.
Dans des applications de ce type, les objets revêtus selon l'invention présentent des propriétés anti cokage améliorées. De plus, les dépôts obtenus ne se détériorent pas lors de cycles thermiques sévères entre la température ambiante et par exemple 1000 °C, avec des vitesses de chauffage et refroidissement de 500 °C/h.In applications of this type, the coated objects according to the invention exhibit improved anti-coking properties. In addition, the deposits obtained do not deteriorate during severe thermal cycles between room temperature and for example 1000 ° C., with heating and cooling rates of 500 ° C / h.
Les exemples donnés ci-après illustrent l'invention.The examples given below illustrate the invention.
On traite par pack-cémentation une pièce d'acier réfractaire Manaurite XM® ayant
la composition suivante :
On a effectué l'analyse quantitative des divers éléments sur la pièce chromisée, pour la matrice (ou substrat) elle-même, pour le bord de celle-ci, et pour le dépôt de chrome en son bord interne et en son bord externe. Les teneurs en les divers éléments sont indiquées dans le tableau suivant : The quantitative analysis of the various elements was carried out on the chromized part, for the matrix (or substrate) itself, for the edge thereof, and for the deposit of chromium at its internal edge and at its external edge. The contents of the various elements are indicated in the following table:
On a réalisé un dépôt de chrome par voie électrolytique. Pour ce faire, on a immergé un échantillon en acier réfractaire Manaurite XM® servant de cathode, dans un bain de chromate et on a réduit les ions chromates en chrome métallique sur la cathode. On a obtenu un acier chromé désigné dans la suite par Manaurite XM® chromée par électrolyse.Chromium was deposited electrolytically. To do this, we have immersed a sample of Manaurite XM® refractory steel serving as cathode, in a chromate bath and the chromate ions were reduced to metallic chromium on the cathode. A chromed steel was obtained, designated hereafter by Manaurite XM® chromed by electrolysis.
Les tests ont été réalisés dans des conditions de vapocraquage à 800 °C avec une charge d'hydrocarbure et d'eau. La vitesse de cokage a été suivie par analyse thermogravimétrique. Les échantillons revêtus sur toute leur face sont placés dans un réacteur de vapocraquage parfaitement homogène et suspendus au fléau de la thermobalance. Après quelques heures d'expérience, la vitesse se stabilise à une valeur dite asymptotique, caractéristique de la réactivité du dépôt vis-à-vis du cokage. Un décokage sous air est ensuite effectué afin de suivre le comportement au cours de cycles cokage-décokage-cokage, etc.The tests were carried out under steam cracking conditions at 800 ° C. with a hydrocarbon and water charge. Coking speed was monitored by analysis TGA. The samples coated on their entire face are placed in a perfectly homogeneous steam cracking reactor suspended from the bane of the thermobalance. After a few hours of experience, the speed stabilizes at a value called asymptotic, characteristic of the reactivity of the deposit vis-à-vis coking. A air decoking is then carried out in order to follow the behavior during cycles coking-decoking-coking, etc.
On utilise un échantillon en acier réfractaire Manaurite XM® chromisé comme décrit dans l'Exemple 1 et, à titre de comparaison. un échantillon en l'acier réfractaire Manaurite XM® lui-même, ainsi qu'un échantillon d'acier du même type revêtu par CVD d'une couche de carbure de titane et d'une couche de carbure de silicium, un échantillon d'acier du même type revêtu par CVD d'une couche de carbure de titane et un échantillon d'acier Manaurite XM® chromée par électrolyse.A chromium-plated Manaurite XM® refractory steel sample is used as described in Example 1 and, for comparison. a refractory steel sample Manaurite XM® itself, as well as a sample of steel of the same type coated by CVD a layer of titanium carbide and a layer of silicon carbide, a sample steel of the same type coated by CVD with a layer of titanium carbide and a sample of Manaurite XM® steel chromed by electrolysis.
Le test est effectué à 800°C, avec une charge d'hexane et d'eau pour une
conversion d'environ 30 %. On a obtenu les résultats indiqués dans le tableau 4 ci-après.
D'après ces résultats, il apparaít notamment que l'utilisation de la Manaurite XM® chromisée de l'Exemple 1 selon l'invention conduit, au bout du premier cokage, à une vitesse de cokage beaucoup plus faible que celle observée avec la Manaurite XM® avant chromisation (5 fois plus faible) ou que celle observée avec la Manaurite XM® électrolytique ou que la Manaurite XM® revêtue d'une couche de carbure de titane. La ManauriteXM® chromisée de l'Exemple 1 donne également de bons résultats au bout du deuxième cokage. Pour sa part, un acier revêtu de carbure de titane et de carbure de silicium donne de mauvais résultats dès le second cokage. From these results, it appears in particular that the use of Manaurite XM® chromized glass of Example 1 according to the invention leads, at the end of the first coking, to a coking speed much lower than that observed with the Manaurite XM® before chromization (5 times weaker) or that observed with Manaurite XM® electrolytic or that the Manaurite XM® coated with a layer of titanium carbide. The ManauriteXM® chromized in Example 1 also gives good results after second coking. For its part, a steel coated with titanium carbide and carbide silicon gives poor results from the second coking.
Des essais de résistance au cyclage thermique ont été effectués, afin de simuler les chocs thermiques que peuvent subir les tubes de vapocraquage industriels. Ces essais ont été réalisés dans un four à moufle équipé d'une injection d'air. Les échantillons ont subi 15 cycles thermiques de chauffage et refroidissement, de la température ambiante jusqu'à 1000 °C (et vice versa), avec une vitesse de chauffage (ou de refroidissement) de 500 °C par heure. Pendant les 15 premiers cycles, les pièces sont examinées après chaque cycle.Thermal cycling resistance tests were carried out in order to simulate the thermal shocks that industrial steam cracking tubes can undergo. These tests have were carried out in a muffle furnace equipped with an air injection. The samples have undergone 15 thermal heating and cooling cycles, from room temperature to 1000 ° C (and vice versa), with a heating (or cooling) speed of 500 ° C per hour. During the first 15 cycles, the parts are examined after each cycle.
L'acier réfractaire Manaurite XM® chromisé comme décrit dans l'Exemple 1 a été évalué selon le protocole précédent. Au bout de 145 cycles (ce qui correspond au cyclage thermique cumulé sur installation industrielle pour une durée de vie estimée à 10 ans), cet acier ne s'est pas dégradé. Pendant les 15 premiers cycles, les pièces sont examinées après chaque cycle. Les examens métallographiques confirment l'intégrité du revêtement.The chromium-coated Manaurite XM® refractory steel as described in Example 1 was evaluated according to the previous protocol. After 145 cycles (which corresponds to cumulative thermal cycling on industrial plant for an estimated service life of 10 years), this steel has not degraded. During the first 15 cycles, the parts are examined after each cycle. Metallographic examinations confirm the integrity of the coating.
A titre de comparaison, on a effectué des essais de résistance au cyclage thermique dans les mêmes conditions avec un revêtement de carbure de titane seul : au bout de 10 cycles, on a observé la disparition totale de la couche. Par ailleurs, avec un revêtement de carbure de titane et de carbure de silicium, on a observé la disparition de la couche de carbure de silicium au bout de 5 cycles.For comparison, tests of resistance to thermal cycling were carried out. under the same conditions with a coating of titanium carbide alone: after 10 cycles, the total disappearance of the layer was observed. By the way, with a coating of titanium carbide and silicon carbide, the layer of silicon carbide after 5 cycles.
Claims (10)
- A coated steel article exhibiting anti-coking properties, characterized in that it comprises:a refractory steel substrate comprising at least 0.2% by weight of carbon;a carbon-rich diffusion barrier; andan outer layer containing 90% to 99% by weight of carbon,
- An article according to claim 1, characterized in that it has been coated by pack cementation or by gas phase cementation.
- An article according to claim 1 or claim 2, characterized in that the amount of carbon in the substrate is 0.2% to 0.8% by weight.
- An article according to any one of claims 1 to 3, characterized in that the substrate has the following composition:
C Mn Si Ni Cr Fe additions 0,35-0,60 1-1,5 1-2 33-38 23-28 balance Nb, Ti, Zr - Use of an article according to any one of claims 1 to 4 as a constituent material in tube bundles of hydrocarbon pyrolysis reactors, in the presence or absence of steam.
- Use according to claim 5, characterized in that said reactors are steam reforming reactors.
- Use according to claim 5, characterized in that said reactors are steam cracking reactors.
- Use of an article according to any one of claims 1 to 4 as a constituent material of tube bundles for stills for oil or petrochemical treatments.
- Use according to claim 8, characterized in that the treatment is a visbreaking treatment.
- Use of an article according to any one of claims 1 to 4 as a constituent material of rings and/or baffles in fixed bed reactors for petrochemical treatments.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9708511A FR2765594B1 (en) | 1997-07-04 | 1997-07-04 | CHROMED REFRACTORY STEEL, PROCESS FOR OBTAINING SAME AND USES THEREOF IN ANTI-COKAGE APPLICATIONS |
FR9708511 | 1997-07-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0889146A1 EP0889146A1 (en) | 1999-01-07 |
EP0889146B1 true EP0889146B1 (en) | 2004-05-06 |
Family
ID=9508882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98401567A Expired - Lifetime EP0889146B1 (en) | 1997-07-04 | 1998-06-25 | Heat resistant chromized steel, process for the production thereof and its use in anti-coking applications |
Country Status (6)
Country | Link |
---|---|
US (1) | US6348145B1 (en) |
EP (1) | EP0889146B1 (en) |
JP (1) | JP4206491B2 (en) |
CA (1) | CA2241349C (en) |
DE (1) | DE69823585T2 (en) |
FR (1) | FR2765594B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2340911B (en) | 1998-08-20 | 2000-11-15 | Doncasters Plc | Alloy pipes and methods of making same |
US6644358B2 (en) | 2001-07-27 | 2003-11-11 | Manoir Industries, Inc. | Centrifugally-cast tube and related method and apparatus for making same |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1149163A (en) | 1966-03-22 | 1969-04-16 | Ici Ltd | Protection against carburisation |
US4350719A (en) * | 1979-09-07 | 1982-09-21 | Alloy Surfaces Company, Inc. | Diffusion coating and products therefrom |
BE810647A (en) * | 1974-02-05 | 1974-05-29 | PROCESS FOR CHROMIZING THE INTERNAL FACE OF A FERROUS METAL TUBE AND ESPECIALLY STEEL. | |
US4086107A (en) | 1974-05-22 | 1978-04-25 | Nippon Steel Corporation | Heat treatment process of high-carbon chromium-nickel heat-resistant stainless steels |
US4532109A (en) | 1982-01-21 | 1985-07-30 | Jgc Corporation | Process for providing an apparatus for treating hydrocarbons or the like at high temperatures substantially without carbon deposition |
US4863892A (en) * | 1983-08-16 | 1989-09-05 | Phillips Petroleum Company | Antifoulants comprising tin, antimony and aluminum for thermal cracking processes |
US4507196A (en) * | 1983-08-16 | 1985-03-26 | Phillips Petroleum Co | Antifoulants for thermal cracking processes |
US5169515A (en) | 1989-06-30 | 1992-12-08 | Shell Oil Company | Process and article |
JPH0735555B2 (en) * | 1989-09-19 | 1995-04-19 | 住友金属工業株式会社 | Heat resistant wrought steel for ethylene decomposition furnace tube |
JPH0426751A (en) * | 1990-05-18 | 1992-01-29 | Mitsubishi Heavy Ind Ltd | Surface modification treatment for austenitic stainless steel |
CA2113366C (en) | 1993-01-15 | 2005-11-08 | George A. Coffinberry | Coated articles and method for the prevention of fuel thermal degradation deposits |
US5658452A (en) | 1994-01-04 | 1997-08-19 | Chevron Chemical Company | Increasing production in hydrocarbon conversion processes |
US5575902A (en) * | 1994-01-04 | 1996-11-19 | Chevron Chemical Company | Cracking processes |
CN1201480A (en) * | 1995-10-31 | 1998-12-09 | K·T·I·集团公司 | Process for reducing formation of carbon deposits |
US5873951A (en) | 1996-08-23 | 1999-02-23 | Alon, Inc. | Diffusion coated ethylene furnace tubes |
-
1997
- 1997-07-04 FR FR9708511A patent/FR2765594B1/en not_active Expired - Fee Related
-
1998
- 1998-06-25 DE DE69823585T patent/DE69823585T2/en not_active Expired - Lifetime
- 1998-06-25 EP EP98401567A patent/EP0889146B1/en not_active Expired - Lifetime
- 1998-07-03 CA CA002241349A patent/CA2241349C/en not_active Expired - Fee Related
- 1998-07-03 JP JP18840198A patent/JP4206491B2/en not_active Expired - Fee Related
- 1998-07-06 US US09/109,867 patent/US6348145B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE69823585D1 (en) | 2004-06-09 |
CA2241349A1 (en) | 1999-01-04 |
US6348145B1 (en) | 2002-02-19 |
DE69823585T2 (en) | 2004-09-16 |
JPH1180926A (en) | 1999-03-26 |
JP4206491B2 (en) | 2009-01-14 |
EP0889146A1 (en) | 1999-01-07 |
FR2765594B1 (en) | 1999-08-27 |
FR2765594A1 (en) | 1999-01-08 |
CA2241349C (en) | 2009-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0738313B1 (en) | Protective layer for a steel portion of a reactor system for hydrocarbon processing | |
US6585864B1 (en) | Coating system for high temperature stainless steel | |
JP4805523B2 (en) | Coating system for high temperature stainless steel | |
AU713419B2 (en) | Surface alloyed high temperature alloys | |
JP2004501278A (en) | Surface alloyed high temperature alloy | |
Taghipour et al. | An investigation on anti-coking behavior of gas phase aluminide coatings applied on a high performance micro alloyed (HP-MA) steel | |
FR2819526A1 (en) | USE OF AUSTENITIC STAINLESS STEELS IN APPLICATIONS REQUIRING ANTI-COCKING PROPERTIES | |
CA2264977C (en) | Use of low alloy steel in applications where anti-coking properties are required | |
CA2357407C (en) | Coating system for high temperature stainless steels | |
EP0889146B1 (en) | Heat resistant chromized steel, process for the production thereof and its use in anti-coking applications | |
EP0718415B1 (en) | Anti-coking steels | |
EP0688889B1 (en) | Method for passivating nickel and iron based superalloy parts | |
EP1040175B1 (en) | Anti-coking coatings | |
CA2178724C (en) | Cracking processes | |
EP0409687B1 (en) | Method of silicifying metallic parts by chemical vapour deposition | |
FR2833020A1 (en) | USE OF QUASI-CRYSTALLINE ALUMINUM ALLOYS IN REFINING AND PETROCHEMICAL APPLICATIONS | |
KR840000446B1 (en) | Process for hight-temperature treatment of hydrocarbon-containing materials | |
Ortiz Reyes | Coking Resistance of Alumina Forming Cast Austenitic Stainless Steels | |
CN117966086A (en) | Treatment method and application of hydrocarbon cracking furnace tube alloy | |
Reyes | Coking Resistance of Alumina Forming Cast Austenitic Stainless Steels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB IT NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19990707 |
|
AKX | Designation fees paid |
Free format text: BE DE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 20010612 |
|
RTI1 | Title (correction) |
Free format text: HEAT RESISTANT CHROMIZED STEEL, PROCESS FOR THE PRODUCTION THEREOF AND ITS USE IN ANTI-COKING APPLICATIONS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 69823585 Country of ref document: DE Date of ref document: 20040609 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040630 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050208 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20100505 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20100622 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100610 Year of fee payment: 13 Ref country code: BE Payment date: 20100617 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100401 Year of fee payment: 13 Ref country code: DE Payment date: 20100708 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 69823585 Country of ref document: DE Owner name: IFP ENERGIES NOUVELLES, FR Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL MALMAISON, FR Effective date: 20110331 |
|
BERE | Be: lapsed |
Owner name: INSTITUT FRANCAIS DU *PETROLE Effective date: 20110630 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20120101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110625 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110630 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69823585 Country of ref document: DE Effective date: 20120103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120103 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110625 |