EP0879466A1 - Gestion de defaut pour le traitement automatique de piste sans zone d'identification - Google Patents

Gestion de defaut pour le traitement automatique de piste sans zone d'identification

Info

Publication number
EP0879466A1
EP0879466A1 EP96908605A EP96908605A EP0879466A1 EP 0879466 A1 EP0879466 A1 EP 0879466A1 EP 96908605 A EP96908605 A EP 96908605A EP 96908605 A EP96908605 A EP 96908605A EP 0879466 A1 EP0879466 A1 EP 0879466A1
Authority
EP
European Patent Office
Prior art keywords
sector
track
defect
sectors
logical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96908605A
Other languages
German (de)
English (en)
Inventor
Siamack Nemazie
John Schadegg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cirrus Logic Inc
Original Assignee
Cirrus Logic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cirrus Logic Inc filed Critical Cirrus Logic Inc
Publication of EP0879466A1 publication Critical patent/EP0879466A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1883Methods for assignment of alternate areas for defective areas
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B20/1217Formatting, e.g. arrangement of data block or words on the record carriers on discs
    • G11B2020/1218Formatting, e.g. arrangement of data block or words on the record carriers on discs wherein the formatting concerns a specific area of the disc
    • G11B2020/1232Formatting, e.g. arrangement of data block or words on the record carriers on discs wherein the formatting concerns a specific area of the disc sector, i.e. the minimal addressable physical data unit
    • G11B2020/1234Formatting, e.g. arrangement of data block or words on the record carriers on discs wherein the formatting concerns a specific area of the disc sector, i.e. the minimal addressable physical data unit wherein the sector is a headerless sector, i.e. it does not comprise an ID field
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers

Definitions

  • the tracks are grouped into zones such that all the tracks in one zone are adjacent to each other.
  • the data rate at which data is written to or read from the disk is constant for all tracks within a zone and different for each zone. Because the disk is rotated at the same speed for all the zones, in order to take advantage of the greater recording area of the outer zones, the recording speed is increased for the outer zones on the disk.
  • the primary and secondary lists are read from the disk and stored in the random access memory (RAM) upon power up of the disk drive system.
  • the system controller uses the information from the primary and secondary lists to manage the defects and avoid writing data to bad or defective sectors.
  • the system After the track has been formatted and the logical sectors are mapped out, the system then performs a calculation to determine the location of the target sector which it must read from or write to. In the case of Figure 3c, if the system was instructed to read from a sector having a target logical sector number 26, the system would add the number of defects appearing before that sector, to that logical sector number to know the physical sector number of the target logical sector number. Therefore, because there is one defective sector before the physical sector number 26, the correct physical address for the target sector number 26 would be at the physical sector number 27.
  • the second defective sector at the physical sector number 29 is not slipped because the spare sector on the track has already been used.
  • the logical sector number 28 is therefore flagged as a defective sector and mapped to a substituting sector somewhere else on the disk, in this case the spare sector at the physical sector number 31 on the track 1.
  • the method of sector slipping maintains the logical sectors in a consecutive order allowing the system to read or write the data in a consecutive order without extra seeks. Extra seeks are required when the number of defective sectors on the track or segment exceed the number of spare sectors assigned to the track or segment and the system must travel to another track or segment to read or write the data from a substituting spare sector and then back to the original track.
  • a segment is a set of logically related tracks which are positioned adjacent to each other on the disk or media.
  • the tracks within a segment are consecutively numbered from 0 to M.
  • the physical sectors within a segment are consecutively numbered from 0 to SN-1 , where SN is the number of physical sectors per segment, SL is the number of logical sectors per segment and P is the number of spare sectors per segment. Spare sectors are included at the end of a segment and defective sectors within a segment are slipped as described above for a track.
  • the segment is treated as one contiguous storage space such that a defective sector is mapped to the next good sector within the segment and slipping occurs across the tracks within a segment.
  • Figure 4 illustrates a track within a system having a skew value of five sectors.
  • Figure 5a illustrates an example of a track with one spare sector and two defective sectors.
  • Figure 9 illustrates a schematic block diagram of the apparatus of the present invention.
  • the defect information including the mapping of defective sectors to replacement sectors was contained in the ID field of the sector.
  • the apparatus and method of the present invention can be used with systems which include an ID field in the sector and can also be used with systems which use the ID_Less format without an ID field.
  • the apparatus and method of the present invention can also support the defect management schemes of the prior art described above automatically without any real time intervention by the microprocessor in disk drive systems which use the ID_Less format.
  • the apparatus and method of the present invention also automatically generates four flags, which will be described below, for each defective sector.
  • a non-zero offset value indicates that the defective sector is mapped to a logical sector which is not on the track.
  • the defective spare sectors are included in the list of defect records, however the offset value for a defective spare sector should be zero.
  • the flag SLIPPED is set to a logical high voltage level, this indicates that the defective sector is slipped.
  • the flag SLIPPED is reset to a logical low voltage level, this indicates that the defective sector is not slipped.
  • the number of spare sectors per track is kept in a register SP.
  • the number of sectors per physical track is stored in the register N and the number of logical sectors per track is stored in the register L.
  • the values SP, N and L are not embedded in the defect information on the track but are initialized by the apparatus of the present invention for each zone.
  • Mapping of the physical sector number to a logical sector number requires the apparatus of the present invention to scan the track defect information and compute the number of defective sectors on the track that are slipped, represented by the value SD, the logical sector number of the last logical sector on the track, represented by the value X, the logical sector number of the last good sector on the track, represented by the value Z, and the logical sector number of the defective sectors on the track that are skipped and mapped to the spare sectors on the track.
  • the first logical sector number that is skipped and mapped to a spare sector on the track is represented by the value SKIP1_LSN.
  • the second logical sector number that is skipped and mapped to a spare sector on the track is represented by the value SKIP2_LSN.
  • a value of FF within one of the registers SKIP1JLSN and SKIP2_LSN will indicate that there is no valid logical sector number for the defective sector stored in the respective register.
  • two flags SKIP1 JSED and SKIP2_USED are used to indicate whether the data within the registers SKIP1_LSN and SKIP2_LSN is valid for a defective sector.
  • N in equation 4 is equal to the number of sectors per physical track.
  • Figure 4 which was discussed above can be used to illustrate the above calculations. If the skew of the system is equal to five, then the skewed physical sector number F(PSN) for any of the sectors after the physical sector number 4 is equal to the physical sector number minus five, the skew of the system and the skewed physical sector number F(PSN) for any of the sectors before the physical sector number 5 is equal to the number of sectors for the physical track N, which in this case is thirty two, plus the physical sector number minus five, the skew of the system. The skewed physical sector number F(PSN) for the physical sector number 29 would be equal to 24. The skewed physical sector number F(PSN) for the physical sector number 2 would be equal to 29.
  • the value of cl is equal to zero because there are no defective sectors between the physical sector number 0 and the physical sector number corresponding to the skew of the system, in this example the physical sector number 4.
  • the value of c2 is equal to one because there is one defective sector between the physical sector number 4 and the physical sector number corresponding to the number of sectors per physical track N, in this example the physical sector number 31.
  • the value of b is equal to one and for physical sector numbers less than twenty eight, the value of b is equal to zero.
  • the physical sector number is a defective sector which was slipped then the physical sector number is mapped to a logical sector number LSN using the equations (7) and (8), and adding the logical sector number of the last logical sector on the track X to the value bx.
  • the defective sector of Figure 4 which has a physical sector number 28, it is assigned a logical sector number 31.
  • the second method embeds the defect information for the track within the header subfield of each sector.
  • the defect information includes an ordered list of n defect records, based on an increasing defect sector number DSN. If a defect record is not used it is assigned a hexadecimal value of FF, indicating that it is not a valid defect record. To begin processing the defect information for a track it is only necessary to read a single header field on the track and load the track defect information into the FIFO 152.
  • the third method includes the onboard first- in first-out stack FIFO 152 having a first bank BANK1 170 and a second b-ank BANK2 172 which are used as a ping-pong storage for the defect records.
  • the microprocessor will fill the FIFO with track defect records if the number of defect records will fit in the FIFO. Otherwise, the microprocessor fills one of the banks while the other bank is being processed. Since the sector processing by the system will take more time than filling the FIFO, the microprocessor intervention time is negligible and if a reasonable sized FIFO is used, not time critical. This information can be loaded into the FTFO by the microprocessor.
  • a flow chart illustrating the method of the present invention is illustrated in Figure 6.
  • the default values for the registers and flags are set in the Block 10.
  • the logical sector number LSN is set to a hexadecimal value of FF
  • the DEFECT flag, the logical end of track flag LEOT, the physical end of track flag PEOT and the target sector not on track flag TSNOT are all reset to a logical low voltage level.
  • the DEFECT flag is generated for a defective sector that is mapped to a spare sector off of the current track.
  • the logical end of track flag LEOT is generated for a sector which is the last logical sector on the track.
  • the physical end of track flag PEOT is generated for a sector which is the last physical sector on the track.
  • the target sector not on track flag TSNOT is generated when the logical sector number of the target sector TARGET_LSN is greater than the logical sector number of the last logical sector on the track.
  • the apparatus After the apparatus completes the mapping subroutine C, it then waits for a sector mark rising pulse at the Block 34. After the apparatus has detected a sector mark rising pulse, it then waits at the Block 36 until the physical sector number PSN is equal to the starting physical sector number START_PSN. As soon as the physical sector number PSN is equal to the starting physical sector number START_PSN, the apparatus determines at the Block 36a whether or not a stop command has been issued. If a stop command has not been issued the apparatus jumps to the Block 30, otherwise at the Block 37 an error condition flag is set to a logical high voltage level, the signal START is reset to a logical low voltage level and the apparatus jumps up to the Block 10.
  • additional flags may be used to indicate that there is no valid logical sector number stored in a corresponding register.
  • the logical end of track flag LEOT is set to a logical high voltage level for a sector which has a logical sector number LSN equal to the logical sector number of the last logical sector on the track X.
  • a programmable mode select value LEOT_Mode may be programmed to select when the logical end of track flag LEOT is generated. If the programmable mode select value LEOT_Mode is programmed to a logical low voltage level then the logical end of track flag LEOT is generated when the logical sector number LSN is equal to the logical sector number of the last logical sector on the track X.

Abstract

Gestion de défaut pour le traitement automatique de piste sans zone d'identification qui a pour but le traitement des informations relatives aux défauts de piste de supports magnétiques dans un système de lecture de disque. L'invention permet d'intégrer n'importe quelle méthode de gestion de défaut, y compris le remplacement linéaire et le passage à de nouveaux secteurs, cylindres ou segments. Pour chaque secteur, on transpose un numéro de secteur physique en numéro de secteur logique en fonction de l'ordre des données sur la piste. La transposition du numéro de secteur physique en numéro de secteur logique destiné au traitement automatique de piste peut s'effectuer selon une des trois méthodes suivantes: 1) intégration d'une table de défauts de piste dans le tampon de la mémoire vive; 2) écriture des informations relatives aux défauts dans l'en-tête de chaque secteur; ou 3) recours à un système PEPS à logique intégrée pour gérer la liste de défauts. La première et troisième méthodes sont compatibles avec un format sans identification dans lequel la zone des données ne contient pas une sous-zone d'en-tête et les informations destinées à l'identification de secteur est maintenue par le système de lecture de disque. Dans la deuxième méthode, la sous-zone d'en-tête est constituée de quatre enregistrements de défauts. Dans la troisième méthode, si le nombre d'enregistrements de défauts de piste dépasse la capacité du système PEPS, alors, après l'initialisation et le chargement des premiers et deuxième groupes du système PEPS par le microprocesseur de l'unité de disque, les premier et deuxième groupes sont chacun chargés par le microprocesseur de l'unité de disque pendant que l'autre est traité en alternance jusqu'à ce que le traitement de piste soit terminé. Un enregistrement de défaut comprend un numéro de secteur physique du secteur défectueux, un numéro de décalage et une balise indiquant si oui ou non le secteur défecctueux a été remplacé. L'enregistrement défectueux peut être représenté par une entrée à deux octets ou peut contenir un nombre d'octets définissable par l'utilisateur. Des balises de défaut sont automatiquement générées par le système pour chaque secteur défectueux.
EP96908605A 1995-03-03 1996-03-01 Gestion de defaut pour le traitement automatique de piste sans zone d'identification Withdrawn EP0879466A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US39829695A 1995-03-03 1995-03-03
US398296 1995-03-03
PCT/US1996/002831 WO1996027882A1 (fr) 1995-03-03 1996-03-01 Gestion de defaut pour le traitement automatique de piste sans zone d'identification

Publications (1)

Publication Number Publication Date
EP0879466A1 true EP0879466A1 (fr) 1998-11-25

Family

ID=23574837

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96908605A Withdrawn EP0879466A1 (fr) 1995-03-03 1996-03-01 Gestion de defaut pour le traitement automatique de piste sans zone d'identification

Country Status (2)

Country Link
EP (1) EP0879466A1 (fr)
WO (1) WO1996027882A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035309A1 (fr) 1996-03-18 1997-09-25 Matsushita Electric Industrial Co., Ltd. Procede pour remplacer un enregistrement defectueux sur un support d'enregistrement en forme de disque, et dispositif d'enregistrement et de reproduction comportant un support d'enregistrement en forme de disque
USRE38706E1 (en) 1996-03-18 2005-02-22 Matsushita Electric Industrial Co., Ltd. Recording defect substitution method of a disc-shaped recording medium, and a recording and reproducing apparatus for a disc-shaped recording medium
US6697307B1 (en) 1998-10-10 2004-02-24 Samsung Electronics Co., Ltd. Apparatus for assigning spare areas for defect management and apparatus for handling fragmented ECC blocks
KR100677066B1 (ko) * 1998-10-10 2007-02-01 삼성전자주식회사 결함 관리를 위한 여유 공간을 갖는 디스크와 여유 공간 할당 방법
KR100667729B1 (ko) 1998-11-10 2007-01-11 삼성전자주식회사 결함 관리를 위한 여유 공간과 그 관리 정보를 갖는 디스크, 여유 공간 할당 방법과 결함 관리 방법
US6408408B1 (en) 1998-11-10 2002-06-18 Samsung Electronics Co., Ltd. Recording medium having spare area for defect management and information on defect management, and method of allocating spare area and method of managing defects
US6160778A (en) * 1999-03-08 2000-12-12 Matsushita Electric Industrial Co., Ltd. Information recording medium, information recording method, information recording apparatus and information reproducing apparatus
US6574699B1 (en) 1999-12-07 2003-06-03 International Business Machines Corporation Fast track reassign in a rotating storage media
US6714502B2 (en) * 2000-04-08 2004-03-30 Samsung Electronics Co., Ltd Method of verifying defect management area information of optical disc and apparatus for performing the same
SG112812A1 (en) * 2000-09-27 2005-07-28 Seagate Technology Llc System and method for adaptive storage and caching of a defect table
KR101121972B1 (ko) * 2002-01-22 2012-03-13 파나소닉 주식회사 다층 정보 기록 매체, 기록 방법, 및 재생 방법
US7940613B2 (en) * 2004-06-15 2011-05-10 Panasonic Corporation Drive device
EP1789968A4 (fr) * 2004-09-14 2012-05-16 Lg Electronics Inc Support d'enregistrement, procede et appareil d'enregistrement et de reproduction de donnees sur ce support

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219658A (ja) * 1982-06-12 1983-12-21 Nec Corp 磁気デイスク制御装置
US4656532A (en) * 1985-07-29 1987-04-07 International Business Machines Corporation Sector identification method for hard sectored hard files
US5146571A (en) * 1988-03-28 1992-09-08 Emc Corporation Remapping defects in a storage system through the use of a tree structure
US5271018A (en) * 1990-04-27 1993-12-14 Next, Inc. Method and apparatus for media defect management and media addressing
JPH0428061A (ja) * 1990-05-24 1992-01-30 Matsushita Electric Ind Co Ltd 情報記録媒体と情報記録再生装置
JP2625609B2 (ja) * 1991-07-10 1997-07-02 インターナショナル・ビジネス・マシーンズ・コーポレイション ディスク記憶装置
EP0631277A3 (fr) * 1993-06-22 1995-02-22 Quantum Corp Format de données par secteur sans code d'identification et contrÔleur de données pour dispositif d'entraînement de disque.
US5848438A (en) * 1994-03-03 1998-12-08 Cirrus Logic, Inc. Memory mapping defect management technique for automatic track processing without ID field

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9627882A1 *

Also Published As

Publication number Publication date
WO1996027882A1 (fr) 1996-09-12

Similar Documents

Publication Publication Date Title
US6025966A (en) Defect management for automatic track processing without ID field
US5848438A (en) Memory mapping defect management technique for automatic track processing without ID field
KR100278534B1 (ko) 테이블 구동 방식의 자동 분할 필드 계산 방법
KR100188442B1 (ko) 데이타 저장 디스크 드라이브에서 목표트랙 판정을 위한시스템 및 방법
EP0212099B1 (fr) Méthode d'identification de secteurs pour des unités à secteurs durs
US5142422A (en) Dual channel helical recorder
EP0660324B1 (fr) Unité à disques d'enregistrement de données
KR900004758B1 (ko) 대용량 기억 디스크 드라이브 불량 매체 처리방법
US6574699B1 (en) Fast track reassign in a rotating storage media
US5442638A (en) Apparatus and method for recording over defects in storage media
US6925580B2 (en) Full volume slip defect management in a disc drive
JPH02263362A (ja) 記録媒体上のデータをアクセスする方法およびその方法を使用したデータ記録装置
US5357381A (en) Flexible magnetic disc drive apparatus for designating alternate sectors for defective sectors
WO1996027882A1 (fr) Gestion de defaut pour le traitement automatique de piste sans zone d'identification
KR100537577B1 (ko) 스트리밍 오디오비주얼 데이터를 디스크 드라이브에기록하는 방법
US5864440A (en) Data processing method and data storage system
US7433149B1 (en) Media surface with servo data in customer data region
US6665138B1 (en) Technique for detecting head position in hard disk drive
US20020032828A1 (en) Seamless defect management conversion
JPS6132266A (ja) デ−タ管理方法
JPS59221810A (ja) 磁気記憶装置における交代セクタ−装置
JPS60150128A (ja) 回転形磁気記憶制御装置のバツフアメモリ制御装置
JPH03260955A (ja) ディスクシステムにおけるスキップ処理方法
JPH05282792A (ja) ディスク装置
JPH05325422A (ja) 情報記録再生装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971003

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IE IT NL

17Q First examination report despatched

Effective date: 19981130

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19990611

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1015063

Country of ref document: HK