EP0889146A1 - Heat resistant chromized steel, process for the production thereof and their use in anti-coking applications - Google Patents

Heat resistant chromized steel, process for the production thereof and their use in anti-coking applications Download PDF

Info

Publication number
EP0889146A1
EP0889146A1 EP98401567A EP98401567A EP0889146A1 EP 0889146 A1 EP0889146 A1 EP 0889146A1 EP 98401567 A EP98401567 A EP 98401567A EP 98401567 A EP98401567 A EP 98401567A EP 0889146 A1 EP0889146 A1 EP 0889146A1
Authority
EP
European Patent Office
Prior art keywords
coking
coated
steel
reactors
cementation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98401567A
Other languages
German (de)
French (fr)
Other versions
EP0889146B1 (en
Inventor
Francois Ropital
Paul Broutin
Marcel Francois
Alain Bertoli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0889146A1 publication Critical patent/EP0889146A1/en
Application granted granted Critical
Publication of EP0889146B1 publication Critical patent/EP0889146B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • C10G9/203Tube furnaces chemical composition of the tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/38Chromising
    • C23C10/40Chromising of ferrous surfaces
    • C23C10/42Chromising of ferrous surfaces in the presence of volatile transport additives, e.g. halogenated substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size

Definitions

  • the invention relates to steel objects having anti-coking properties, as well as the process used to obtain such objects by depositing a coating anti-coking on a matrix made of a steel, in general a refractory steel.
  • the process is used for the production of parts that have to resist coking in various refining or petrochemical processes.
  • the coated parts of the invention can be used for various processes of the refining and petrochemicals involving temperatures above 350 ° C: steam reforming, dehydrogenation, visbreaking, among others. More specifically, the invention applies to the manufacture of steam cracking tubular ovens intended for a long-term service at temperatures of the order of 800 to 1100 ° C.
  • coke The carbonaceous deposit that develops in the ovens during the conversion of hydrocarbon is generally called coke.
  • This deposit of coke is harmful in industrial units. Indeed, the formation of coke on the walls of the tubes and reactors leads in particular to a reduction in heat exchange, blockages significant and therefore increases in pressure drop. To keep a constant reaction temperature, it may be necessary to increase the temperature of the walls, which risks causing damage to the alloy constituting these walls. There is also a decrease in the selectivity of the installations and consequently of the yield.
  • the coke formation during thermal cracking of hydrocarbons is a phenomenon complex involving different mechanisms, at least one of which involves reactions catalyzed by the presence of oxides of metallic elements such as nickel, iron or cobalt on the wall of the devices used for the implementation of said methods.
  • metallic elements are generally contained in large quantities in the refractory superalloys used due in particular to the thermal levels encountered at the wall of these devices.
  • This catalytic mechanism is very preponderant: observations have shown that if this mechanism was inhibited, it was possible in the case steam cracking to increase by a factor of at least about 3 the cycle time between two stops for decoking the ovens necessary for the implementation of this process.
  • the deposited silicon carbide is a compound with a low coefficient of expansion, whereas the substrate employed usually has a coefficient much higher expansion, which over time and the heating and cooling cycles a significant risk of loss of sealing, at least at certain points, of the coating of silicon carbide and consequently the contact between the hydrocarbons and the superalloy which leads to an increase in the coking speed of the apparatus.
  • the substrate generally consists of a refractory steel, containing preferably from 0.20 to 0.80% (percent) by mass of carbon.
  • this steel has grains of austenitic structure at ambient temperature.
  • a specific steel family considered in the invention is that Manaurite® (registered trademark of MANOIR INDUSTRIES).
  • Typical examples of steels which can be used in the invention have the main characteristics indicated in the following table (the compositions are in% by weight): VS Mn Yes Or Cr Fe additions ASTM A297 HK Manaurite 20® 0.30-0.65 1-2 1-2.5 18-24 23-36 compl. Ti. Nb. W ASTM A297 HL 0.20-0.60 1-2 1-2 18-22 28-32 compl. ASTM A297 HN 0.20-0.50 1-2 1-2 23-27 19-23 compl. ASTM A297 HP 0.35-0.75 1-2 1-2.5 33-37 24-28 compl. Manaurite 36XS® 0.35-0.60 1-1.5 1-2 33-38 23-28 compl.
  • Nb W Manaurite XM® 0.35-0.60 1-1.5 1-2 33-38 23-28 compl.
  • Nb Ti, Zr Manaurite XT® 0.35-0.45 1-1.5 1-2 42-46 32-37 compl.
  • Nb Manaurite XTM® 0.40-0.45 1-2 1-2 43-48 34-37 compl.
  • Nb Ti
  • the invention is more particularly considered refractory steel objects coated by thermal chromium plating methods, such as chromisation by cementation, in particular by pack cementation or by carburizing in gas phase.
  • pack-cementation is well known to those skilled in the art. He was described in numerous documents. For example in the United States patent US-A-5,589,220, the authors point out that pack-cementation is a derived process CVD (abbreviation for "Chemical Vapor Deposition”), which consists of heating, in closed or open enclosure containing the metal part to be coated, a "pack” at one high temperature for a specified period, during which a deposit diffusion occurs on said metal part.
  • CVD abbreviation for "Chemical Vapor Deposition”
  • the cementation "pack” consists of a piece or a substrate of metal or of alloy to be coated, surrounded by the elements to be deposited (in the form of a metal or a master alloy), a halide activating salt and a pulverulent filler.
  • a inert gas such as argon or hydrogen as the gaseous environment of "pack”.
  • a reaction step takes place which results in the deposition of the desired element and in the formation, by diffusion in the solid state of a protective coating on the surface of the metal.
  • the surface reaction can be quite complex and involve adsorption, dissociation and / or diffusion of molecular species.
  • gas carburizing consists of heating to a high temperature in an open enclosure containing the metal part during a fixed duration, during which a diffusion deposit occurs on said piece metallic by a chromium halide gas generated by the action of a halide and / or of its hydride on a bed of chromium or chromium alloy granules from 0.1 mm to 50 mm in diameter.
  • This metallizing gas is conveyed by a gas carrying the bed of granules to said piece by a specific distributor-diffuser.
  • the carrier gas is a gas such as argon or hydrogen as protective gaseous environment.
  • the process of metallizing gas supply to said metal part is governed by the rules of fluid dynamics and limits the formation of chromium deposits.
  • the mass concentration of chromium in the granules is at least fifty for hundred.
  • the parts to be coated are placed in boxes containing a cement made up chromium powders (30 to 40% by mass) and alumina (60 to 70% by mass) and a activating halide (0.1 to 2% by mass relative to all of the two powders) under an atmosphere, for example hydrogen or argon. Heat treatment isothermal is then carried out at a temperature of 900 to 1200 ° C.
  • Objects coated according to the invention can be used in general as building materials for tubular bundles of pyrolysis reactors of hydrocarbons, with or without the presence of water vapor, more particularly for steam reforming or steam cracking reactors. They can also be used as building materials for tubular bundles for process furnaces petroleum or petrochemical, such as visbreaking. They can still be used in the coating of ferrules and / or internal of fixed bed reactors for treatments petrochemicals, such as for example dehydrogenation or reforming.
  • the coated objects according to the invention exhibit improved anti-coking properties.
  • the deposits obtained do not deteriorate during severe thermal cycles between room temperature and for example 1000 ° C., with heating and cooling rates of 500 ° C / h.
  • Manaurite XM® refractory steel having the following composition is treated by pack-hardening.
  • VS Mn Yes Or Cr Fe additions Manaurite XM® 0.35-0.60 1-1.5 1-2 33-38 23-28 compl.
  • the outer white area of the coating corresponds to a content of 96% by mass of chromium.
  • Chromium was deposited electrolytically. To do this, we have immersed a sample of Manaurite XM® refractory steel serving as a cathode, in a chromate bath and the chromate ions were reduced to metallic chromium on the cathode. A chromed steel was obtained, designated hereafter by Manaurite XM®, chromed by electrolysis.
  • the tests were carried out under steam cracking conditions at 800 ° C. with a hydrocarbon and water charge.
  • the coking speed was followed by analysis thermogravimetric.
  • the samples coated on their entire face are placed in a perfectly homogeneous steam cracking reactor suspended from the bane of the thermobalance. After a few hours of experience, the speed stabilizes at a value called asymptotic, characteristic of the reactivity of the deposit vis-à-vis coking.
  • a air decoking is then carried out in order to follow the behavior during cycles coking-decoking-coking, etc.
  • a chromium-plated Manaurite XM® refractory steel sample is used as described in Example 1 and, for comparison, a sample of refractory steel Manaurite XM® itself, as well as a sample of steel of the same type coated by CVD a layer of titanium carbide and a layer of silicon carbide, a sample of steel of the same type coated by CVD with a layer of titanium carbide and a sample of Manaunte XM® steel chromed by electrolysis.
  • Manaurite XM® chromized glass of Example 1 leads, at the end of the first coking, to a coking speed much lower than that observed with the Manaurite XM® before chromization (5 times weaker) or that observed with the Manaunte XM® electrolytic or Manaurite XM® coated with a layer of titanium carbide.
  • the ManauriteXM® chromized in Example 1 also gives good results after second coking. For its part, a steel coated with titanium carbide and carbide silicon gives poor results from the second coking.
  • Thermal cycling resistance tests were carried out in order to simulate the thermal shock that industrial steam cracking tubes can undergo. These tests have were made in a muffle furnace equipped with an air injection. The samples have undergone 15 thermal heating and cooling cycles, from room temperature to 1000 ° C (and vice versa), with a heating (or cooling) speed of 500 ° C per hour. During the first 15 cycles, the parts are examined after each cycle.
  • Example 1 The chromium-plated Manaurite XM® refractory steel as described in Example 1 was evaluated according to the previous protocol. After 145 cycles (which corresponds to cumulative thermal cycling on industrial plant for an estimated service life of 10 years), this steel has not degraded. During the first 15 cycles, the parts are examined after each cycle. Metallographic examinations confirm the integrity of the coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Coated steel components with anti-coking properties comprise: a refractory steel substrate containing at least 0.2 % carbon; a carbon-rich diffusion barrier layer; and an external layer containing 90 - 99 % chromium coated by cementation. Also claimed are the preparation and uses of the coated products.

Description

L'invention concerne des objets en acier présentant des propriétés anti-cokage, ainsi que le procédé mis en oeuvre pour obtenir de tels objets par dépôt d'un revêtement anti-cokage sur une matrice constituée d'un acier, en général un acier réfractaire. Le procédé est utilisé pour la fabrication de pièces devant résister au cokage dans divers procédés de raffinage ou de pétrochimie.The invention relates to steel objects having anti-coking properties, as well as the process used to obtain such objects by depositing a coating anti-coking on a matrix made of a steel, in general a refractory steel. The process is used for the production of parts that have to resist coking in various refining or petrochemical processes.

Les pièces revêtues de l'invention peuvent être utilisées pour divers procédés du raffinage et de la pétrochimie mettant en jeu des températures supérieures à 350 °C : vaporéformage, déshydrogénation, viscoréduction, entre autres. Plus particulièrement, l'invention s'applique à la fabrication de fours tubulaires de vapocraquage destinés à un service de longue durée à des températures de l'ordre de 800 à 1100 °C.The coated parts of the invention can be used for various processes of the refining and petrochemicals involving temperatures above 350 ° C: steam reforming, dehydrogenation, visbreaking, among others. More specifically, the invention applies to the manufacture of steam cracking tubular ovens intended for a long-term service at temperatures of the order of 800 to 1100 ° C.

Le dépôt carboné qui se développe dans les fours lors de la conversion des hydrocarbures est généralement appelé coke. Ce dépôt de coke est néfaste dans les unités industrielles. En effet, la formation du coke sur les parois des tubes et des réacteurs entraíne notamment une diminution des échanges thermiques, des bouchages importants et donc des augmentations de pertes de charge. Pour conserver une température de réaction constante, il peut être nécessaire d'augmenter la température des parois, ce qui risque d'entraíner un endommagement de l'alliage constitutif de ces parois. On observe aussi une diminution de la sélectivité des installations et par conséquent du rendement.The carbonaceous deposit that develops in the ovens during the conversion of hydrocarbon is generally called coke. This deposit of coke is harmful in industrial units. Indeed, the formation of coke on the walls of the tubes and reactors leads in particular to a reduction in heat exchange, blockages significant and therefore increases in pressure drop. To keep a constant reaction temperature, it may be necessary to increase the temperature of the walls, which risks causing damage to the alloy constituting these walls. There is also a decrease in the selectivity of the installations and consequently of the yield.

Il s'avère donc nécessaire d'arrêter périodiquement les installations afin de procéder à un décokage. Il est donc intéressant économiquement de développer des matériaux ou des revêtements susceptibles de diminuer la formation du coke.It is therefore necessary to periodically stop the installations in order to proceed to a decoking. It is therefore economically interesting to develop materials or coatings capable of reducing the formation of coke.

De très nombreux documents décnvent la réaction de formation de coke dans diverses réactions mettant en contact des hydrocarbures avec des parois à une température élevée. Ce phénomène de cokage est en particulier largement décrit et étudié dans le cadre du craquage thermique d'hydrocarbures. Comme article de fond on peut citer en particulier celui écrit par le professeur FROMENT et paru en 1990 dans le périodique Review of Chemical Engineering, volume 6, numéro 4, pages 292 à 328, dont le titre est "Coke formation in the thermal cracking of Hydrocarbons". On peut également citer un article plus récent de BILLAUD, BROUTIN, BUSSON, GUERET et WEILL, paru dans la Revue de l'Institut Français du Pétrole en 1992, volume 47, numéro 4, pages 537 à 549, sous le titre "Coke Formation during Hydrocarbons Pyrolysis", pour ce qui est de la première partie, et dans la même revue en 1993, volume 48, numéro 2, pages 115 à 125, sous le même titre, pour la deuxième partie. Numerous documents disclose the coke formation reaction in various reactions bringing hydrocarbons into contact with walls at an elevated temperature. This coking phenomenon is in particular widely described and studied in the context of thermal cracking of hydrocarbons. As background article we can cite in particular that written by professor FROMENT and published in 1990 in the periodical Review of Chemical Engineering, volume 6, number 4, pages 292 to 328, whose title is "Coke formation in the thermal cracking of Hydrocarbons ". We can also cite a more recent article by BILLAUD, BROUTIN, BUSSON, GUERET and WEILL, published in the Revue of the Institut Français du Pétrole in 1992, volume 47, number 4, pages 537 to 549, under the title "Coke Formation during Hydrocarbons Pyrolysis ", for the first part, and in the same review in 1993, volume 48, number 2, pages 115 to 125, under the same title, for the second part.

Pour résumer les observations décrites dans l'art antérieur, on peut dire que la formation de coke lors du craquage thermique d'hydrocarbures est un phénomène complexe mettant en jeu différents mécanismes dont l'un au moins met en jeu des réactions catalysées par la présence d'oxydes d'éléments métalliques tels que le nickel, le fer ou le cobalt à la paroi des dispositifs utilisés pour la mise en oeuvre desdits procédés. Ces éléments métalliques sont en général contenus en quantité importante dans les superalliages réfractaires utilisés du fait notamment des niveaux thermiques rencontrés au niveau de la paroi de ces dispositifs. Ce mécanisme catalytique est très prépondérant : des observations ont montré que si ce mécanisme était inhibé, il était possible dans le cas du vapocraquage d'accroítre par un facteur d'au moins environ 3 la durée de cycle entre deux arrêts pour décokage des fours nécessaires pour la mise en oeuvre de ce procédé.To summarize the observations described in the prior art, it can be said that the coke formation during thermal cracking of hydrocarbons is a phenomenon complex involving different mechanisms, at least one of which involves reactions catalyzed by the presence of oxides of metallic elements such as nickel, iron or cobalt on the wall of the devices used for the implementation of said methods. These metallic elements are generally contained in large quantities in the refractory superalloys used due in particular to the thermal levels encountered at the wall of these devices. This catalytic mechanism is very preponderant: observations have shown that if this mechanism was inhibited, it was possible in the case steam cracking to increase by a factor of at least about 3 the cycle time between two stops for decoking the ovens necessary for the implementation of this process.

Un certain nombre de documents font état de méthodes permettant d'inhiber la formation de coke catalytique.A number of documents report methods of inhibiting the formation of catalytic coke.

On connaít notamment la demande JP-03-104843 qui décrit un acier réfractaire anti-cokage pour tube de four de craquage à l'éthylène.We know in particular JP-03-104843 application which describes a refractory steel anti-coking for ethylene cracking oven tube.

On peut citer en outre le brevet US-A-5 208 069, qui décrit une méthode de passivation de la surface métallique des tubes de réacteur entrant en contact avec des hydrocarbures par décomposition in situ (c'est-à-dire dans l'appareil définitivement assemblé) d'un dérivé organométallique non oxygéné du silicium dans des conditions de formation d'une fine couche de matière céramique sur la surface de ces tubes. Cette méthode, dans laquelle le dépôt est effectué à pression atmosphérique ou en légère dépression, ne conduit généralement pas à l'obtention d'un dépôt relativement uniforme sur toute la longueur des tubes car la vitesse de croissance du dépôt n'est pas uniforme tout au long du tube et donc l'épaisseur, voire la qualité du dépôt, varie le long du tube. Ces variations entraínent un risque d'obtention de zones à fortes épaisseurs et donc de faible adhérence et/ou de zones dans lesquelles le dépôt de carbure de silicium est de mauvaise qualité et donc également de faible adhérence. Le niveau de pression auquel - selon les exemples de ce brevet - est opéré le dépôt en phase vapeur d'un dérivé organométallique du silicium est beaucoup trop important ce qui ne permet pas d'avoir un dépôt homogène car les distances de diffusion gazeuse sont beaucoup moins importantes que sous vide c'est-à-dire par exemple à une pression inférieure à 10+4 Pa. Par ailleurs, le carbure de silicium déposé est un composé de faible coefficient de dilatation, alors que le substrat employé a habituellement un coefficient de dilatation bien plus élevé, ce qui entraíne au cours du temps et des cycles de chauffage et de refroidissement un risque non négligeable de perte d'étanchéité, au moins en certains points, du revêtement de carbure de silicium et par voie de conséquence le contact entre les hydrocarbures et le superalliage qui conduit à un accroissement de la vitesse de cokage de l'appareillage.Mention may also be made of US Pat. No. 5,208,069, which describes a method for passivating the metal surface of reactor tubes coming into contact with hydrocarbons by decomposition in situ (that is to say in the device definitively assembled) of a non-oxygenated organometallic derivative of silicon under conditions of formation of a thin layer of ceramic material on the surface of these tubes. This method, in which the deposition is carried out at atmospheric pressure or under slight depression, generally does not lead to obtaining a relatively uniform deposit over the entire length of the tubes because the rate of growth of the deposit is not uniform while along the tube and therefore the thickness, or even the quality of the deposit, varies along the tube. These variations entail a risk of obtaining zones with large thicknesses and therefore of low adhesion and / or of zones in which the deposition of silicon carbide is of poor quality and therefore also of low adhesion. The pressure level at which - according to the examples of this patent - the vapor phase deposition of an organometallic derivative of silicon is much too high which does not allow to have a homogeneous deposition because the gas diffusion distances are much less important than under vacuum, that is to say for example at a pressure of less than 10 + 4 Pa. Furthermore, the deposited silicon carbide is a compound with a low coefficient of expansion, whereas the substrate employed usually has a coefficient much higher expansion, which over time and the heating and cooling cycles a significant risk of loss of sealing, at least at certain points, of the coating of silicon carbide and consequently the contact between the hydrocarbons and the superalloy which leads to an increase in the coking speed of the apparatus.

On peut encore citer la demande internationale WO-A-95/18 849, qui décrit notammant des objets utilisés comme éléments de réacteurs de craquage revêtus d'une couche protectrice vis-àvis du cokage contenant du chrome. Cette couche est appliquée par différenters méthodes de placage ou par peinture. Les revêtements de chrome obtenus ne présentent pas une résistance au cokage suffisante, en particulier dans les cycles alternés de cokage et de décokage.Mention may also be made of international application WO-A-95 / 18,849, which describes including objects used as components of cracking reactors coated with a protective layer against coking containing chromium. This layer is applied by different plating methods or by painting. Chrome coatings obtained do not have sufficient coking resistance, in particular in alternating coking and decoking cycles.

On a maintenant découvert de nouveaux aciers anti-cokage, utilisables notamment dans les applications mentionnées plus haut et qui ne présentent pas les inconvénients précités.We have now discovered new anti-coking steels, which can be used in particular in the applications mentioned above and which do not have the drawbacks cited above.

Ainsi, l'invention concerne un objet en acier présentant des propriétés anti-cokage, caractérisé en ce qu'il comprend :

  • un substrat en acier réfractaire renfermant au moins 0,2 % en masse de carbone ;
  • une barrière de diffusion riche en carbone ;
  • et une couche externe ayant une teneur de 90 à 99 % en masse de chrome ; et caractérisé en ce qu'il a été revêtu par une méthode de cémentation.
Thus, the invention relates to a steel object having anti-coking properties, characterized in that it comprises:
  • a refractory steel substrate containing at least 0.2% by mass of carbon;
  • a carbon rich diffusion barrier;
  • and an outer layer having a content of 90 to 99% by mass of chromium; and characterized in that it has been coated by a cementation method.

Le substrat (ou matrice) est en général constitué d'un acier réfractaire, contenant de préférence de 0,20 à 0,80 % (pourcent) en masse de carbone.The substrate (or matrix) generally consists of a refractory steel, containing preferably from 0.20 to 0.80% (percent) by mass of carbon.

Plus particulièrement, cet acier présente des grains de structure austénitique à température ambiante. Une famille d'acier spécifique considérée dans l'invention est celle des Manaurite® (marque déposée de la société MANOIR INDUSTRIES).More particularly, this steel has grains of austenitic structure at ambient temperature. A specific steel family considered in the invention is that Manaurite® (registered trademark of MANOIR INDUSTRIES).

Des exemples typiques d'aciers utilisables dans l'invention présentent les caractéristiques principales indiquées dans le tableau suivant (les compositions sont en % poids) : C Mn Si Ni Cr Fe additions ASTM A297 HK Manaurite 20® 0,30-0,65 1-2 1-2.5 18-24 23-36 compl. Ti. Nb. W ASTM A297 HL 0,20-0.60 1-2 1-2 18-22 28-32 compl. ASTM A297 HN 0.20-0,50 1-2 1-2 23-27 19-23 compl. ASTM A297 HP 0,35-0.75 1-2 1-2,5 33-37 24-28 compl. Manaurite 36XS® 0,35-0,60 1-1,5 1-2 33-38 23-28 compl. Nb, W Manaurite XM® 0,35-0,60 1-1,5 1-2 33-38 23-28 compl. Nb, Ti, Zr Manaurite XT® 0,35-0,45 1-1,5 1-2 42-46 32-37 compl. Nb Manaurite XTM® 0,40-0,45 1-2 1-2 43-48 34-37 compl. Nb, Ti Typical examples of steels which can be used in the invention have the main characteristics indicated in the following table (the compositions are in% by weight): VS Mn Yes Or Cr Fe additions ASTM A297 HK Manaurite 20® 0.30-0.65 1-2 1-2.5 18-24 23-36 compl. Ti. Nb. W ASTM A297 HL 0.20-0.60 1-2 1-2 18-22 28-32 compl. ASTM A297 HN 0.20-0.50 1-2 1-2 23-27 19-23 compl. ASTM A297 HP 0.35-0.75 1-2 1-2.5 33-37 24-28 compl. Manaurite 36XS® 0.35-0.60 1-1.5 1-2 33-38 23-28 compl. Nb, W Manaurite XM® 0.35-0.60 1-1.5 1-2 33-38 23-28 compl. Nb, Ti, Zr Manaurite XT® 0.35-0.45 1-1.5 1-2 42-46 32-37 compl. Nb Manaurite XTM® 0.40-0.45 1-2 1-2 43-48 34-37 compl. Nb, Ti

Comme indiqué précédemment, on considère plus particulièrement dans l'invention les objets en acier réfractaire revêtus par des méthodes de chromisation thermiques, telles que la chromisation par cémentation, en particulier par pack-cémentation ou par cémentation en phase gaz.As indicated above, the invention is more particularly considered refractory steel objects coated by thermal chromium plating methods, such as chromisation by cementation, in particular by pack cementation or by carburizing in gas phase.

Le procédé de pack-cémentation est bien connu de l'homme du métier. Il a été décrit dans de nombreux documents. Par exemple dans le brevet des Etats-Unis US-A-5 589 220, les auteurs rappellent que la pack-cémentation est un procédé dérivé de la CVD (abréviation de "Chemical Vapor Deposition"), qui consiste à chauffer, en enceinte fermée ou ouverte contenant la pièce métallique à revêtir, un "pack" à une température élevée pendant une durée déterminée, au cours de laquelle un dépôt diffusionnel se produit sur ladite pièce métallique. Le "pack" de cémentation dans l'enceinte fermée ou ouverte est protégé de l'oxydation par une atmosphère inerte ou réductrice. Le "pack" de cémentation consiste en une pièce ou un substrat de métal ou d'alliage à revêtir, environné des éléments à déposer (sous la forme d'un métal ou d'un alliage-maítre), d'un sel activateur halogénure et d'une charge pulvérulente. On utilise un gaz inerte tel que l'argon ou encore l'hydrogène comme environnement gazeux du "pack". Une fois que le "pack" est chauffé à une température assez élevée, le sel activateur réagit avec la poudre de métal ou d'alliage-maítre pour former des vapeurs d'halogénure métallique. Les vapeurs d'halogénure métallique diffusent vers la surface du métal ou du substrat à travers la phase gazeuse du "pack" poreux. A la surface du substrat, une étape réactionnelle a lieu qui résulte en le dépôt de l'élément désiré et en la formation, par diffusion à l'état solide d'un revêtement protecteur à la surface du métal. La réaction en surface peut être assez complexe et mettre en oeuvre de l'adsorption, de la dissociation et/ou de la diffusion des espèces moléculaires.The pack-cementation process is well known to those skilled in the art. He was described in numerous documents. For example in the United States patent US-A-5,589,220, the authors point out that pack-cementation is a derived process CVD (abbreviation for "Chemical Vapor Deposition"), which consists of heating, in closed or open enclosure containing the metal part to be coated, a "pack" at one high temperature for a specified period, during which a deposit diffusion occurs on said metal part. The cementation "pack" in the closed or open enclosure is protected from oxidation by an inert atmosphere or reductive. The cementation "pack" consists of a piece or a substrate of metal or of alloy to be coated, surrounded by the elements to be deposited (in the form of a metal or a master alloy), a halide activating salt and a pulverulent filler. We use a inert gas such as argon or hydrogen as the gaseous environment of "pack". Once the "pack" is heated to a fairly high temperature, the salt activator reacts with metal or master alloy powder to form vapors metal halide. The metal halide vapors diffuse towards the surface of the metal or substrate through the gas phase of the porous "pack". On the surface of substrate, a reaction step takes place which results in the deposition of the desired element and in the formation, by diffusion in the solid state of a protective coating on the surface of the metal. The surface reaction can be quite complex and involve adsorption, dissociation and / or diffusion of molecular species.

Par ailleurs, la cémentation en gaz (gas-phase) consiste à chauffer à une température élevée dans une enceinte ouverte contenant la pièce métallique pendant une durée déterminée, au cours de laquelle un dépôt diffusionnel se produit sur ladite pièce métallique par un gaz d'halogénure de chrome généré par l'action d'un halogénure et/ou de son hydrure sur un lit de granules de chrome ou d'alliage de chrome de 0,1 mm à 50 mm de diamètre.In addition, gas carburizing consists of heating to a high temperature in an open enclosure containing the metal part during a fixed duration, during which a diffusion deposit occurs on said piece metallic by a chromium halide gas generated by the action of a halide and / or of its hydride on a bed of chromium or chromium alloy granules from 0.1 mm to 50 mm in diameter.

Ce gaz métallisant est véhiculé par un gaz porteur du lit de granules vers ladite pièce par un distributeur-diffuseur spécifique.This metallizing gas is conveyed by a gas carrying the bed of granules to said piece by a specific distributor-diffuser.

Le gaz porteur est un gaz tel que l'argon ou encore l'hydrogène comme environnement gazeux protecteur.The carrier gas is a gas such as argon or hydrogen as protective gaseous environment.

Le processus d'apport gazeux métallisant auprès de ladite pièce métallique est régi par les règles de la dynamique des fluides et limite la formation du dépôt de chrome.The process of metallizing gas supply to said metal part is governed by the rules of fluid dynamics and limits the formation of chromium deposits.

Le choix équilibré des paramètres physiques (température, durée de traitement, débits massiques des espèces gazeuses) et de l'activité chimique de l'halogénure de chrome, optimisé par le ratio des masses solides en présence (halogénure / chrome en granules), avec ou sans présence de son hydrure, stabilise l'activité chimique de l'halogénure métallisant et les conditions de formation du revêtement.The balanced choice of physical parameters (temperature, duration of treatment, mass flows of gaseous species) and of the chemical activity of the halide of chromium, optimized by the ratio of solid masses present (halide / chromium in granules), with or without the presence of its hydride, stabilizes the chemical activity of the metallizing halide and the conditions for coating.

La concentration massique en chrome des granules est d'au moins cinquante pour cent.The mass concentration of chromium in the granules is at least fifty for hundred.

Selon l'invention, on opère plus particulièrement dans les conditions de pack-cémentation indiquées ci-après.According to the invention, one operates more particularly under the conditions of pack-cementation shown below.

Les pièces à revêtir sont placées dans des caissons contenant un cément constitué de poudres de chrome (30 à 40 % en masse) et d'alumine (60 à 70 % en masse) et d'un halogénure activateur (0,1 à 2 % en masse par rapport à l'ensemble des deux poudres) sous atmosphère, par exemple d'hydrogène ou d'argon. Un traitement thermique isotherme est alors réalisé à une température de 900 à 1200 °C. The parts to be coated are placed in boxes containing a cement made up chromium powders (30 to 40% by mass) and alumina (60 to 70% by mass) and a activating halide (0.1 to 2% by mass relative to all of the two powders) under an atmosphere, for example hydrogen or argon. Heat treatment isothermal is then carried out at a temperature of 900 to 1200 ° C.

Les objets revêtus selon l'invention peuvent être utilisés d'une manière générale comme matériaux de constitution de faisceaux tubulaires de réacteurs de pyrolyse d'hydrocarbures, avec ou sans présence de vapeur d'eau, plus particulièrement pour les réacteurs de vaporéformage ou de vapocraquage. Ils peuvent également être utilisés comme matériaux de constitution de faisceaux tubulaires pour fours pour traitements pétroliers ou pétrochimiques, comme la viscoréduction. Ils peuvent encore servir dans le revêtement de virolles et/ou internes de réacteurs en lit fixe pour traitements pétrochimiques, tels que par exemple la déshydrogénation ou le réformage.Objects coated according to the invention can be used in general as building materials for tubular bundles of pyrolysis reactors of hydrocarbons, with or without the presence of water vapor, more particularly for steam reforming or steam cracking reactors. They can also be used as building materials for tubular bundles for process furnaces petroleum or petrochemical, such as visbreaking. They can still be used in the coating of ferrules and / or internal of fixed bed reactors for treatments petrochemicals, such as for example dehydrogenation or reforming.

Dans des applications de ce type, les objets revêtus selon l'invention présentent des propriétés anti cokage améliorées. De plus, les dépôts obtenus ne se détériorent pas lors de cycles thermiques sévères entre la température ambiante et par exemple 1000 °C, avec des vitesses de chauffage et refroidissement de 500 °C/h.In applications of this type, the coated objects according to the invention exhibit improved anti-coking properties. In addition, the deposits obtained do not deteriorate during severe thermal cycles between room temperature and for example 1000 ° C., with heating and cooling rates of 500 ° C / h.

Les exemples donnés ci-après illustrent l'invention.The examples given below illustrate the invention.

EXEMPLE 1EXAMPLE 1

On traite par pack-cémentation une pièce d'acier réfractaire Manaurite XM® ayant la composition suivante : C Mn Si Ni Cr Fe additions Manaurite XM® 0,35-0,60 1-1,5 1-2 33-38 23-28 compl. Nb, Ti, Zr A piece of Manaurite XM® refractory steel having the following composition is treated by pack-hardening. VS Mn Yes Or Cr Fe additions Manaurite XM® 0.35-0.60 1-1.5 1-2 33-38 23-28 compl. Nb, Ti, Zr

On obtient une pièce chromisée dont les caractéristiques sont illustrées plus particulièrement par la planche métallographique jointe en annexe (voir Figures 1A, 1B, 1C et 1D), comprenant une photographie d'une coupe transversale d'une pièce revêtue (Figure 1A), ainsi que les cartes de répartition X (par analyse à la microsonde de Castaing) des éléments constitutifs du substrat et du dépôt (fer, carbone et chrome, respectivement sur les Figures 1B, 1C et 1D): la variation d'intensité du signal permet de comparer la composition de différentes zones. Ainsi, les zones qui apparaissent blanches sont très riches en l'élément considéré. We obtain a chromed part, the characteristics of which are illustrated more particularly by the metallographic plate attached in the appendix (see Figures 1A, 1B, 1C and 1D), including a photograph of a cross section of a coated part (Figure 1A), as well as the X distribution maps (by microprobe analysis of Castaing) of the constituent elements of the substrate and the deposit (iron, carbon and chromium, respectively in Figures 1B, 1C and 1D): the variation in signal intensity allows compare the composition of different areas. So the areas that appear white are very rich in the element considered.

Par exemple sur l'image du carbone (Figure 1C), on observe une barrière d'épaisseur homogène grise qui correspond à la barrière de diffusion interne du revêtement nche en carbone.For example on the carbon image (Figure 1C), we observe a barrier of homogeneous gray thickness which corresponds to the internal diffusion barrier of the carbon nche coating.

Sur l'image du chrome (Figure 1D), la zone de couleur blanche externe du revêtement correspond à une teneur de 96 % en masse de chrome.On the chrome image (Figure 1D), the outer white area of the coating corresponds to a content of 96% by mass of chromium.

On a effectué l'analyse quantitative des divers éléments sur la pièce chromisée, pour la matrice (ou substrat) elle-même, pour le bord de celle-ci, et pour le dépôt de chrome en son bord interne et en son bord externe. Ces différentes zones sont bien visibles de haut en bas sur les figures, notamment sur la figure 1D, où le chrome apparaít en blanc. Les teneurs en les divers éléments sont indiquées dans le tableau suivant : Elément Si (%) Ni (%) Cr (%) Fe (%) C (%) Nb (%) Mn (%) Matrice 1,6 33,0 22,9 40,0 0,6 0,2 1,0 Bord de la matrice 1,6 33,6 23,8 39,4 0,8 0,1 1,0 Interne - 3,8 84,2 5,0 5,5 - - Dépôt Externe 0,3 1,3 95,6 3,2 0,8 - - The quantitative analysis of the various elements was carried out on the chromized part, for the matrix (or substrate) itself, for the edge thereof, and for the deposit of chromium at its internal edge and at its external edge. These different areas are clearly visible from top to bottom in the figures, especially in Figure 1D, where the chrome appears in white. The contents of the various elements are indicated in the following table: Element Yes (%) Ni (%) Cr (%) Fe (%) VS (%) Nb (%) Mn (%) Matrix 1.6 33.0 22.9 40.0 0.6 0.2 1.0 Matrix edge 1.6 33.6 23.8 39.4 0.8 0.1 1.0 Internal - 3.8 84.2 5.0 5.5 - - Deposit External 0.3 1.3 95.6 3.2 0.8 - -

EXEMPLE 2 (comparatif)EXAMPLE 2 (comparative)

On a réalisé un dépôt de chrome par voie électrolytique. Pour ce faire, on a immergé un échantillon en acier réfractaire Manaurite XM® servant de cathode, dans un bain de chromate et on a réduit les ions chromates en chrome métallique sur la cathode. On a obtenu un acier chromé désigné dans la suite par Manaurite XM® chromée par électrolyse.Chromium was deposited electrolytically. To do this, we have immersed a sample of Manaurite XM® refractory steel serving as a cathode, in a chromate bath and the chromate ions were reduced to metallic chromium on the cathode. A chromed steel was obtained, designated hereafter by Manaurite XM®, chromed by electrolysis.

EXEMPLE 3EXAMPLE 3

Les tests ont été réalisés dans des conditions de vapocraquage à 800 °C avec une charge d'hydrocarbure et d'eau. La vitesse de cokage a été suivie par analyse thermogravimétrique. Les échantillons revêtus sur toute leur face sont placés dans un réacteur de vapocraquage parfaitement homogène et suspendus au fléau de la thermobalance. Après quelques heures d'expérience, la vitesse se stabilise à une valeur dite asymptotique, caractéristique de la réactivité du dépôt vis-à-vis du cokage. Un décokage sous air est ensuite effectué afin de suivre le comportement au cours de cycles cokage-décokage-cokage, etc.The tests were carried out under steam cracking conditions at 800 ° C. with a hydrocarbon and water charge. The coking speed was followed by analysis thermogravimetric. The samples coated on their entire face are placed in a perfectly homogeneous steam cracking reactor suspended from the bane of the thermobalance. After a few hours of experience, the speed stabilizes at a value called asymptotic, characteristic of the reactivity of the deposit vis-à-vis coking. A air decoking is then carried out in order to follow the behavior during cycles coking-decoking-coking, etc.

On utilise un échantillon en acier réfractaire Manaurite XM® chromisé comme décrit dans l'Exemple 1 et, à titre de comparaison, un échantillon en l'acier réfractaire Manaurite XM® lui-même, ainsi qu'un échantillon d'acier du même type revêtu par CVD d'une couche de carbure de titane et d'une couche de carbure de silicium, un échantillon d'acier du même type revêtu par CVD d'une couche de carbure de titane et un échantillon d'acier Manaunte XM® chromée par électrolyse.A chromium-plated Manaurite XM® refractory steel sample is used as described in Example 1 and, for comparison, a sample of refractory steel Manaurite XM® itself, as well as a sample of steel of the same type coated by CVD a layer of titanium carbide and a layer of silicon carbide, a sample of steel of the same type coated by CVD with a layer of titanium carbide and a sample of Manaunte XM® steel chromed by electrolysis.

Le test est effectué à 800°C, avec une charge d'hexane et d'eau pour une conversion d'environ 30 %. On a obtenu les résultats indiqués dans le tableau 4 ci-après. Vitesse asymptotique de cokage (g/m2h) 1er cokage 2ème cokage Manaurite XM® 1,00 1,05 Manaurite XM® chromée par électrolyse 0,60 0,65 Manaurite XM® /TiC 0,46 0,47 Manaurite XM® /TiC / SiC 0,19 0,50 Manaurite XM® chromisée 0,20 0,20 The test is carried out at 800 ° C., with a charge of hexane and water for a conversion of approximately 30%. The results indicated in Table 4 below were obtained. Asymptotic coking speed (g / m 2 h) 1st coking 2nd coking Manaurite XM® 1.00 1.05 Manaurite XM® chromed by electrolysis 0.60 0.65 Manaurite XM® / TiC 0.46 0.47 Manaurite XM® / TiC / SiC 0.19 0.50 Manaurite XM® chrome 0.20 0.20

D'après ces résultats, il apparaít notamment que l'utilisation de la Manaurite XM® chromisée de l'Exemple 1 selon l'invention conduit, au bout du premier cokage, à une vitesse de cokage beaucoup plus faible que celle observée avec la Manaurite XM® avant chromisation (5 fois plus faible) ou que celle observée avec la Manaunte XM® électrolytique ou que la Manaurite XM® revêtue d'une couche de carbure de titane. La ManauriteXM® chromisée de l'Exemple 1 donne également de bons résultats au bout du deuxième cokage. Pour sa part, un acier revêtu de carbure de titane et de carbure de silicium donne de mauvais résultats dès le second cokage. From these results, it appears in particular that the use of Manaurite XM® chromized glass of Example 1 according to the invention leads, at the end of the first coking, to a coking speed much lower than that observed with the Manaurite XM® before chromization (5 times weaker) or that observed with the Manaunte XM® electrolytic or Manaurite XM® coated with a layer of titanium carbide. The ManauriteXM® chromized in Example 1 also gives good results after second coking. For its part, a steel coated with titanium carbide and carbide silicon gives poor results from the second coking.

EXEMPLE 4EXAMPLE 4

Des essais de résistance au cyclage thermique ont été effectués, afin de simuler les chocs thermiques que peuvent subir les tubes de vapocraquage industriels. Ces essais ont été réalisés dans un four à moufle équipé d'une injection d'air. Les échantillons ont subi 15 cycles thermiques de chauffage et refroidissement, de la température ambiante jusqu'à 1000 °C (et vice versa), avec une vitesse de chauffage (ou de refroidissement) de 500 °C par heure. Pendant les 15 premiers cycles, les pièces sont examinées après chaque cycle.Thermal cycling resistance tests were carried out in order to simulate the thermal shock that industrial steam cracking tubes can undergo. These tests have were made in a muffle furnace equipped with an air injection. The samples have undergone 15 thermal heating and cooling cycles, from room temperature to 1000 ° C (and vice versa), with a heating (or cooling) speed of 500 ° C per hour. During the first 15 cycles, the parts are examined after each cycle.

L'acier réfractaire Manaurite XM® chromisé comme décrit dans l'Exemple 1 a été évalué selon le protocole précédent. Au bout de 145 cycles (ce qui correspond au cyclage thermique cumulé sur installation industrielle pour une durée de vie estimée à 10 ans), cet acier ne s'est pas dégradé. Pendant les 15 premiers cycles, les pièces sont examinées après chaque cycle. Les examens métallographiques confirment l'intégrité du revêtement.The chromium-plated Manaurite XM® refractory steel as described in Example 1 was evaluated according to the previous protocol. After 145 cycles (which corresponds to cumulative thermal cycling on industrial plant for an estimated service life of 10 years), this steel has not degraded. During the first 15 cycles, the parts are examined after each cycle. Metallographic examinations confirm the integrity of the coating.

A titre de comparaison, on a effectué des essais de résistance au cyclage thermique dans les mêmes conditions avec un revêtement de carbure de titane seul : au bout de 10 cycles, on a observé la disparition totale de la couche. Par ailleurs, avec un revêtement de carbure de titane et de carbure de silicium, on a observé la disparition de la couche de carbure de silicium au bout de 5 cycles.For comparison, tests of resistance to thermal cycling were carried out. under the same conditions with a coating of titanium carbide alone: after 10 cycles, the total disappearance of the layer was observed. By the way, with a coating of titanium carbide and silicon carbide, the layer of silicon carbide after 5 cycles.

Claims (11)

Objet en acier revêtu présentant des propriétés anti-cokage, caractérisé en ce qu'il comprend : un substrat en acier réfractaire renfermant au moins 0,2 % en masse de carbone ; une barrière de diffusion riche en carbone ; et une couche externe ayant une teneur de 90 à 99 % en masse de chrome. et caractérisé en ce qu'il a été revêtu par cémentation. Coated steel object having anti-coking properties, characterized in that it comprises: a refractory steel substrate containing at least 0.2% by mass of carbon; a carbon rich diffusion barrier; and an outer layer having a content of 90 to 99% by mass of chromium. and characterized in that it has been coated by cementation. Objet selon la revendication 1, caractérisé en ce qu'il a été revêtu par pack-cémentation ou par cémentation en phase gaz.Object according to claim 1, characterized in that it has been coated by pack-cementation or by carburizing in the gas phase. Objet selon l'une des revendications 1 et 2, caractérisé en ce que la teneur du substrat en carbone est de 0,2 % à 0,8 % en masse.Object according to one of claims 1 and 2, characterized in that the content of carbon substrate is 0.2% to 0.8% by mass. Procédé de fabrication d'un objet en acier revêtu présentant des propriétés anti-cokage selon l'une des revendications 1 à 3, caractérisé en ce que l'on procède au revêtement de la surface d'un acier par céméntation.Method of manufacturing a coated steel object having anti-coking properties according to one of claims 1 to 3, characterized in that one proceeds to coating of the surface of a steel by cementation. Procédé selon la revendication 4, caractérisé en ce que l'on procède par pack-céméntation.Method according to claim 4, characterized in that one proceeds by pack-céméntation. Utilisation d'un objet selon l'une des revendications 1 à 3 comme matériau de constitution de faisceaux tubulaires de réacteurs de pyrolyse d'hydrocarbures, avec ou sans présence de vapeur d'eau.Use of an object according to one of claims 1 to 3 as a material for constitution of tubular bundles of hydrocarbon pyrolysis reactors, with or without the presence of water vapor. Utilisation selon la revendication 6, caractérisée en ce que lesdits réacteurs sont des réacteurs de vaporéformage.Use according to claim 6, characterized in that said reactors are steam reforming reactors. Utilisation selon la revendication 6, caractérisée en ce que lesdits réacteurs sont des réacteurs de vapocraquage.Use according to claim 6, characterized in that said reactors are steam cracking reactors. Utilisation d'un objet selon l'une des revendications 1 à 3 comme matériau de constitution de faisceaux tubulaires pour fours pour traitements pétroliers ou pétrochimiques.Use of an object according to one of claims 1 to 3 as a material for constitution of tubular bundles for furnaces for petroleum or petrochemical treatments. Utilisation selon la revendication 9, caractérisée en ce que le traitement est un traitement de viscoréduction. Use according to claim 9, characterized in that the treatment is a visbreaking treatment. Utilisation d'un objet selon l'une des revendications 1 à 3 comme matériau de constitution de viroles et/ou d'internes de réacteurs en lit fixe pour traitements pétrochimiques.Use of an object according to one of claims 1 to 3 as a material for constitution of ferrules and / or reactor internals in a fixed bed for petrochemical treatments.
EP98401567A 1997-07-04 1998-06-25 Heat resistant chromized steel, process for the production thereof and its use in anti-coking applications Expired - Lifetime EP0889146B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9708511A FR2765594B1 (en) 1997-07-04 1997-07-04 CHROMED REFRACTORY STEEL, PROCESS FOR OBTAINING SAME AND USES THEREOF IN ANTI-COKAGE APPLICATIONS
FR9708511 1997-07-04

Publications (2)

Publication Number Publication Date
EP0889146A1 true EP0889146A1 (en) 1999-01-07
EP0889146B1 EP0889146B1 (en) 2004-05-06

Family

ID=9508882

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98401567A Expired - Lifetime EP0889146B1 (en) 1997-07-04 1998-06-25 Heat resistant chromized steel, process for the production thereof and its use in anti-coking applications

Country Status (6)

Country Link
US (1) US6348145B1 (en)
EP (1) EP0889146B1 (en)
JP (1) JP4206491B2 (en)
CA (1) CA2241349C (en)
DE (1) DE69823585T2 (en)
FR (1) FR2765594B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250340B1 (en) 1998-08-20 2001-06-26 Doncasters Plc Alloy pipes and methods of making same
US6644358B2 (en) 2001-07-27 2003-11-11 Manoir Industries, Inc. Centrifugally-cast tube and related method and apparatus for making same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE810647A (en) * 1974-02-05 1974-05-29 PROCESS FOR CHROMIZING THE INTERNAL FACE OF A FERROUS METAL TUBE AND ESPECIALLY STEEL.
JPH03104843A (en) * 1989-09-19 1991-05-01 Sumitomo Metal Ind Ltd Heat-resistance steel for ethylene cracking furnace tube having coking resistance
JPH0426751A (en) * 1990-05-18 1992-01-29 Mitsubishi Heavy Ind Ltd Surface modification treatment for austenitic stainless steel
WO1995018849A1 (en) * 1994-01-04 1995-07-13 Chevron Chemical Company Cracking processes
WO1997016507A1 (en) * 1995-10-31 1997-05-09 K.T.I. Group B.V. Process for reducing the formation of carbon deposits

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1149163A (en) 1966-03-22 1969-04-16 Ici Ltd Protection against carburisation
US4350719A (en) * 1979-09-07 1982-09-21 Alloy Surfaces Company, Inc. Diffusion coating and products therefrom
US4086107A (en) 1974-05-22 1978-04-25 Nippon Steel Corporation Heat treatment process of high-carbon chromium-nickel heat-resistant stainless steels
US4532109A (en) 1982-01-21 1985-07-30 Jgc Corporation Process for providing an apparatus for treating hydrocarbons or the like at high temperatures substantially without carbon deposition
US4507196A (en) * 1983-08-16 1985-03-26 Phillips Petroleum Co Antifoulants for thermal cracking processes
US4863892A (en) * 1983-08-16 1989-09-05 Phillips Petroleum Company Antifoulants comprising tin, antimony and aluminum for thermal cracking processes
US5169515A (en) 1989-06-30 1992-12-08 Shell Oil Company Process and article
CA2113366C (en) 1993-01-15 2005-11-08 George A. Coffinberry Coated articles and method for the prevention of fuel thermal degradation deposits
US5658452A (en) 1994-01-04 1997-08-19 Chevron Chemical Company Increasing production in hydrocarbon conversion processes
US5873951A (en) 1996-08-23 1999-02-23 Alon, Inc. Diffusion coated ethylene furnace tubes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE810647A (en) * 1974-02-05 1974-05-29 PROCESS FOR CHROMIZING THE INTERNAL FACE OF A FERROUS METAL TUBE AND ESPECIALLY STEEL.
JPH03104843A (en) * 1989-09-19 1991-05-01 Sumitomo Metal Ind Ltd Heat-resistance steel for ethylene cracking furnace tube having coking resistance
JPH0426751A (en) * 1990-05-18 1992-01-29 Mitsubishi Heavy Ind Ltd Surface modification treatment for austenitic stainless steel
WO1995018849A1 (en) * 1994-01-04 1995-07-13 Chevron Chemical Company Cracking processes
WO1997016507A1 (en) * 1995-10-31 1997-05-09 K.T.I. Group B.V. Process for reducing the formation of carbon deposits

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 289 (C - 0852) 23 July 1991 (1991-07-23) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 190 (C - 0937) 8 May 1992 (1992-05-08) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250340B1 (en) 1998-08-20 2001-06-26 Doncasters Plc Alloy pipes and methods of making same
US6923900B2 (en) 1998-08-20 2005-08-02 Doncasters Plc Alloy pipes and methods of making same
US6644358B2 (en) 2001-07-27 2003-11-11 Manoir Industries, Inc. Centrifugally-cast tube and related method and apparatus for making same
US8033767B2 (en) 2001-07-27 2011-10-11 Manoir Industries, Inc. Centrifugally-cast tube and related method and apparatus for making same
US8070401B2 (en) 2001-07-27 2011-12-06 Manoir Industries, Inc. Apparatus for making centrifugally-cast tube

Also Published As

Publication number Publication date
JP4206491B2 (en) 2009-01-14
DE69823585D1 (en) 2004-06-09
EP0889146B1 (en) 2004-05-06
FR2765594B1 (en) 1999-08-27
FR2765594A1 (en) 1999-01-08
JPH1180926A (en) 1999-03-26
US6348145B1 (en) 2002-02-19
CA2241349A1 (en) 1999-01-04
DE69823585T2 (en) 2004-09-16
CA2241349C (en) 2009-05-05

Similar Documents

Publication Publication Date Title
EP0738313B1 (en) Protective layer for a steel portion of a reactor system for hydrocarbon processing
US6585864B1 (en) Coating system for high temperature stainless steel
JP4805523B2 (en) Coating system for high temperature stainless steel
KR20000065160A (en) Surface Alloyed High Temperature Alloys
Taghipour et al. An investigation on anti-coking behavior of gas phase aluminide coatings applied on a high performance micro alloyed (HP-MA) steel
FR2819526A1 (en) USE OF AUSTENITIC STAINLESS STEELS IN APPLICATIONS REQUIRING ANTI-COCKING PROPERTIES
CA2264977C (en) Use of low alloy steel in applications where anti-coking properties are required
CA2357407C (en) Coating system for high temperature stainless steels
EP0889146B1 (en) Heat resistant chromized steel, process for the production thereof and its use in anti-coking applications
EP0718415B1 (en) Anti-coking steels
EP0688889B1 (en) Method for passivating nickel and iron based superalloy parts
EP1040175B1 (en) Anti-coking coatings
US20020079023A1 (en) Corrosion resistance of high temperature alloys
CA2178724C (en) Cracking processes
EP0409687B1 (en) Method of silicifying metallic parts by chemical vapour deposition
FR2833020A1 (en) USE OF QUASI-CRYSTALLINE ALUMINUM ALLOYS IN REFINING AND PETROCHEMICAL APPLICATIONS
KR840000446B1 (en) Process for hight-temperature treatment of hydrocarbon-containing materials
Ortiz Reyes Coking Resistance of Alumina Forming Cast Austenitic Stainless Steels
CN117966086A (en) Treatment method and application of hydrocarbon cracking furnace tube alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990707

AKX Designation fees paid

Free format text: BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 20010612

RTI1 Title (correction)

Free format text: HEAT RESISTANT CHROMIZED STEEL, PROCESS FOR THE PRODUCTION THEREOF AND ITS USE IN ANTI-COKING APPLICATIONS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69823585

Country of ref document: DE

Date of ref document: 20040609

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100505

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100622

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100610

Year of fee payment: 13

Ref country code: BE

Payment date: 20100617

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100401

Year of fee payment: 13

Ref country code: DE

Payment date: 20100708

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69823585

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL MALMAISON, FR

Effective date: 20110331

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU *PETROLE

Effective date: 20110630

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110625

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69823585

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110625