EP0878713B1 - Méthode et appareil pour corriger l'effet de la température ambiente dans les biodétecteurs - Google Patents

Méthode et appareil pour corriger l'effet de la température ambiente dans les biodétecteurs Download PDF

Info

Publication number
EP0878713B1
EP0878713B1 EP98107778A EP98107778A EP0878713B1 EP 0878713 B1 EP0878713 B1 EP 0878713B1 EP 98107778 A EP98107778 A EP 98107778A EP 98107778 A EP98107778 A EP 98107778A EP 0878713 B1 EP0878713 B1 EP 0878713B1
Authority
EP
European Patent Office
Prior art keywords
ambient temperature
biosensors
analyte concentration
measured
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98107778A
Other languages
German (de)
English (en)
Other versions
EP0878713A2 (fr
EP0878713A3 (fr
Inventor
Dijia Huang
Brenda L. Tudor
Kin-Fai Yip
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Corp
Original Assignee
Bayer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Corp filed Critical Bayer Corp
Priority to EP10173366A priority Critical patent/EP2264451A1/fr
Priority to EP20090000924 priority patent/EP2048499A1/fr
Publication of EP0878713A2 publication Critical patent/EP0878713A2/fr
Publication of EP0878713A3 publication Critical patent/EP0878713A3/fr
Application granted granted Critical
Publication of EP0878713B1 publication Critical patent/EP0878713B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3274Corrective measures, e.g. error detection, compensation for temperature or hematocrit, calibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]
    • Y10T436/144444Glucose

Definitions

  • the present invention relates to a biosensor, and, more particularly, to a new and improved method and apparatus for correcting ambient temperature effect in biosensors.
  • the quantitative determination of analytes in body fluids is of great importance in the diagnoses and maintenance of certain physiological abnormalities. For example lactate, cholesterol and bilirubin should be monitored in certain individuals.
  • the determination of glucose in body fluids is of great importance to diabetic individuals who must frequently check the level of glucose in their body fluids as a means of regulating the glucose intake in their diets. While the remainder of the disclosure herein will be directed towards the determination of glucose, it is to be understood that the procedure and apparatus of this invention can be used for the determination of other analytes upon selection of the appropriate enzyme.
  • the ideal diagnostic device for the detection of glucose in fluids must be simple, so as not to require a high degree of technical skill on the part of the technician administering the test. In many cases, these tests are administered by the patient which lends further emphasis to the need for a test which is easy to carry out. Additionally, such a device should be based upon elements which are sufficiently stable to meet situations of prolonged storage.
  • Methods for determining analyte concentration in fluids can be based on the electrochemical reaction between an enzyme and the analyte specific to the enzyme and a mediator which maintains the enzyme in its initial oxidation state.
  • Suitable redox enzymes include oxidases, dehydrogenases, catalase and peroxidase.
  • glucose is the analyte
  • the reaction with glucose oxidase and oxygen is represented by equation (A).
  • the released hydrogen peroxide in the presence of a peroxidase, causes a color change in a redox indicator which color change is proportional to the level of glucose in the test fluid.
  • colorimetric tests can be made semi-quantitative by the use of color charts for comparison of the color change of the redox indicator with the color change obtained using test fluids of known glucose concentration, and can be rendered more highly quantitative by reading the result with a spectrophotometric instrument, the results are generally not as accurate nor are they obtained as quickly as those obtained using an electrochemical biosensor.
  • biosensor is intended to refer to an analytical device that responds selectively to analytes in an appropriate sample and converts their concentration into an electrical signal via a combination of a biological recognition signal and a physico-chemical transducer.
  • a biosensor is an instrument which generates an electrical signal directly thereby facilitating a simplified design.
  • a biosensor offers the advantage of low material cost since a thin layer of chemicals is deposited on the electrodes and little material is wasted.
  • H 2 O 2 ⁇ O 2 + 2H + + 2e - (B) The electron flow is then converted to the electrical signal which directly correlates to the glucose concentration.
  • glucose present in the test sample converts the oxidized flavin adenine dinucleotide (FAD) center of the enzyme into its reduced form, (FADH 2 ). Because these redox centers are essentially electrically insulated within the enzyme molecule, direct electron transfer to the surface of a conventional electrode does not occur to any measurable degree in the absence of an unacceptably high overvoltage.
  • An improvement to this system involves the use of a nonphysiological redox coupling between the electrode and the enzyme to shuttle electrons between the (FADH 2 ) and the electrode.
  • GO(FAD) represents the oxidized form of glucose oxidase and GO(FADH 2 ) indicates its reduced form.
  • the mediating species M red shuttles electrons from the reduced enzyme to the electrode thereby oxidizing the enzyme causing its regeneration in situ which, of course, is desirable for reasons of economy.
  • the main purpose for using a mediator is to reduce the working potential of the sensor. An ideal mediator would be re-oxidized at the electrode at a low potential under which impurity in the chemical layer and interfering substances in the sample would not be oxidized thereby minimizing interference.
  • mediators are useful as mediators due to their ability to accept electrons from the reduced enzyme and transfer them to the electrode.
  • mediators known to be useful as electron transfer agents in analytical determinations are the substituted benzo- and naphthoquinones disclosed in U.S. Patent 4,746,607 ; the N-oxides, nitroso compounds, hydroxylamines and oxines specifically disclosed in EP 0 354 441 ; the flavins, phenazines, phenothiazines, indophenols, substituted 1,4-benzoquinones and indamins disclosed in EP 0 330 517 and the phenazinium/phenoxazinium salts described in U.S. Patent 3,791,988 .
  • a comprehensive review of electrochemical mediators of biological redox systems can be found in Analytica Clinica Acta. 140 (1982), Pp 1-18 .
  • hexacyanoferrate also known as ferricyanide
  • ferricyanide which is discussed by Schläpfer et al in Clinica Chimica Acta., 57 (1974), Pp. 283-289 .
  • U.S. Patent 4,929,545 there is disclosed the use of a soluble ferricyanide compound in combination with a soluble ferric compound in a composition for enzymatically determining an analyte in a sample.
  • Substituting the iron salt of ferricyanide for oxygen in equation (A) provides: since the ferricyanide is reduced to ferrocyanide by its acceptance of electrons from the glucose oxidase enzyme.
  • the electrons released are directly proportional to the amount of glucose in the test fluid and can be related thereto by measurement of the current which is produced upon the application of a potential thereto. Oxidation of the ferrocyanide at the anode renews the cycle.
  • US 5,508,171 discloses an electrochemical biosensor.
  • the electrochemical biosensor has a pair of electrodes consisting of a working electrode and a counter electrode and includes a sample receiving portion. A portion of the electrode surfaces is covered by a reagent that includes a redox mediator and an enzyme.
  • a fluid that contains an analyte such as glucose is added to the sample receiving portion.
  • a reaction involving the analyte, enzyme and redox mediator occurs. After this reaction is complete, an electrical potential difference is applied between the electrodes. Diffusion limited current is measured and correlated to the concentration of analyte in the fluid.
  • the glucose concentration measurement may be corrected for differences between environmental temperature at the time of actual measurement and the environmental temperature at the time calibration was performed.
  • Important objects of the present invention are to provide a new and improved method and apparatus for correcting ambient temperature effect in electrochemical enzyme-based biosensors; to provide such method and apparatus that eliminates or minimizes the ambient temperature effect in analyte concentration value identified by an electrochemical enzyme-based biosensor; and to provide such method and apparatus that overcome many of the disadvantages of prior art arrangements.
  • a method and apparatus are provided for correcting ambient temperature effect in electrochemical enzyme-based biosensors.
  • An ambient temperature value is measured.
  • a sample is applied to the biosensors, then a current generated in the test sample is measured.
  • An observed analyte concentration value is calculated from the current through a standard response curve. The observed analyte concentration is then modified utilizing the measured ambient temperature value to thereby increase the accuracy of the analyte determination.
  • G 1 is said observed analyte concentration value
  • T 2 is said measured ambient temperature value
  • I1, I2, S1, and S2 are predetermined parameters.
  • Biosensor system 100 includes a microprocessor 102 together with an associated memory 104 for storing program and user data.
  • a meter function 106 coupled to biosensor 108 is operatively controlled by the microprocessor 102 for recording test values, such as blood glucose test values.
  • An ON/OFF input at a line 110 responsive to the user ON/OFF input operation is coupled to the microprocessor 102 for performing the blood test sequence mode of biosensor system 100.
  • a system features input at a line 112 responsive to a user input operation is coupled to the microprocessor 102 for selectively performing the system features mode of biosensor 100.
  • a signal input indicated at a line 120 is coupled to the microprocessor 102 providing temperature information from a thermistor 122 in accordance with the invention.
  • Microprocessor 102 contains suitable programming to perform the methods of the invention as illustrated in FIG. 2 .
  • a display 150 is coupled to the microprocessor 102 for displaying information to the user including test results.
  • a battery monitor function 160 is coupled to the microprocessor 102 for detecting a low or dead battery condition.
  • An alarm function 162 is coupled to the microprocessor 102 for detecting predefined system conditions and for generating alarm indications for the user of biosensor system 100.
  • a data port or communications interface 164 couples data to and from a connected computer (not shown).
  • biosensor system 100 performs a temperature correction method of the preferred embodiment.
  • logical steps performed in accordance with the method for correcting ambient temperature effect in biosensors 108 by the biosensor processor 102 begin at block 200.
  • First ambient temperature is measured as indicated at a block 202 labeled MEASURE INSTRUMENT TEMPERATURE T2.
  • sensor current is measured as indicated at a block 204.
  • the measured current value is converted into an analyte concentration value, such as glucose concentration value (observed concentration), as indicated at a block 206.
  • correction for temperature effect is performed in a final glucose concentration calculation as indicated at a block 208.
  • G 1 is said observed analyte concentration value
  • T 2 is said measured ambient temperature value
  • I1, I2, S1, and S2 are predetermined parameters. This completes the sequence as indicated at a block 210.
  • Amperometric biosensors 108 are known to be sensitive to temperature. This temperature effect occurs because diffusion of the mediator to the working electrode is temperature dependent. Diffusion typically induces a temperature effect of 1 - 2% bias per degree centigrade. Therefore temperatures as low as 10°C would produce results with a bias of about -25% and temperatures as high as 40°C would produce results with a bias about +25%.
  • the system 100 instrument provides results between 0 to 50°C. The only available temperature measurement comes from a thermistor inside the instrument. In order to reduce the temperature bias it was necessary to develop a temperature correction algorithm.
  • the temperature effect was determined experimentally by biosensor system 100 whole blood glucose assay over the entire glucose (50 to 600 mg/dL) and temperature range (10 to 40°C) expected to be encountered. Actual blood glucose readings and sample temperatures were measured. This was done for six different sensor 108 lots. When the "compound interest” temperature correction method was used, several lots had percent biases of -10% to -13% at the extreme temperatures.
  • the "compound interest” algorithm did not work well because the temperature coefficient, tc, changed with glucose concentration.
  • a "polynomial” correction algorithm was invented to handle the varying temperature coefficient problem. By using a polynomial correction algorithm, the percent bias was limited to within +/-10%. The equation for the polynomial correction method is described in Equation #2. The grand sum of the absolute bias for both methods indicated that the polynomial correction method had less overall bias. Also, at the very extreme temperatures of 2 and 49°C, the polynomial correction method had lower bias (below 13.5%) where as the compound interest method was as high as -25%.
  • the polynomial correction method provided an improvement over the "compound interest" correction method.
  • G 2 G 1 - T 2 2 - 24 2 * I ⁇ 2 - T 2 - 24 * I ⁇ 1 T 2 2 - 24 2 * S ⁇ 2 + T 2 - 24 * S ⁇ 1 + 1
  • G 1 is the observed glucose concentration
  • T 2 is the sample temperature
  • I1, I2, S1, and S2 are the predetermined coefficients.
  • Table 1 shows an example of the temperature correction results.
  • T 2 is the sample temperature.
  • G R is the reference glucose valve.
  • I is the measured current.
  • G 1 is the observed glucose concentration (without temperature correction).
  • %B is the percent bias without temperature correction.
  • G 2 is the temperature corrected glucose concentration.
  • %B c is the percent bias after temperature correction.
  • the data shows the percent bias before and after the correction algorithm was applied.
  • the algorithm and coefficients were able to reduce the percent bias at the extreme temperatures of 10 to 40°C to within +/-7%.
  • thermocouple was inserted into a sensor without chemistry, and temperature data was collected every second after the blood was added to the sensor.
  • Table 2 Lot C Actual YSI Glucose and Current Response Sample Temp. YSI Current Slope Intercept 8.7°C 54.2 1063 8.7°C 412.5 4358 9.20 564.6 16.7°C 54.9 1148 16.7°C 414.9 4750 9.98 610.2 23.9°C 55.7 1223 23.9°C 418 5359 11.42 587.1 30.6oC 49.3 1203 30.6oC 408.4 5787 12.77 573.7 38.2oC 51.6 1275 38.2oC 418.7 6833 15.14 493.8
  • Table 3 Lot C - Current Through the YSI 50 and 400 mg/dL Curves and the Observed Glucose mg/dL Through the 24°C Curve YSI 23.9°C Curve Sample Reference Observed Temperature °C Glucose mg/dL Current Glucose mg/dL 8.7 50 1024 38.3 8.7 100 1484 78.6 8.7 200 2404 159.1 8.7 400 4243 320.1 8.7 600 6082 481.2 16.7 50 1109 45.7 16.7 100 1608 89.4 16.7 200 2606 176.8 16.7 400 4602 351.6 16.7 600 6598 526.4 23.9 50 1158 50.0 23.9 100 1729 100.0 23.9 200 2871 200.0 23.9 400 5155 400.0 23.9 600 7439 600.0 30.6 50 1212 57.7 30.6 100 1851 110.6 30.6 200 3128 222.5 30.6 400 5682 446.1 30.6 600 8236 669.8 38.2 50 1251 58.1 38.2 100 2008 12
  • the observed glucose concentration (G 1 ) was plotted against the sample temperature (T 2 ).
  • the 2nd order polynomial curve was used to fit the plot and the a1 and a2 constants for that level of glucose were obtained as provided in Table 4.
  • a computer program such as Slidewrite by Advanced Graphics Software Inc., or any other equivalent curve fitting program can be used.
  • Table 4 Lot C - 2nd Order Polynomial Coefficients 50 100 200 400 600 Coefficient mg/dL mg/dL mg/dL mg/dL mg/dL a0 29.689 68.654 146.318 301.709 457.305 a1 1.08071 1.06138 1.04494 1.00696 0.95187 a2 -0.00881 0.01035 0.04829 0.12417 0.20045 Corr.Coef.R 0.9990 1.000 0.9998 0.9996 0.9995
  • the a1 values obtained for the different levels of glucose were plotted against the glucose concentration.
  • the data was plotted using a linear fit, and the coefficients S1 (slope of the linear fit) and I1 (intercept of the linear fit) were generated.
  • the Slidewrite program on a PC by Advanced Graphics Software Inc., or any other equivalent curve fitting program can be used.
  • the a2 values obtained for the different levels of glucose were also plotted against the glucose concentration.
  • the data was plotted using a linear fit, and the coefficients S2 (slope of the linear fit) and I2 (intercept of the linear fit) were generated.
  • G 1 T 2 2 * a ⁇ 2 + T 2 * a ⁇ 1 + a ⁇ 0
  • G 2 24 2 * a ⁇ 2 + 24 * a ⁇ 1 + a ⁇ 0

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Electrochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Emergency Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Amplifiers (AREA)

Claims (14)

  1. Procédé pour corriger l'effet de la température ambiante dans des biocapteurs électrochimiques basés sur des enzymes, comprenant les étapes qui consistent :
    à mesurer une valeur (202) de la température ambiante ;
    à appliquer un échantillon aux biocapteurs et à mesurer un courant généré dans l'échantillon d'essai (204) ;
    à calculer une valeur de concentration d'analyte en utilisant ladite valeur de température ambiante mesurée pour augmenter ainsi la précision de la détermination (206, 208) de l'analyte,
    caractérisé en ce que
    l'étape (206, 208) de calcul de ladite valeur de concentration d'analyte comprend l'étape (208) de conversion dudit courant mesuré en une valeur observée de concentration d'analyte et de calcul d'une valeur corrigée de concentration d'analyte en utilisant l'équation : G 2 = G 1 - T 2 2 - 24 2 * I 2 - T 2 - 24 * I 1 T 2 2 - 24 2 * S 2 + T 2 - 24 * S 1 + 1
    Figure imgb0016

    où G1 est ladite valeur observée de concentration d'analyte, T2 est ladite valeur mesurée de la température ambiante et I1, I2, S1 et S2 sont des valeurs de réglage.
  2. Procédé pour corriger l'effet de la température ambiante dans des biocapteurs selon la revendication 1, dans lequel I1, I2, S1 et S2 sont des coefficients déterminés expérimentalement.
  3. Procédé pour corriger l'effet de la température ambiante dans des biocapteurs selon la revendication 1 ou 2, dans lequel l'analyte est du glucose.
  4. Procédé pour corriger l'effet de la température ambiante dans des biocapteurs selon l'une des revendications 1 à 3, dans lequel l'étape (208) de calcul de ladite valeur de concentration d'analyte comprend l'étape de résolution d'une équation polynomiale ; ladite équation polynomiale comprenant ladite valeur mesurée de la température ambiante.
  5. Procédé pour corriger l'effet de la température ambiante dans des biocapteurs selon la revendication 4, dans lequel ladite équation polynomiale comprend une valeur mesurée et convertie de courant et des coefficients prédéfinis déterminés expérimentalement.
  6. Appareil (100) pour corriger l'effet de la température ambiante dans des biocapteurs électrochimiques basés sur des enzymes, comportant :
    un moyen (122) destiné à mesurer une valeur de la température ambiante ;
    un moyen (106, 108) réagissant à un échantillon appliqué aux biocapteurs électrochimiques basés sur des enzymes, pour mesurer un courant généré dans l'échantillon d'essai ; et
    un moyen (102) destiné à calculer une valeur de concentration d'analyte en utilisant ladite valeur mesurée de la température ambiante pour augmenter ainsi la précision de la détermination de l'analyte,
    caractérisé en ce que
    ledit moyen (102) destiné à calculer ladite valeur de concentration d'analyte comprend un moyen destiné à convertir ledit courant mesuré en une valeur observée de concentration d'analyte et à calculer une valeur corrigée de concentration d'analyte en utilisant l'équation : G 2 = G 1 - T 2 2 - 24 2 * I 2 - T 2 - 24 * I 1 T 2 2 - 24 2 * S 2 + T 2 - 24 * S 1 + 1
    Figure imgb0017

    où G1 est ladite valeur observée de concentration d'analyte, T2 est ladite valeur mesurée de la température ambiante et I1, I2, S1 et S2 sont des valeurs définies.
  7. Appareil (100) pour corriger l'effet de la température ambiante dans des biocapteurs selon la revendication 6, comprenant un moyen à processeur (102) destiné à effectuer une séquence d'essai prédéfinie ; et dans lequel ledit moyen (122) destiné à mesurer ladite valeur de température ambiante comprend une thermistance couplée audit moyen à processeur (102).
  8. Appareil (100) pour corriger l'effet de la température ambiante dans des biocapteurs selon la revendication 6 ou 7, dans lequel ledit moyen (102) destiné à calculer ladite valeur de concentration d'analyte comprend un moyen destiné à résoudre une équation polynomiale ; ladite équation polynomiale comprenant ladite valeur mesurée de la température ambiante.
  9. Appareil (100) pour corriger l'effet de la température ambiante dans des biocapteurs selon l'une des revendications 6 à 8, dans lequel ladite équation polynomiale comprend une valeur de courant mesurée et convertie et des coefficients prédéterminés déterminés expérimentalement.
  10. Appareil (100) pour corriger l'effet de la température ambiante dans des biocapteurs selon la revendication 9, dans lequel I1, I2, S1 et S2 sont des coefficients déterminés expérimentalement.
  11. Appareil (100) pour corriger l'effet de la température ambiante dans des biocapteurs selon l'une des revendications 6 à 10, dans lequel l'analyte est du glucose.
  12. Appareil (100) pour corriger l'effet de la température ambiante dans des biocapteurs selon l'une des revendications 6 à 11, dans lequel ledit moyen (106, 108) qui réagit audit échantillon appliqué aux biocapteurs, destiné à mesurer ledit courant généré dans l'échantillon d'essai, est couplé audit moyen à processeur (102) pour recevoir un signal représentant ledit courant généré dans l'échantillon d'essai.
  13. Appareil (100) pour corriger l'effet de la température ambiante dans des biocapteurs selon l'une des revendications 6 à 12, dans lequel ledit moyen (102) destiné à calculer ladite valeur de concentration d'analyte comprend un moyen à processeur couplé audit moyen (122) de mesure de la température ambiante et audit moyen (106, 108) de mesure du courant, et comprenant un moyen destiné à résoudre une équation prédéterminée utilisant lesdites valeurs mesurées et lesdites valeurs de coefficients prédéterminées.
  14. Biocapteur électrochimique à base d'enzyme comportant :
    un moyen à biocapteur électrochimique à base d'enzyme destiné à recevoir un échantillon d'utilisateur ; et
    l'appareil (100) selon l'une des revendications 6 à 13.
EP98107778A 1997-05-12 1998-04-29 Méthode et appareil pour corriger l'effet de la température ambiente dans les biodétecteurs Expired - Lifetime EP0878713B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10173366A EP2264451A1 (fr) 1997-05-12 1998-04-29 Méthode et appareil pour corriger l'effet de la température ambiente dans les biodétecteurs
EP20090000924 EP2048499A1 (fr) 1997-05-12 1998-04-29 Méthode et appareil pour corriger l'effet de la température ambiente dans les biodétecteurs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/854,440 US6391645B1 (en) 1997-05-12 1997-05-12 Method and apparatus for correcting ambient temperature effect in biosensors
US854440 1997-05-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP20090000924 Division EP2048499A1 (fr) 1997-05-12 1998-04-29 Méthode et appareil pour corriger l'effet de la température ambiente dans les biodétecteurs

Publications (3)

Publication Number Publication Date
EP0878713A2 EP0878713A2 (fr) 1998-11-18
EP0878713A3 EP0878713A3 (fr) 2004-06-23
EP0878713B1 true EP0878713B1 (fr) 2009-03-04

Family

ID=25318702

Family Applications (3)

Application Number Title Priority Date Filing Date
EP98107778A Expired - Lifetime EP0878713B1 (fr) 1997-05-12 1998-04-29 Méthode et appareil pour corriger l'effet de la température ambiente dans les biodétecteurs
EP10173366A Withdrawn EP2264451A1 (fr) 1997-05-12 1998-04-29 Méthode et appareil pour corriger l'effet de la température ambiente dans les biodétecteurs
EP20090000924 Withdrawn EP2048499A1 (fr) 1997-05-12 1998-04-29 Méthode et appareil pour corriger l'effet de la température ambiente dans les biodétecteurs

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP10173366A Withdrawn EP2264451A1 (fr) 1997-05-12 1998-04-29 Méthode et appareil pour corriger l'effet de la température ambiente dans les biodétecteurs
EP20090000924 Withdrawn EP2048499A1 (fr) 1997-05-12 1998-04-29 Méthode et appareil pour corriger l'effet de la température ambiente dans les biodétecteurs

Country Status (11)

Country Link
US (1) US6391645B1 (fr)
EP (3) EP0878713B1 (fr)
JP (1) JP4124513B2 (fr)
AT (1) ATE424558T1 (fr)
AU (1) AU729232B2 (fr)
CA (1) CA2236314C (fr)
DE (1) DE69840614D1 (fr)
DK (1) DK0878713T3 (fr)
ES (1) ES2321348T3 (fr)
NZ (1) NZ329792A (fr)
TW (1) TW565695B (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7977112B2 (en) 2003-06-20 2011-07-12 Roche Diagnostics Operations, Inc. System and method for determining an abused sensor during analyte measurement
US8058077B2 (en) 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
US8071384B2 (en) 1997-12-22 2011-12-06 Roche Diagnostics Operations, Inc. Control and calibration solutions and methods for their use
US8092668B2 (en) 2004-06-18 2012-01-10 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
US8298828B2 (en) 2003-06-20 2012-10-30 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8404100B2 (en) 2005-09-30 2013-03-26 Bayer Healthcare Llc Gated voltammetry
US8425757B2 (en) 2005-07-20 2013-04-23 Bayer Healthcare Llc Gated amperometry
US8663442B2 (en) 2003-06-20 2014-03-04 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US9410917B2 (en) 2004-02-06 2016-08-09 Ascensia Diabetes Care Holdings Ag Method of using a biosensor

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635167B1 (en) * 1997-12-04 2003-10-21 Roche Diagnostics Corporation Apparatus and method for determining the concentration of a component of a sample
US7494816B2 (en) * 1997-12-22 2009-02-24 Roche Diagnostic Operations, Inc. System and method for determining a temperature during analyte measurement
EP1081490B1 (fr) 1998-05-20 2004-09-08 ARKRAY, Inc. Procede et appareil de mesures electrochimiques recourant a des methodes statistiques
US6780296B1 (en) 1999-12-23 2004-08-24 Roche Diagnostics Corporation Thermally conductive sensor
US6604050B2 (en) 2000-06-16 2003-08-05 Bayer Corporation System, method and biosensor apparatus for data communications with a personal data assistant
CN100346158C (zh) 2000-11-30 2007-10-31 松下电器产业株式会社 基质的定量方法
US7004928B2 (en) 2002-02-08 2006-02-28 Rosedale Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device
JP2004350861A (ja) 2003-05-28 2004-12-16 Tanita Corp 健康管理装置
AU2005230470A1 (en) * 2004-03-31 2005-10-20 Bayer Healthcare Llc Method and apparatus for implementing threshold based correction functions for biosensors
US7964089B2 (en) 2005-04-15 2011-06-21 Agamatrix, Inc. Analyte determination method and analyte meter
US20060281187A1 (en) 2005-06-13 2006-12-14 Rosedale Medical, Inc. Analyte detection devices and methods with hematocrit/volume correction and feedback control
EP3461406A1 (fr) 2005-09-30 2019-04-03 Intuity Medical, Inc. Cartouche d'échantillonnage et d'analyse de fluide corporel multi-sites
US8801631B2 (en) 2005-09-30 2014-08-12 Intuity Medical, Inc. Devices and methods for facilitating fluid transport
CN103558390B (zh) * 2006-02-27 2016-02-24 拜尔健康护理有限责任公司 用于测定分析物浓度的方法和生物传感器
US8529751B2 (en) 2006-03-31 2013-09-10 Lifescan, Inc. Systems and methods for discriminating control solution from a physiological sample
US7966859B2 (en) 2006-05-03 2011-06-28 Bayer Healthcare Llc Underfill detection system for a biosensor
WO2007133985A2 (fr) * 2006-05-08 2007-11-22 Bayer Healthcare Llc Système de détection de données de sortie anormales utilisé pour un biocapteur
WO2008051742A2 (fr) 2006-10-24 2008-05-02 Bayer Healthcare Llc Amperometrie de decroissance transitoire
WO2008081524A1 (fr) * 2006-12-27 2008-07-10 Intelligent Sensor Technology, Inc. Dispositif de reconnaissance du goût et système de reconnaissance du goût l'utilisant
EP3474283A1 (fr) 2007-05-30 2019-04-24 Ascensia Diabetes Care Holdings AG Procédé et système de gestion de données de santé
US8778168B2 (en) * 2007-09-28 2014-07-15 Lifescan, Inc. Systems and methods of discriminating control solution from a physiological sample
JP5773241B2 (ja) 2007-10-15 2015-09-02 バイエル・ヘルスケア・エルエルシーBayer HealthCareLLC 試験センサの温度を決定する方法及びアセンブリ
RU2706691C2 (ru) 2007-12-10 2019-11-20 Асцензия Диабетс Кэар Холдингс АГ Способ определения концентрации аналита
WO2009076302A1 (fr) 2007-12-10 2009-06-18 Bayer Healthcare Llc Marqueurs de contrôle pour la détection automatique d'une solution de contrôle et procédés d'utilisation
US8603768B2 (en) 2008-01-17 2013-12-10 Lifescan, Inc. System and method for measuring an analyte in a sample
JP5816080B2 (ja) 2008-05-30 2015-11-17 インテュイティ メディカル インコーポレイテッド 体液採取装置及び採取部位インターフェイス
EP2299904B1 (fr) 2008-06-06 2019-09-11 Intuity Medical, Inc. Procédé de mesure médical
JP5642066B2 (ja) 2008-06-06 2014-12-17 インテュイティ メディカル インコーポレイテッド 体液の試料内に含まれている検体の存在または濃度を決定する検定を行う方法および装置
US8551320B2 (en) 2008-06-09 2013-10-08 Lifescan, Inc. System and method for measuring an analyte in a sample
CA2743440C (fr) 2008-12-08 2017-07-18 Bayer Healthcare Llc Systeme de biocapteur avec ajustement de signal
US8801273B2 (en) * 2009-06-08 2014-08-12 Bayer Healthcare Llc Method and assembly for determining the temperature of a test sensor
JP5782044B2 (ja) * 2009-11-10 2015-09-24 バイエル・ヘルスケア・エルエルシーBayer HealthCareLLC バイオセンサ用の充填量不足認識システム
EP2506768B1 (fr) 2009-11-30 2016-07-06 Intuity Medical, Inc. Dispositif et procédé de fourniture de matériau d'étalonnage
US8391940B2 (en) * 2010-02-04 2013-03-05 Lifescan, Inc. Methods and systems to correct for hematocrit effects
MX2012010860A (es) 2010-03-22 2013-03-05 Bayer Healthcare Llc Compensacion residual para un biosensor.
CN104502426B (zh) 2010-06-07 2017-05-10 安晟信医疗科技控股公司 用于确定样品中的分析物浓度的方法
KR101971233B1 (ko) 2010-06-07 2019-04-22 바이엘 헬쓰케어 엘엘씨 2차 출력 신호를 포함하는 기울기-기반 보상
US10330667B2 (en) 2010-06-25 2019-06-25 Intuity Medical, Inc. Analyte monitoring methods and systems
CN101900704A (zh) * 2010-07-26 2010-12-01 北京软测科技有限公司 利用插入算法提高血液测量准确度的方法
CA2823180C (fr) * 2010-12-31 2018-10-23 Ronald C. Chatelier Systemes et procedes pour une mesure d'analyte tres precise
CA2843945C (fr) 2011-08-03 2022-06-21 Intuity Medical, Inc. Dispositifs et procedes pour le prelevement et l'analyse de liquides organiques
EP2758039B1 (fr) 2011-09-21 2018-01-24 Ascensia Diabetes Care Holdings AG Biocapteur à compensation d'erreur
US9903830B2 (en) 2011-12-29 2018-02-27 Lifescan Scotland Limited Accurate analyte measurements for electrochemical test strip based on sensed physical characteristic(s) of the sample containing the analyte
JP2016522070A (ja) 2013-06-21 2016-07-28 インテュイティ メディカル インコーポレイテッド 可聴フィードバックを用いた分析物モニタリングシステム
US9243276B2 (en) 2013-08-29 2016-01-26 Lifescan Scotland Limited Method and system to determine hematocrit-insensitive glucose values in a fluid sample
US9459231B2 (en) 2013-08-29 2016-10-04 Lifescan Scotland Limited Method and system to determine erroneous measurement signals during a test measurement sequence
AU2022330044A1 (en) * 2021-08-20 2024-03-07 University Of Cincinnati Aptamer sensors with temperature correction

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791988A (en) 1972-03-23 1974-02-12 Hoffmann La Roche Diagnostic test for glucose
US4431004A (en) * 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4746607A (en) 1985-02-07 1988-05-24 Eastman Kodak Company Use of substituted quinone electron transfer agents in analytical determinations
US4750496A (en) * 1987-01-28 1988-06-14 Xienta, Inc. Method and apparatus for measuring blood glucose concentration
US5126247A (en) 1988-02-26 1992-06-30 Enzymatics, Inc. Method, system and devices for the assay and detection of biochemical molecules
DE3826922A1 (de) 1988-08-09 1990-02-22 Boehringer Mannheim Gmbh Verfahren zur kolorimetrischen bestimmung eines analyten mittels enzymatischer oxidation
US4929545A (en) 1989-04-14 1990-05-29 Boehringer Mannheim Corporation Method and reagent for determination of an analyte via enzymatic means using a ferricyanide/ferric compound system
CH677149A5 (fr) * 1989-07-07 1991-04-15 Disetronic Ag
US5508171A (en) * 1989-12-15 1996-04-16 Boehringer Mannheim Corporation Assay method with enzyme electrode system
JP2748196B2 (ja) * 1991-04-26 1998-05-06 株式会社ジャパンエナジー 化学センサの温度依存性の補正方法
FR2701117B1 (fr) * 1993-02-04 1995-03-10 Asulab Sa Système de mesures électrochimiques à capteur multizones, et son application au dosage du glucose.
US5366609A (en) * 1993-06-08 1994-11-22 Boehringer Mannheim Corporation Biosensing meter with pluggable memory key

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071384B2 (en) 1997-12-22 2011-12-06 Roche Diagnostics Operations, Inc. Control and calibration solutions and methods for their use
US8298828B2 (en) 2003-06-20 2012-10-30 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8859293B2 (en) 2003-06-20 2014-10-14 Roche Diagnostics Operations, Inc. Method for determining whether a disposable, dry regent, electrochemical test strip is unsuitable for use
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8507289B1 (en) 2003-06-20 2013-08-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8663442B2 (en) 2003-06-20 2014-03-04 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US8083993B2 (en) 2003-06-20 2011-12-27 Riche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8586373B2 (en) 2003-06-20 2013-11-19 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
US8293538B2 (en) 2003-06-20 2012-10-23 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7977112B2 (en) 2003-06-20 2011-07-12 Roche Diagnostics Operations, Inc. System and method for determining an abused sensor during analyte measurement
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US8058077B2 (en) 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
US9410917B2 (en) 2004-02-06 2016-08-09 Ascensia Diabetes Care Holdings Ag Method of using a biosensor
US8092668B2 (en) 2004-06-18 2012-01-10 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
US9410915B2 (en) 2004-06-18 2016-08-09 Roche Operations Ltd. System and method for quality assurance of a biosensor test strip
US8425757B2 (en) 2005-07-20 2013-04-23 Bayer Healthcare Llc Gated amperometry
US8877035B2 (en) 2005-07-20 2014-11-04 Bayer Healthcare Llc Gated amperometry methods
US8647489B2 (en) 2005-09-30 2014-02-11 Bayer Healthcare Llc Gated voltammetry devices
US8404100B2 (en) 2005-09-30 2013-03-26 Bayer Healthcare Llc Gated voltammetry
US9110013B2 (en) 2005-09-30 2015-08-18 Bayer Healthcare Llc Gated voltammetry methods

Also Published As

Publication number Publication date
ATE424558T1 (de) 2009-03-15
CA2236314A1 (fr) 1998-11-12
AU6481898A (en) 1998-11-12
AU729232B2 (en) 2001-01-25
EP0878713A2 (fr) 1998-11-18
EP2048499A1 (fr) 2009-04-15
US6391645B1 (en) 2002-05-21
ES2321348T3 (es) 2009-06-04
TW565695B (en) 2003-12-11
CA2236314C (fr) 2004-02-10
JP4124513B2 (ja) 2008-07-23
JPH10318963A (ja) 1998-12-04
EP2264451A1 (fr) 2010-12-22
DK0878713T3 (da) 2009-06-02
DE69840614D1 (de) 2009-04-16
NZ329792A (en) 1999-02-25
EP0878713A3 (fr) 2004-06-23

Similar Documents

Publication Publication Date Title
EP0878713B1 (fr) Méthode et appareil pour corriger l'effet de la température ambiente dans les biodétecteurs
US11584945B2 (en) Method and apparatus for implementing threshold based correction functions for biosensors
EP0741186B1 (fr) Procédé et dispositif pour la réduction des erreurs asymétriques dans des capteurs ampèremétriques
US10067082B2 (en) Biosensor for determining an analyte concentration
EP1678491B1 (fr) Metre utilise dans un procede ameliore permettant de reduire les interferences dans un capteur electrochimique au moyen de deux potentiels differents appliques
ZA200608724B (en) Method and apparatus for implementing threshold based correction functions for biosensors
US20220112536A1 (en) Oxygen-insensitive electrochemical biosensor and methods of use thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 01N 33/66 B

Ipc: 7C 12Q 1/00 B

Ipc: 7G 01N 33/49 B

Ipc: 7G 01N 33/487 A

17P Request for examination filed

Effective date: 20041223

AKX Designation fees paid

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20071005

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69840614

Country of ref document: DE

Date of ref document: 20090416

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2321348

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20090427

Year of fee payment: 12

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090423

Year of fee payment: 12

Ref country code: LU

Payment date: 20090505

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090528

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090818

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100506

Year of fee payment: 13

Ref country code: FI

Payment date: 20100429

Year of fee payment: 13

Ref country code: ES

Payment date: 20100426

Year of fee payment: 13

Ref country code: DK

Payment date: 20100427

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100427

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090605

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100426

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100428

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100429

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110429

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110429

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150429

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160427

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69840614

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170429