EP0887105A1 - Device and method for comminution of semiconductive material - Google Patents

Device and method for comminution of semiconductive material Download PDF

Info

Publication number
EP0887105A1
EP0887105A1 EP98110151A EP98110151A EP0887105A1 EP 0887105 A1 EP0887105 A1 EP 0887105A1 EP 98110151 A EP98110151 A EP 98110151A EP 98110151 A EP98110151 A EP 98110151A EP 0887105 A1 EP0887105 A1 EP 0887105A1
Authority
EP
European Patent Office
Prior art keywords
semiconductor material
electrodes
silicon
shredded
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98110151A
Other languages
German (de)
French (fr)
Other versions
EP0887105B1 (en
Inventor
Franz Dr. Köppl
Paul Fuchs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP0887105A1 publication Critical patent/EP0887105A1/en
Application granted granted Critical
Publication of EP0887105B1 publication Critical patent/EP0887105B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/0056Other disintegrating devices or methods specially adapted for specific materials not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C2019/183Crushing by discharge of high electrical energy

Definitions

  • the invention relates to an apparatus and a method for Shredding semiconductor material.
  • High purity Silicon is obtained, for example, by thermal decomposition more volatile and therefore simple via distillation processes silicon compounds to be cleaned, such as Trichlorosilane. It falls polycrystalline in the form of rods with typical diameters from 70 to 300 mm and lengths of 500 up to 2500 mm. A large part of the bars becomes production of crucible-drawn single crystals, of ribbons and foils or for the production of polycrystalline solar cell base material used. Because these products are made from high purity, molten Silicon are manufactured, it is necessary to use solid silicon to melt in crucibles.
  • the object of the invention was therefore a device and to provide a method that the state improved technology and in particular enables semiconductor material contamination-free and without high temperatures and crush mechanical crushing tools. This The object is achieved by the invention.
  • the invention relates to a device for comminuting of semiconductor material, which is characterized in that it has at least two spaced electrodes, which from the same material as the semiconductor material to be shredded exist and each have a heater.
  • electrodes can also be made from semiconductor material use while electrodes made of a different material a substantial entry of foreign material from the electrodes or from that used for contacting Have water.
  • FIG. 1 shows a device for comminuting according to the invention shown schematically in cross section.
  • Figure 2 shows schematically in a perspective top view the inventive method.
  • the device according to the invention is preferably used to brittle hard semiconductor material 1, such as germanium or To crush gallium arsenide and preferably silicon. It it does not matter whether there are fragments or semiconductor rods should be crushed.
  • the device is constructed in such a way that it has at least two spaced electrodes 3, which consist of the semiconductor material to be comminuted, which is germanium or gallium arsenide and preferably silicon.
  • the electrodes preferably have a diameter of 6 mm to 20 mm, particularly preferably 8 mm to 12 mm. These electrodes have a heating device which they can heat to temperatures of preferably 400 ° C. to 1200 ° C.
  • This heating device preferably has a heating cassette 6 with preferably electric heaters 5.
  • the electrodes 3 themselves are preferably connected to a high-voltage pulse generator 8 via a graphite electrode 4.
  • the electrodes 3 are movably connected so that they can be pushed axially out of the heating cassette 6 with the electric heaters 5 and can thus be pushed onto the semiconductor material to be comminuted, such as preferably a silicon rod, so that they are in contact with the semiconductor material .
  • the electrodes can also be movable by being rigidly connected to the heating device, by moving the electrodes together with the heating device on a displaceable holder 7, which is preferably made of metal.
  • a base 2 which consists of wear-resistant plastic or preferably of the same material as the semiconductor material to be comminuted, preferably silicon, in order to reduce contamination with foreign atoms.
  • the device preferably works under ambient air, at normal pressure, but it can also be operated in an atmosphere with increased dielectric strength, such as under increased pressure or under an electronegative gas such as CO 2 , or a mixture of corresponding gases.
  • Electrodes 3 are arranged so that, for example, a Rod made of semiconductor material can be shredded at once.
  • the electrodes can be placed at intervals of preferably 1 cm to 20 cm depending on the length of the semiconductor material that to be crushed in one operation will.
  • Another object of the invention is a method for comminution of semiconductor material, which is characterized is that the crushing of the semiconductor material by direct Current passage with high voltage pulses takes place as Electrodes made of the same material as the material to be shredded Semiconductor material can be used at a temperature brought in which they are conductive.
  • semiconductor material such as preferably germanium, gallium arsenide and preferred Silicon
  • a base preferably made of plastic or particularly preferably of the same material how the semiconductor material to be shredded is made up of contamination with foreign atoms is reduced.
  • the rod-shaped semiconductor material preferably a silicon rod of 60 mm to 250 mm in diameter and a length of 100 mm to 250 mm, successively the pad at intervals of preferably 1 cm to 20 cm, especially preferably from 3 cm to 8 cm, pushed. This sets up also depends on how large the grain size is during crushing should be. This can be continuously adjusted from 5 mm to 180 mm will.
  • the semiconductor material depending on what grain size is desired is, preferably between 3 cm to 8 cm over at least two electrodes pushed out. Then the two Electrodes 3 moved towards the semiconductor material so that they in Contact with this, taking the two electrodes 3 that are out the same material as the semiconductor material to be shredded exist, and are provided with a heater that a heating cassette 6 and preferably an electric heater 5, which heats the electrodes to a temperature at which they are conductive. This temperature is preferably 400 ° C to 1200 ° C.
  • a high voltage pulse generator 8 emitted at least one surge, preferably a voltage of 20 kV to 300 kV, particularly preferably of 30 kV to 150 kV, a current of 1 kA to 20 kA, particularly preferably from 3 kA to 10 kA, a pulse duration of 10 nsec to 50 msec, particularly preferably from 1 msec to 30 msec and one Pulse frequency from 0.1 Hz to 10 Hz, particularly preferably from 0.5 Hz, with a rod diameter of 60 mm.
  • the rod-shaped semiconductor material can also be in a device can be pushed, in each case one row of 2 electrodes each, preferably at intervals of 1 cm to 20 cm are arranged at the same time as the rod-shaped Semiconductor material come in contact with it at the same time at least one surge as described above shred.
  • An advantage of the method according to the invention is that it depends on the number of pulses, the level of voltage, the pulse duration and the geometric distance between the contact points large disks up to fine breakage are produced on the semiconductor material can be.
  • a silicon break with one is preferred largest dimension of 100 mm.
  • this is the invention This makes the process cost-effective and extremely environmentally friendly, because there is no waste water.

Abstract

Cutting up semiconductor material comprises direct current passage by pulsed high voltage application using electrodes which consist of the semiconductor material (preferably silicon) and which are made conductive by heating. Also claimed is the apparatus for carrying out the above process, including spaced electrodes (3) having heaters (5).

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Zerkleinern von Halbleitermaterial.The invention relates to an apparatus and a method for Shredding semiconductor material.

Für die Herstellung von Solarzellen oder elektronischen Bauelementen, wie beispielsweise Speicherelementen oder Mikroprozessoren, wird hochreines Halbleitermaterial benötigt. Die gezielt eingebrachten Dotierstoffe sind die einzigen Verunreinigungen, die ein derartiges Material im günstigsten Fall aufweisen sollte. Man ist daher bestrebt, die Konzentrationen schädlicher Verunreinigungen so niedrig wie möglich zu halten. Häufig wird beobachtet, daß bereits hochrein hergestelltes Halbleitermaterial im Verlauf der weiteren Verarbeitung zu den Zielprodukten erneut kontaminiert wird. So werden immer wieder aufwendige Reinigungsschritte notwendig, um die ursprüngliche Reinheit zurückzuerhalten. Fremdmetallatome, die in das Kristallgitter des Halbleitermaterials eingebaut werden, stören die Ladungsverteilung und können die Funktion des späteren Bauteils vermindern oder zu dessen Ausfall führen. Infolgedessen sind insbesondere Kontaminationen des Halbleitermaterials durch metallische Verunreinigungen zu vermeiden. Dies gilt insbesondere für Silicium, das in der Elektronikindustrie mit deutlichem Abstand am häufigsten als Halbleitermaterial eingesetzt wird. Hochreines Silicium erhält man beispielsweise durch thermische Zersetzung leicht flüchtiger und deshalb einfach über Destillationsverfahren zu reinigender Siliciumverbindungen, wie beispielsweise Trichlorsilan. Es fällt dabei polykristallin in Form von Stäben mit typischen Durchmessern von 70 bis 300 mm und Längen von 500 bis 2500 mm an. Ein großer Teil der Stäbe wird zur Produktion von tiegelgezogenen Einkristallen, von Bändern und Folien oder zur Herstellung von polykristallinem Solarzellengrundmaterial verwendet. Da diese Produkte aus hochreinem, schmelzflüssigen Silicium hergestellt werden, ist es notwendig, festes Silicium in Tiegeln aufzuschmelzen. Um diesen Vorgang möglichst effektiv zu gestalten, müssen großvolumige, massive Siliciumstücke, wie beispielsweise die erwähnten polykristallinen Stäbe, vor dem Aufschmelzen zerkleinert werden. Dies ist üblicherweise immer mit einer oberflächlichen Verunreinigung des Halbleitermaterials verbunden, weil die Zerkleinerung mit metallischen Brechwerkzeugen, wie Backen- oder Walzenbrechern, Hämmern oder Meißeln, erfolgt.For the production of solar cells or electronic components, such as memory elements or microprocessors, high-purity semiconductor material is required. The targeted introduced dopants are the only impurities which should have such a material in the best case. It is therefore endeavored to make the concentrations more harmful Keep contaminants as low as possible. Frequently observed that already highly pure semiconductor material in the course of further processing to the target products is contaminated again. In this way, time and again become complex Cleaning steps necessary to restore the original purity. Foreign metal atoms that are in the crystal lattice of the Semiconductor material are installed, disrupt the charge distribution and can reduce the function of the later component or lead to its failure. As a result, in particular Contamination of the semiconductor material by metallic impurities to avoid. This is especially true for silicon, that in the electronics industry at a clear distance is most often used as a semiconductor material. High purity Silicon is obtained, for example, by thermal decomposition more volatile and therefore simple via distillation processes silicon compounds to be cleaned, such as Trichlorosilane. It falls polycrystalline in the form of rods with typical diameters from 70 to 300 mm and lengths of 500 up to 2500 mm. A large part of the bars becomes production of crucible-drawn single crystals, of ribbons and foils or for the production of polycrystalline solar cell base material used. Because these products are made from high purity, molten Silicon are manufactured, it is necessary to use solid silicon to melt in crucibles. To make this process as effective as possible to design, large-volume, massive pieces of silicon, such as for example, the polycrystalline rods mentioned before Melt can be crushed. This is usually always the case with a superficial contamination of the semiconductor material connected because the crushing with metallic Breaking tools, such as jaw or roller crushers, hammers or Chisels, done.

Bei der Zerkleinerung ist sorgfältig darauf zu achten, daß die Oberflächen der Bruchstücke nicht mit Fremdstoffen verunreinigt werden. Insbesondere ist die Kontamination durch Metallatome als kritisch anzusehen, da diese die elektrischen Eigenschaften des Halbleitermaterials in schädlicher Weise verändern können. Wird das zu zerkleinernde Halbleitermaterial, wie bisher überwiegend üblich, mit mechanischen Werkzeugen, wie beispielsweise stählernen Brechern, zerkleinert, so müssen die Bruchstücke vor dem Aufschmelzen einer aufwendigen und kostenintensiven Oberflächenreinigung unterzogen werden.When shredding, make sure that the Surfaces of the fragments are not contaminated with foreign substances will. In particular, contamination by metal atoms to be regarded as critical, since this affects the electrical properties of the semiconductor material can change in a harmful way. As before, the semiconductor material to be shredded will predominantly usual, with mechanical tools, such as steel crushers, crushed, so the fragments have to be the melting of a complex and costly surface cleaning be subjected.

Gemäß der Offenlegungsschrift DE-38 11 091 A1 und ihrer korrespondierenden Patentschrift US-4,871,117 ist es möglich, massive, großvolumige Siliciumkörper so zu dekompaktieren, daß die mechanische Zerkleinerung schon mit Werkzeugen, deren Arbeitsflächen aus nicht oder nur gering kontaminierenden Stoffen, wie Silicium, Nitrid- oder Carbidkeramiken, bestehen, gelingt. Die Dekompaktierung wird dadurch erreicht, daß durch Wärmeeinwirkung von außen im zu zerbrechenden Siliciumstück ein Temperaturgradient erzeugt und eine Oberflächentemperatur von 400 bis 1400°C eingestellt wird, und diese rasch um einen Wert von mindestens 300° abgesenkt wird, so daß sich der Temperaturgradient zumindest teilweise umkehrt. Zur Erzeugung des Temperaturgradienten muß das massive Gut in einen Ofen gebracht und aufgeheizt werden. Dieses Verfahren hat jedoch den Nachteil, daß während der Aufheizphase die Diffusion von an der Oberfläche des Halbleitermaterials adsorbierten Fremdstoffen in Gang gesetzt und/oder beschleunigt wird. Auf diese Weise gelangen die Fremdstoffe von der Oberfläche in den Kristallverband des Halbleitermaterials und entziehen sich dadurch den Reinigungsmaßnahmen, die nur oberflächennahe Verunreinigungen zu beseitigen vermögen. Darüber hinaus ist bei dem genannten Verfahren eine Kontamination des Halbleitermaterials durch vom Ofenmaterial während des Aufheizens abgegebene Fremdstoffe praktisch nicht zu vermeiden.According to published patent application DE-38 11 091 A1 and its corresponding ones U.S. Patent No. 4,871,117 it is possible to use massive, to decompact large-volume silicon bodies so that the mechanical shredding with tools, their work surfaces from no or only slightly contaminating substances, such as Silicon, nitride or carbide ceramics exist, succeed. The Decompacting is achieved by the action of heat a temperature gradient from the outside in the piece of silicon to be broken generated and a surface temperature of 400 to 1400 ° C is set, and this quickly by a value of at least Is lowered 300 ° so that the temperature gradient at least partially reversed. To generate the temperature gradient the solid goods must be placed in an oven and heated will. However, this method has the disadvantage that during the heating phase the diffusion of on the surface of the semiconductor material adsorbed foreign substances started and / or accelerated. In this way, the Foreign substances from the surface into the crystal structure of the semiconductor material and thereby elude the cleaning measures, to remove the only near-surface impurities capital. In addition, in the method mentioned Contamination of the semiconductor material from the furnace material Foreign substances released during heating practically not to avoid.

Die Aufgabe der Erfindung bestand deshalb darin, eine Vorrichtung und ein Verfahren zur Verfügung zu stellen, das den Stand der Technik verbessert und es insbesondere ermöglicht, Halbleitermaterial kontaminationsfrei und unter Verzicht auf hohe Temperaturen und mechanische Brechwerkzeuge zu zerkleinern. Diese Aufgabe wird durch die Erfindung gelöst.The object of the invention was therefore a device and to provide a method that the state improved technology and in particular enables semiconductor material contamination-free and without high temperatures and crush mechanical crushing tools. This The object is achieved by the invention.

Gegenstand der Erfindung ist eine Vorrichtung zum Zerkleinern von Halbleitermaterial, die dadurch gekennzeichnet ist, daß sie mindestens zwei beabstandete Elektroden aufweist, die aus dem gleichen Material wie das zu zerkleinernde Halbleitermaterial bestehen und jeweils eine Heizvorrichtung aufweisen.The invention relates to a device for comminuting of semiconductor material, which is characterized in that it has at least two spaced electrodes, which from the same material as the semiconductor material to be shredded exist and each have a heater.

Überraschenderweise lassen sich auch Elektroden aus Halbleitermaterial verwenden, während Elektroden aus einem anderen Material einen erheblichen Eintrag von Fremdmaterial aus den Elektroden beziehungsweise aus dem zur Kontaktierung verwendeten Wasser aufweisen.Surprisingly, electrodes can also be made from semiconductor material use while electrodes made of a different material a substantial entry of foreign material from the electrodes or from that used for contacting Have water.

In Figur 1 wird eine erfindungsgemäße Vorrichtung zum Zerkleinern schematisch im Querschnitt gezeigt.1 shows a device for comminuting according to the invention shown schematically in cross section.

Figur 2 zeigt schematisch in einer perspektivischen Draufsicht das erfindungsgemäße Verfahren.Figure 2 shows schematically in a perspective top view the inventive method.

Die erfindungsgemäße Vorrichtung wird vorzugsweise dazu genutzt, sprödhartes Halbleitermaterial 1, wie Germanium oder Galliumarsenid und vorzugsweise Silicium zu zerkleinern. Es spielt dabei keine Rolle, ob bereits Bruchstücke oder Halbleiterstäbe zerkleinert werden sollen.The device according to the invention is preferably used to brittle hard semiconductor material 1, such as germanium or To crush gallium arsenide and preferably silicon. It it does not matter whether there are fragments or semiconductor rods should be crushed.

Die Vorrichtung ist so aufgebaut, daß sie mindestens zwei beabstandete Elektroden 3 aufweist, die aus dem zu zerkleinernden Halbleitermaterial bestehen, wobei es sich um Germanium oder Galliumarsenid und vorzugsweise Silicium handelt. Die Elektroden haben vorzugsweise einen Durchmesser von 6 mm bis 20 mm, besonders bevorzugt von 8 mm bis 12 mm. Diese Elektroden weisen eine Heizvorrichtung auf, die sie auf Temperaturen von vorzugsweise 400 °C bis 1200 °C erwärmen kann. Diese Heizvorrichtung weist vorzugsweise eine Heizkassette 6 mit vorzugsweise elektrischen Heizern 5 auf. Die Elektroden 3 selbst sind vorzugsweise über eine Graphitelektrode 4 mit einem Hochspannungsimpulsgenerator 8 verbunden. Vorzugsweise sind die Elektroden 3 beweglich angeschlossen, so daß sie axial aus der Heizkassette 6 mit den elektrischen Heizern 5 geschoben werden können und so an das zu zerkleinernde Halbleitermaterial, wie vorzugsweise einen Siliciumstab, geschoben werden können, so daß sie mit dem Halbleitermaterial im Kontakt stehen. Die Elektroden können auch beweglich sein, indem sie starr mit der Heizvorrichtung verbunden sind, indem die Elektroden mit der Heizvorrichtung zusammen auf einer verschiebbaren Halterung 7 bewegt werden, die vorzugsweise aus Metall besteht. Zwischen den Elektroden 3 befindet sich eine Unterlage 2, die aus abriebfestem Kunststoff oder vorzugsweise aus dem gleichen Material wie das zu zerkleinernde Halbleitermaterial, vorzugsweise Silicium, besteht, um eine Kontamination mit Fremdatomen zu vermindern. Die Vorrichtung arbeitet vorzugsweise unter Umgebungsluft, bei Normaldruck, sie kann jedoch auch in einer Atmosphäre mit erhöhter elektrischer Durchschlagsfestigkeit betrieben werden, wie zum Beispiel unter erhöhtem Druck oder unter einem elektronegativem Gas, wie z.B. CO2, oder einem Gemisch entsprechender Gase.The device is constructed in such a way that it has at least two spaced electrodes 3, which consist of the semiconductor material to be comminuted, which is germanium or gallium arsenide and preferably silicon. The electrodes preferably have a diameter of 6 mm to 20 mm, particularly preferably 8 mm to 12 mm. These electrodes have a heating device which they can heat to temperatures of preferably 400 ° C. to 1200 ° C. This heating device preferably has a heating cassette 6 with preferably electric heaters 5. The electrodes 3 themselves are preferably connected to a high-voltage pulse generator 8 via a graphite electrode 4. Preferably, the electrodes 3 are movably connected so that they can be pushed axially out of the heating cassette 6 with the electric heaters 5 and can thus be pushed onto the semiconductor material to be comminuted, such as preferably a silicon rod, so that they are in contact with the semiconductor material . The electrodes can also be movable by being rigidly connected to the heating device, by moving the electrodes together with the heating device on a displaceable holder 7, which is preferably made of metal. Between the electrodes 3 there is a base 2, which consists of wear-resistant plastic or preferably of the same material as the semiconductor material to be comminuted, preferably silicon, in order to reduce contamination with foreign atoms. The device preferably works under ambient air, at normal pressure, but it can also be operated in an atmosphere with increased dielectric strength, such as under increased pressure or under an electronegative gas such as CO 2 , or a mixture of corresponding gases.

Es besteht auch die Möglichkeit die Vorrichtung derart zu gestalten, daß eine Reihe von sich jeweils zwei gegenüberstehenden Elektroden 3 angeordnet werden, so daß zum Beispiel ein Stab aus Halbleitermaterial auf einmal zerkleinert werden kann. Auf diese Weise können die Elektroden in Abständen von vorzugsweise 1 cm bis 20 cm je nach Länge des Halbleitermaterials, das in einem Arbeitsgang zerkleinert werden soll, angeordnet werden. It is also possible to design the device in such a way that that a series of two opposing each other Electrodes 3 are arranged so that, for example, a Rod made of semiconductor material can be shredded at once. In this way, the electrodes can be placed at intervals of preferably 1 cm to 20 cm depending on the length of the semiconductor material that to be crushed in one operation will.

Ein weiter Gegenstand der Erfindung ist ein Verfahren zur Zerkleinerung von Halbleitermaterial, das dadurch gekennzeichnet ist, daß die Zerkleinerung des Halbleitermaterials durch direkten Stromdurchgang mit Hochspannungsimpulsen erfolgt, wobei als Elektroden solche aus dem gleichen Material wie das zu zerkleinernde Halbleitermaterial verwendet werden, die auf eine Temperatur gebracht werden, bei der sie stromleitend sind.Another object of the invention is a method for comminution of semiconductor material, which is characterized is that the crushing of the semiconductor material by direct Current passage with high voltage pulses takes place as Electrodes made of the same material as the material to be shredded Semiconductor material can be used at a temperature brought in which they are conductive.

Bei dem erfindungsgemäßen Verfahren, das vorzugsweise mit der oben beschriebenen Vorrichtung ausgeführt wird, wird Halbleitermaterial, wie vorzugsweise Germanium, Galliumarsenid und bevorzugt Silicium, auf eine Unterlage geschoben, die vorzugsweise aus Kunststoff oder besonders bevorzugt aus dem gleichen Material wie das zu zerkleinernde Halbleitermaterial besteht, damit eine Kontamination mit Fremdatomen vermindert wird. Bei einem bevorzugten Verfahren wird das stabförmige Halbleitermaterial, vorzugsweise ein Siliciumstab von 60 mm bis 250 mm Durchmesser und einer Länge von 100 mm bis 250 mm, sukzessive auf die Unterlage in Abständen von vorzugsweise 1 cm bis 20 cm, besonders bevorzugt von 3 cm bis 8 cm, geschoben. Dies richtet sich auch danach, wie groß die Korngröße bei der Zerkleinerung sein soll. Diese kann stufenlos auf 5 mm bis 180 mm eingestellt werden.In the method according to the invention, preferably with the device described above is executed, semiconductor material, such as preferably germanium, gallium arsenide and preferred Silicon, placed on a base, preferably made of plastic or particularly preferably of the same material how the semiconductor material to be shredded is made up of contamination with foreign atoms is reduced. At a preferred method is the rod-shaped semiconductor material, preferably a silicon rod of 60 mm to 250 mm in diameter and a length of 100 mm to 250 mm, successively the pad at intervals of preferably 1 cm to 20 cm, especially preferably from 3 cm to 8 cm, pushed. This sets up also depends on how large the grain size is during crushing should be. This can be continuously adjusted from 5 mm to 180 mm will.

Das Halbleitermaterial wird, je nachdem, welche Korngröße erwünscht ist, vorzugsweise zwischen 3 cm bis 8 cm über mindestens zwei Elektroden hinaus geschoben. Sodann werden die zwei Elektroden 3 auf das Halbleitermaterial so zubewegt, daß sie in Kontakt mit diesem treten, wobei die zwei Elektroden 3, die aus dem gleichen Material wie das zu zerkleinernde Halbleitermaterial bestehen, und mit einer Heizvorrichtung versehen sind, die eine Heizkassette 6 und vorzugsweise einen elektrischen Heizer 5 aufweist, der die Elektroden auf eine Temperatur erwärmt, bei der sie stromleitend sind. Diese Temperatur beträgt vorzugsweise 400 °C bis 1200 °C. Sobald die Elektroden in Kontakt mit dem Halbleitermaterial stehen, wird über einen HochspannungsimpulsGenerator 8 zumindest ein Stromstoß abgegeben, der vorzugsweise eine Spannung von 20 kV bis 300 kV, besonders bevorzugt von 30 kV bis 150 kV, einer Stromstärke von 1 kA bis 20 kA, besonders bevorzugt von 3 kA bis 10 kA, eine Impulsdauer von 10 nsec bis 50 msec, besonders bevorzugt von 1 msec bis 30 msec und einer Pulsfrequenz von 0,1 Hz bis 10 Hz, besonders bevorzugt von 0,5 Hz aufweist, bei einem Stabdurchmesser von 60 mm. Danach wird das stabförmige Halbleitermaterial wieder ein entsprechendes Stück axial vorgeschoben und der oben beschriebene Vorgang wiederholt sich. Das stabförmige Halbleitermaterial kann auch in eine Vorrichtung geschoben werden, bei der jeweils eine Reihe von jeweils 2 Elektroden vorzugsweise in Abständen von 1 cm bis 20 cm angeordnet sind, die gleichzeitig mit dem stabfömigen Halbleitermaterial in Kontakt treten, um es gleichzeitig mit zumindest einem Stromstoß, wie oben beschrieben, zu zerkleinern.The semiconductor material, depending on what grain size is desired is, preferably between 3 cm to 8 cm over at least two electrodes pushed out. Then the two Electrodes 3 moved towards the semiconductor material so that they in Contact with this, taking the two electrodes 3 that are out the same material as the semiconductor material to be shredded exist, and are provided with a heater that a heating cassette 6 and preferably an electric heater 5, which heats the electrodes to a temperature at which they are conductive. This temperature is preferably 400 ° C to 1200 ° C. Once the electrodes are in contact with the Semiconductor material is available via a high voltage pulse generator 8 emitted at least one surge, preferably a voltage of 20 kV to 300 kV, particularly preferably of 30 kV to 150 kV, a current of 1 kA to 20 kA, particularly preferably from 3 kA to 10 kA, a pulse duration of 10 nsec to 50 msec, particularly preferably from 1 msec to 30 msec and one Pulse frequency from 0.1 Hz to 10 Hz, particularly preferably from 0.5 Hz, with a rod diameter of 60 mm. After that the rod-shaped semiconductor material again a corresponding one Pieced axially and the process described above repeated yourself. The rod-shaped semiconductor material can also be in a device can be pushed, in each case one row of 2 electrodes each, preferably at intervals of 1 cm to 20 cm are arranged at the same time as the rod-shaped Semiconductor material come in contact with it at the same time at least one surge as described above shred.

Mittels des erfindungsgemäßen Verfahrens kann Halbleitermaterial in polykristalliner und monokristalliner Form zerkleinert werden.By means of the method according to the invention, semiconductor material crushed in polycrystalline and monocrystalline form will.

Ein Vorteil des erfindungsgemäßen Verfahren ist es, daß in Abhängigkeit von der Anzahl der Impulse, der Höhe der Spannung, der Impulsdauer und dem geometrischen Abstand der Kontaktpunkte auf dem Halbleitermaterial große Scheiben bis feiner Bruch hergestellt werden können. Bevorzugt ist ein Siliciumbruch mit einer größten Abmessung von 100 mm. Des weiteren ist das erfindungsgemäße Verfahren dadurch kostengünstig und äußerst umweltverträglich, weil keine Abwässer entstehen.An advantage of the method according to the invention is that it depends on the number of pulses, the level of voltage, the pulse duration and the geometric distance between the contact points large disks up to fine breakage are produced on the semiconductor material can be. A silicon break with one is preferred largest dimension of 100 mm. Furthermore, this is the invention This makes the process cost-effective and extremely environmentally friendly, because there is no waste water.

Claims (4)

Vorrichtung zum Zerkleinern von Halbleitermaterial, dadurch gekennzeichnet, daß sie mindestens zwei beabstandete Elektroden aufweist, die aus dem gleichen Material wie das zu zerkleinernde Halbleitermaterial bestehen und die jeweils eine Heizvorrichtung aufweisen.Device for comminuting semiconductor material, thereby characterized in that they have at least two spaced electrodes has that of the same material as that to be shredded Semiconductor material exist and each have a heating device exhibit. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Elektroden aus Silicium bestehen.Apparatus according to claim 2, characterized in that the Electrodes are made of silicon. Verfahren zur Zerkleinerung von Halbleitermaterial, dadurch gekennzeichnet, daß die Zerkleinerung des Halbleitermaterials durch direkten Stromdurchgang mit Hochspannungsimpulsen erfolgt, wobei als Elektroden solche aus dem gleichen Material wie das zu zerkleinernde Halbleitermaterial verwendet werden, die auf eine Temperatur gebracht werden, bei der sie stromleitend sind.Process for comminuting semiconductor material, thereby characterized in that the crushing of the semiconductor material through direct current passage with high voltage pulses, where as electrodes made of the same material how to use the semiconductor material to be shredded which are brought to a temperature at which they conduct electricity are. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß als Halbleitermaterial für die Elektroden Silicium verwendet wird.A method according to claim 3, characterized in that as Semiconductor material for the electrodes silicon is used.
EP98110151A 1997-06-27 1998-06-04 Device and method for comminution of semiconductive material Expired - Lifetime EP0887105B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19727441A DE19727441A1 (en) 1997-06-27 1997-06-27 Device and method for comminuting semiconductor material
DE19727441 1997-06-27

Publications (2)

Publication Number Publication Date
EP0887105A1 true EP0887105A1 (en) 1998-12-30
EP0887105B1 EP0887105B1 (en) 2001-09-05

Family

ID=7833881

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98110151A Expired - Lifetime EP0887105B1 (en) 1997-06-27 1998-06-04 Device and method for comminution of semiconductive material

Country Status (7)

Country Link
US (1) US6024306A (en)
EP (1) EP0887105B1 (en)
JP (1) JP2961694B2 (en)
KR (1) KR19990006851A (en)
CN (1) CN1209034A (en)
DE (2) DE19727441A1 (en)
TW (1) TW387823B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015143572A1 (en) * 2014-03-26 2015-10-01 Selfrag Ag Method for fragmenting a rod-like material, in particular made of polycrystalline silicon
CN111632994A (en) * 2020-05-28 2020-09-08 西安交通大学 Method for recycling waste solar cell panel based on high-voltage pulse underwater discharge

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167786A (en) * 1997-08-25 1999-03-09 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
DE10009569C2 (en) 2000-02-29 2003-03-27 Schott Glas Method and device for comminuting glass bodies by means of microwave heating
DE10062419A1 (en) * 2000-12-14 2002-08-01 Solarworld Ag Process for the production of high-purity, granular silicon
US8021483B2 (en) * 2002-02-20 2011-09-20 Hemlock Semiconductor Corporation Flowable chips and methods for the preparation and use of same, and apparatus for use in the methods
US6874713B2 (en) 2002-08-22 2005-04-05 Dow Corning Corporation Method and apparatus for improving silicon processing efficiency
DE102004048948A1 (en) * 2004-10-07 2006-04-20 Wacker Chemie Ag Apparatus and method for low-contamination, automatic breakage of silicon breakage
DE102005019873B4 (en) * 2005-04-28 2017-05-18 Wacker Chemie Ag Apparatus and method for the mechanical comminution of semiconductor materials
US8105434B2 (en) * 2005-08-05 2012-01-31 Faris Sadeg M Si ribbon, SiO2 ribbon and ultra pure ribbons of other substances
DE102007061427B4 (en) * 2007-12-20 2009-11-12 Airbus Deutschland Gmbh Apparatus for cutting and handling a substantially planar blank from a CFRP semi-finished product and method
CN102836765B (en) 2012-09-18 2014-12-31 新特能源股份有限公司 Method and device for breaking polysilicon
EP3060347B1 (en) * 2013-10-25 2017-11-01 Selfrag AG Method for fragmenting and/or pre-weakening material by means of high-voltage discharges
CN107160567A (en) * 2017-07-04 2017-09-15 广东工业大学 A kind of fine needle-like graphite electrode processing method
JP6947126B2 (en) * 2018-06-12 2021-10-13 株式会社Sumco Silicon rod crushing method and equipment, and silicon ingot manufacturing method
WO2020009133A1 (en) * 2018-07-04 2020-01-09 三菱マテリアル株式会社 Method for fragmenting or method for producing cracks in semiconductor raw material, and method for producing mass of semiconductor raw material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540127A (en) * 1982-05-21 1985-09-10 Uri Andres Method and apparatus for crushing materials such as minerals
US4653697A (en) * 1985-05-03 1987-03-31 Ceee Corporation Method and apparatus for fragmenting a substance by the discharge of pulsed electrical energy
US4871117A (en) * 1988-03-31 1989-10-03 Heliotronic Forschungs- Und Entwicklungsgesellschaft Fur Solarzellen- Gmbh Low-contamination method for comminuting solid silicon fragments
US5464159A (en) * 1992-05-27 1995-11-07 Wacker-Chemitronic Gesellschaft Fur Elektronik-Grundstoffe Mbh Method for the contamination-free size reduction of semiconductor material, especially silicon

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1741900A1 (en) * 1990-12-19 1992-06-23 Научно-исследовательский институт высоких напряжений при Томском политехническом институте им.С.М.Кирова High-voltage electrode for electrical pulse destruction of solid materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540127A (en) * 1982-05-21 1985-09-10 Uri Andres Method and apparatus for crushing materials such as minerals
US4653697A (en) * 1985-05-03 1987-03-31 Ceee Corporation Method and apparatus for fragmenting a substance by the discharge of pulsed electrical energy
US4871117A (en) * 1988-03-31 1989-10-03 Heliotronic Forschungs- Und Entwicklungsgesellschaft Fur Solarzellen- Gmbh Low-contamination method for comminuting solid silicon fragments
US5464159A (en) * 1992-05-27 1995-11-07 Wacker-Chemitronic Gesellschaft Fur Elektronik-Grundstoffe Mbh Method for the contamination-free size reduction of semiconductor material, especially silicon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015143572A1 (en) * 2014-03-26 2015-10-01 Selfrag Ag Method for fragmenting a rod-like material, in particular made of polycrystalline silicon
CN111632994A (en) * 2020-05-28 2020-09-08 西安交通大学 Method for recycling waste solar cell panel based on high-voltage pulse underwater discharge

Also Published As

Publication number Publication date
DE19727441A1 (en) 1999-01-07
TW387823B (en) 2000-04-21
JPH1142635A (en) 1999-02-16
JP2961694B2 (en) 1999-10-12
EP0887105B1 (en) 2001-09-05
CN1209034A (en) 1999-02-24
DE59801370D1 (en) 2001-10-11
US6024306A (en) 2000-02-15
KR19990006851A (en) 1999-01-25

Similar Documents

Publication Publication Date Title
EP0887105B1 (en) Device and method for comminution of semiconductive material
DE10009569C2 (en) Method and device for comminuting glass bodies by means of microwave heating
DE19545580C2 (en) Method and arrangement for the disintegration of elastic materials in connection with metallic materials
EP0573855B1 (en) Process for contamination free comminuting of semi-conductor material, especially of silicon
EP0976457B1 (en) Method for treating semiconductor material
DE102005019873A1 (en) Mechanical crushing apparatus, has comminution chisels and mating chisels with longitudinal axes oriented at right angles to longitudinal axis of base, where chisels are movable such that silicon ingot is comminuted
DE102006027273B3 (en) Production of ultra-clean silicon to manufacture solar cells, comprises melting impurities contained in metallurgical silicon using solidification on a casting mold surface and mechanically removing the impurities from the mold
DE4316626A1 (en) Method and device for dividing up semiconductor material
EP3122463B1 (en) Method for fragmenting a rod-like material, in particular made of polycrystalline silicon
EP0924487B1 (en) Vacuum drying of semiconductor material
DE19716374A1 (en) Protecting semiconductor material against contamination
EP3097053B1 (en) Method for producing polycrystalline silicon
DE102008026811B4 (en) Method and arrangement for melting silicon
DE1060217B (en) Method and device for treating the surface of bodies of a metallic or other nature by means of an electric glow discharge
DE102008033122A1 (en) Recovery of highly pure silicon comprises redistributing silicon chunk containing impurities and concentrating solidified body at self-forming particle boundaries, feeding body in milling chamber and removing exposed particle boundaries
EP0995821B1 (en) Method and apparatus for working semiconductor material
WO2005036929A1 (en) Unit for melted masses that can be heated by conduction
CH670456A5 (en)
CH427073A (en) Process for the treatment of workpieces under the action of an electric glow discharge at elevated temperatures
DE4223458A1 (en) Reducing semiconductor material in size by shock thermal treatment - from super-heated steam or oxygen@-hydrogen@ gas flame within an evacuated chamber
DE2344618A1 (en) PROCESS AND DEVICE FOR CRUSHING REFUELED COMBUSTION AND / OR INCUBATOR ELEMENTS FOR NUCLEAR REACTORS
DE102010032103B4 (en) Method and apparatus for igniting silicon rods outside a CVD reactor
DE1154701B (en) Process for the deformation of bodies made of crystalline, sprout materials
DE2638094C3 (en) Vacuum arc heating device
DE102014219174A1 (en) Rounded polysilicon fracture and its production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010306

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT

REF Corresponds to:

Ref document number: 59801370

Country of ref document: DE

Date of ref document: 20011011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020620

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050604