EP0874200A1 - Heizungsanlage mit einer hydraulischen Weiche - Google Patents

Heizungsanlage mit einer hydraulischen Weiche Download PDF

Info

Publication number
EP0874200A1
EP0874200A1 EP97106527A EP97106527A EP0874200A1 EP 0874200 A1 EP0874200 A1 EP 0874200A1 EP 97106527 A EP97106527 A EP 97106527A EP 97106527 A EP97106527 A EP 97106527A EP 0874200 A1 EP0874200 A1 EP 0874200A1
Authority
EP
European Patent Office
Prior art keywords
temperature
volume flow
circuit
flow
generator circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97106527A
Other languages
English (en)
French (fr)
Other versions
EP0874200B1 (de
Inventor
Peter Ries
Illi Bruno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies AG
Original Assignee
Electrowatt Technology Innovation AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrowatt Technology Innovation AG filed Critical Electrowatt Technology Innovation AG
Priority to DE59706553T priority Critical patent/DE59706553D1/de
Priority to EP97106527A priority patent/EP0874200B1/de
Priority to AT97106527T priority patent/ATE214141T1/de
Publication of EP0874200A1 publication Critical patent/EP0874200A1/de
Application granted granted Critical
Publication of EP0874200B1 publication Critical patent/EP0874200B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • F24D3/1091Mixing cylinders

Definitions

  • the invention relates to a heating system with a hydraulic switch in the preamble of Claim 1 mentioned type.
  • Heating systems include a producer circuit and a consumer circuit.
  • the producer group contains At least one heat generator, the consumer group at least one heat consumer.
  • the Independent sizes of the heating system are the temperatures in the flow and the return of the Consumer circuit, as well as the volume flow in the consumer circuit, while the temperatures in Flow and return of the producer circuit, as well as the volume flow in the producer circuit as that dependent sizes are to be considered.
  • Volume flow at the volume flow required by the heat consumers are the producer circuit and the consumer circuit is decoupled by a hydraulic switch. In practice, this has the following Effects: If the volume flow in the generator circuit is greater than the volume flow in Is consumer circuit, then a preliminary admixture takes place in the Generator circuit, causing the return temperature in the generator circuit to rise.
  • the return temperature be as low as possible. If the volume flow in the generator circuit is smaller than the volume flow in the consumer circuit, then a return mixture is added in the consumer circuit, whereby the flow temperature in the consumer circuit drops. For Coverage of the heat demand from the consumer must then either the volume flow in Consumer group are increased, whereby the return admixture in the consumer group still amplified, or the flow temperature of the generator circuit must be increased.
  • the invention has for its object in a heating system with a hydraulic switch the volume flow flowing in the generator circuit depending on the flow in the consumer circuit To control volume flow so that the return temperature in the generator circuit is as low as possible.
  • the generator circuit 1 shows a heating system with a generator circuit 1, a consumer circuit 2 and a hydraulic switch 3 for the hydraulic decoupling of the generator circuit 1 and the consumer circuit 2.
  • the generator circuit 1 comprises a flow line 4 and a return line 5, between which at least one heat generator 6 is arranged is.
  • a means 7 is used to control the volume flow V E flowing through the generator circuit 1.
  • the means 7 is a controllable pump or a throttle valve which is built into the return line 5 of the generator circuit 1.
  • the consumer circuit 2 also comprises a flow line 8 and a return line 9, between which a single or several heat consumers 10 are arranged.
  • the volume flow V E flowing through the load circuit 2 flows to the volume flow V V. If the volume flows V E and V V are different, then a volume flow V W also flows through the hydraulic switch 3.
  • the positive flow direction of the volume flows is marked with arrows in FIG. 1.
  • the size of the volume flow V V required by the heat consumers 10 is determined, depending on the design of the heating system, by mixing valves, thermostatic valves, pumps, taps, etc. arranged on the consumption side. According to the invention, the return temperature in the generator circuit 1 becomes minimal when the volume flow V W flowing through the hydraulic switch 3 almost disappears.
  • TV E denotes the temperature in the flow line 4 of the generator circuit 1
  • TV V denotes the temperature in the flow line 8 of the consumer circuit 2
  • TR V denotes the temperature in the return line 5 of the consumer circuit 2
  • TR E denotes the temperature in the return line 9 of the generator circuit 1.
  • the temperatures TV E , TR E , TV V and TV E are not independent of one another, but depend on the volume flow V W caused by the hydraulic Soft 3 flows. This dependency is used according to the invention in order to minimize the volume flow V W.
  • all four temperature measuring points TV E , TR E , TV V and TV E are equipped with a temperature sensor.
  • the temperatures TV E , TR E , TV V and TV E are recorded by a control and regulating device 11.
  • the control and regulating device 11 controls and / or regulates the means 7 for controlling the volume flow V E flowing in the generator circuit 1 in such a way that the volume flow V E is reduced, provided that TR E > TR V and that the volume flow V E is increased, if TV E > TV V.
  • At least the two temperature measuring points TV E and TV V are equipped with a temperature sensor.
  • the control and regulating device 11 controls and / or regulates the volume flow V E with the means 7 in such a way that the difference TV E - TV V is as small as possible, but larger than a positive value dT 1 .
  • At least the two temperature measuring points TR E and TR V are equipped with a temperature sensor.
  • the control and regulating device 11 controls and / or regulates the volume flow V E with the means 7 in such a way that the difference TR E - TR V is as small as possible, but larger than a value dT 2 .
  • the regulation on the value TR E - TR V 0 not sensible, since the volume flow V W through the switch 3 could then become arbitrarily large negative.
  • the advantage of the invention is that the temperature TR E on the generator side of the return line 5 is as low as possible.
  • the walls of the combustion chamber are as cool as possible and therefore the condensation of the exhaust gases produced during combustion is maximal and the heat loss due to escaping warm exhaust gases is minimized.
  • an advantage of the invention is that the flow temperature of the generating circuit 1 can be kept as low as possible, since no or only a little cool water is added to the flow. The efficiency of the heat generator 6 is thus increased thanks to the invention.
  • the temperature sensors were arranged in the supply and return lines 4, 8, 5 and 9. In practice, it often happens that the temperature sensor for measuring the temperature TV E of the flow line 4 of the generator circuit 1 is arranged directly in the heat generator 6.
  • the teaching according to the invention can also be used if one of the two temperature sensors for measuring TV E or TV V and / or one of the two temperature sensors for measuring TR E or TR V is suitably placed in the hydraulic switch 3.
  • the control and regulating device 11 is set up, the heating system in quasi-stationary operation or at to control or regulate slowly changing conditions in the manner described. While the start-up phase of the heating system or, for example, when changing from normal temperature to Lowering temperature, it can be advantageous not to use the control according to the invention, since it could then be counterproductive.
  • the increase in the volume flow V E in the first step for example by 10%, therefore causes warm water flows through the hydraulic switch 3 into the return line 5, since the volume flow V V through the heat consumers 10 remains unchanged.
  • the temperature TR E thus increases.
  • the volume flow V E is reduced again in discrete steps, for example in steps of 2%.
  • the warm volume flow V W is reduced again by the hydraulic switch 3, so that the temperature TR E decreases again.
  • the temperature TR E can only decrease as long as warm water is still flowing through the hydraulic switch 3 and is mixed with the cooler return water. If the temperature TR E no longer decreases, then the volume flow V E may no longer be reduced, since otherwise cold water would flow through the hydraulic switch 3 in the opposite direction.
  • This method has the advantage that only a single temperature sensor is required. It is particularly applicable when the volume flow V V required by the consumer is not subject to major fluctuations. The frequency with which the method is carried out is therefore preferably adapted to the needs of the users. In practice, this method is particularly interesting when the heating system has only a single heat generator 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Control Of Temperature (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Bei einer Heizungsanlage mit einem Erzeugerkreis (1) und einem Verbraucherkreis (2) sind die gemeinsame Vorlaufleitung (4, 8) und die gemeinsame Rücklaufleitung (5, 9) durch eine hydraulische Weiche (3) verbunden. Der Erzeugerkreis (1) weist ein Mittel (7) zur Steuerung des im Erzeugerkreis (1) fliessenden Volumenstromes VE auf. Es sind mehrere Temperaturfühler vorhanden, aus deren Signalen sich Richtung und Grösse eines allenfalls durch die hydraulische Weiche (3) fliessenden Volumenstromes VW ableiten lässt. Das Mittel (7) regelt den im Erzeugerkreis (1) fliessenden Volumenstrom VE derart, dass der durch die hydraulische Weiche (3) fliessende Volumenstrom VW möglichst gering ist. <IMAGE>

Description

Die Erfindung betrifft eine Heizungsanlage mit einer hydraulischen Weiche der im Oberbegriff des Anspruchs 1 genannten Art.
Heizungsanlagen umfassen einen Erzeugerkreis und einen Verbraucherkreis. Der Erzeugerkreis enthält Wenigstens einen Wärmeerzeuger, der Verbraucherkreis wenigstens einen Wärmeverbraucher. Die unabhängigen Grössen der Heizungsanlage sind die Temperaturen im Vorlauf und im Rücklauf des Verbraucherkreises, sowie der Volumenstrom im Verbraucherkreis, während die Temperaturen im Vorlauf und im Rücklauf des Erzeugerkreises, sowie der Volumenstrom im Erzeugerkreis als die abhängigen Grössen zu betrachten sind. Zur Anpassung des von den Wärmeerzeugern erzeugten Volumenstromes an den von den Wärmeverbrauchern benötigten Volumenstrom sind der Erzeugerkreis und der Verbraucherkreis durch eine hydraulische Weiche entkoppelt. In der Praxis hat dies folgende Auswirkungen: Wenn der Volumenstrom im Erzeugerkreis grösser als der Volumenstrom im Verbraucherkreis ist, dann erfolgt wegen der hydraulischen Weiche eine Vorlaufbeimischung im Erzeugerkreis, wodurch die Rücklauftemperatur im Erzeugerkreis ansteigt. Bei modernen Brennwertkesseln ist es jedoch erwünscht, dass die Rücklauftemperatur möglichst tief ist. Wenn der Volumenstrom im Erzeugerkreis kleiner als der Volumenstrom im Verbraucherkreis ist, dann erfolgt eine Rücklaufbeimischung im Verbraucherkreis, wodurch die Vorlauftemperatur im Verbraucherkreis sinkt. Zur Deckung des verbraucherseitigen Wärmebedarfs muss dann entweder der Volumenstom im Verbraucherkreis erhöht werden, wodurch sich die Rücklaufbeimischung im Verbraucherkreis noch verstärkt, oder es muss die Vorlauftemperatur des Erzeugerkreises erhöht werden.
Der Erfindung liegt die Aufgabe zugrunde, bei einer Heizungsanlage mit einer hydraulischen Weiche den im Erzeugerkreis fliessenden Volumenstrom in Abhängigkeit des im Verbraucherkreis fliessenden Volumenstromes derart zu steuern, dass die Rücklauttemperatur im Erzeugerkreis möglichst tief ist.
Die Erfindung ist im Anspruch 1 gekennzeichnet. Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen. Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert.
Es zeigen:
Fig. 1
eine Heizungsanlage, bei der der Erzeugerkreis und der Verbraucherkreis durch eine hydraulische Weiche entkoppelt sind, und
Fig. 2, 3
weitere Heizungsanlagen.
Die Fig. 1 zeigt eine Heizungsanlage mit einem Erzeugerkreis 1, einem Verbraucherkreis 2 und einer hydraulischen Weiche 3 zur hydraulischen Entkopplung des Erzeugerkreises 1 und des Verbraucherkreises 2. Der Erzeugerkreis 1 umfasst eine Vorlaufleitung 4 und eine Rücklaufleitung 5, zwischen denen wenigstens ein Wärmeerzeuger 6 angeordnet ist. Zur Steuerung des durch den Erzeugerkreis 1 fliessenden Volumenstromes VE dient ein Mittel 7. In der Fig. 1 ist das Mittel 7 eine steuerbare Pumpe oder ein Drosselventil, die bzw. das in die Rücklaufleitung 5 des Erzeugerkreises 1 eingebaut ist. Der Verbraucherkreis 2 umfasst ebenfalls eine Vorlaufleitung 8 und eine Rücklaufleitung 9, zwischen denen ein einziger oder mehrere Wärmeverbraucher 10 angeordnet sind.
Durch den Erzeugerkreis 1 fliesst der Volumenstrom VE, durch den Verbraucherkreis 2 fliesst der Volumenstrom VV. Sind die Volumenströme VE und VV verschieden, dann fliesst auch durch die hydraulische Weiche 3 ein Volumenstrom VW. Der Volumenstrom VW beträgt VW = VE - VV . Die positive Flussrichtung der Volumenströme ist in der Fig. 1 mit Pfeilen markiert. Die Grösse des von den Wärmeverbrauchern 10 benötigten Volumenstromes VV wird je nach Ausführung der Heizanlage durch verbrauchsseitig angeordnete Mischventile, Thermostatventile, Pumpen, Hähne, usw. bestimmt. Gemäss der Erfindung wird die Rücklauftemperatur im Erzeugerkreis 1 minimal, wenn der durch die hydraulische Weiche 3 fliessende Volumenstrom VW annähernd verschwindet.
Es werden nun vier Temperaturmessprunkte TVE, TRE, TVV und TVE definiert: TVE bezeichnet die Temperatur in der Vorlaufleitung 4 des Erzeugerkreises 1, TVV bezeichnet die Temperatur in der Vorlaufleitung 8 des Verbraucherkreises 2, TRV bezeichnet die Temperatur in der Rücklaufleitung 5 des Verbraucherkreises 2 und TRE bezeichnet die Temperatur in der Rücklaufleitung 9 des Erzeugerkreises 1. Die Temperaturen TVE, TRE, TVV und TVE sind nicht unabhängig voneinander, sondern hängen ab vom Volumenstrom VW, der durch die hydraulische Weiche 3 fliesst. Diese Abhängigkeit wird erfindungsgemäss ausgenutzt, um den Volumenstrom VW zu minimieren.
Falls der Volumenstrom VW positiv ist, dann erfolgt eine Vorlaufbeimischung im Erzeugerkreis 1, d.h. dem von den Wärmeverbrauchern 10 in der Rücklaufleitung 9 zurückfliessenden Wasser wird vergleichsweise wärmeres Wasser aus der Vorlaufleitung 4 des Erzeugerkreises 1 beigemischt. Die Temperatur TRE in der Rücklaufleitung 5 des Erzeugerkreises 1 ist daher höher als die Temperatur TRV in der Rücklaufleitung 9 des Verbraucherkreises 2. Es gilt somit TRE > TRV und TVE = TVV . Falls der Volumenstrom VW negativ ist, erfolgt eine Rücklaufbeimischung im Verbraucherkreis 2. Dann wird der Vorlaufleitung 8 des Verbraucherkreises 2 vergleichsweise kühleres Wasser aus der Rücklaufleitung 9 des Verbraucherkreises 2 beigemischt. Es gilt somit TVE > TVV und TRE = TRV . Bei annähernd verschwindendem Volumenstrom VW durch die hydraulische Weiche 3 ergibt sich TVE = TVV und TRE = TRV : Der Erzeugerkreis 1 ist optimal an die vom Verbraucherkreis 2 diktierten Bedingungen TVV, TRV und VV angepasst. Im Erzeugerkreis 1 ist daher weder die Temperatur TRE noch die Temperatur TVE höher als nötig.
Bei einem ersten Ausführungsbeispiel der Erfindung sind alle vier Temperaturmesspunkte TVE, TRE, TVV und TVE mit einem Temperaturfühler bestückt. Die Temperaturen TVE, TRE, TVV und TVE werden von einem Steuer- und Regelgerät 11 erfasst. Das Steuer- und Regelgerät 11 steuert und/oder regelt das Mittel 7 zur Steuerung des im Erzeugerkreis 1 fliessenden Volumenstromes VE derart, dass der Volumenstrom VE verkleinert wird, sofern TRE > TRV ist und dass der Volumenstrom VE erhöht wird, sofern TVE > TVV ist.
Bei einem zweiten Ausführungsbeispiel der Erfindung sind wenigstens die beiden Temperaturmesspunkte TVE und TVV mit einem Temperaturfühler bestückt. Das Steuer- und Regelgerät 11 steuert und/oder regelt mit dem Mittel 7 den Volumenstrom VE nun derart, dass die Differenz TVE - TVV möglichst gering, aber grösser als ein positiver Wert dT1 ist. Die Regelung aufden Wert TVE - TVV = 0 ist nicht sinnvoll, da dann der Volumenstrom VW durch die Weiche 3 beliebig gross positiv werden könnte.
Bei einem dritten Ausführungsbeispiel der Erfindung sind wenigstens die beiden Temperaturmesspunkte TRE und TRV mit einem Temperaturfühler bestückt. Das Steuer- und Regelgerät 11 steuert und/oder regelt mit dem Mittel 7 den Volumenstrom VE nun derart, dass die Differenz TRE - TRV möglichst gering, aber grösser als ein Wert dT2 ist. Hier ist die Regelung auf den Wert TRE - TRV = 0 nicht sinnvoll, da dann der Volumenstrom VW durch die Weiche 3 beliebig gross negativ werden könnte.
Der Vorteil der Erfindung liegt einerseits darin, dass die Temperatur TRE auf der erzeugerseitigen Seite der Rücklaufleitung 5 so tief wie möglich ist. Dies hat zur Folge, dass bei einem modernen, als Brennwertkessel ausgebildeten Wärmeerzeuger 6 die Wände der Brennkammer so kühl wie möglich sind und daher die Kondensation der bei der Verbrennung entstehenden Abgase maximal und der Wärmeverlust durch entweichende warme Abgase minimal wird. Andererseits liegt ein Vorteil der Erfindung darin, dass die Vorlauftemperatur des Erzeugerkreises 1 so gering wie möglich gehalten werden kann, da dem Vorlauf kein oder nur wenig kühles Wasser beigemischt wird. Der Wirkungsgrad des Wärmeerzeugers 6 wird somit dank der Erfindung erhöht.
Bei den bisherigen Beispielen waren die Temperaturfühler in den Vor- und Rücklaufleitungen 4, 8, 5 und 9 angeordnet. In der Praxis kommt es häufig vor, dass der Temperaturfühler zur Messung der Temperatur TVE der Vorlaufleitung 4 des Erzeugerkreises 1 direkt im Wärmeerzeuger 6 angeordnet ist. Die erfindungsgemässe Lehre lässt sich auch dann anwenden, wenn einer der beiden Temperaturfühler zur Messung von TVE oder TVV und/oder einer der beiden Temperaturfühler zur Messung von TRE oder TRV in geeigneter Weise in der hydraulischen Weiche 3 plaziert ist.
Sind zwei oder mehr parallel angeordnete Wärmeerzeuger 6 vorhanden, dann kann ein einziges Mittel 7 zur Steuerung des Volumenstromes VE oder es können zwei oder mehr Mittel 7 zur Steuerung des Volumenstromes VE vorhanden sein, wie in den Fig. 2 und 3 gezeigt ist.
Das Steuer- und Regelgerät 11 ist eingerichtet, die Heizungsanlage im quasistationären Betrieb oder bei langsam veränderlichen Verhältnissen in der beschriebenen Weise zu steuern oder zu regeln. Während der Anfahrphase der Heizungsanlage oder beispielsweise beim Übergang von Normaltemperatur auf Absenktemperatur kann es vorteilhaft sein, die erfindungsgemässe Regelung nicht einzusetzen, da sie dann eventuell kontraproduktiv wirken könnte.
Bei einem weiteren Ausführungsbeispiel der Erfindung ist nur ein einziger Temperaturfühler zur Messung der Temperatur TRE eingesetzt. Zur Bestimmung der Steuer- und/oder Regelwerte für das Mittel 7 zur Steuerung des erzeugerseitigen Volumenstromes VE ist vorgesehen, in regelmässigen oder unregelmässigen Abständen ein Verfahren mit den folgenden Schritten durchzuführen:
  • 1. Erhöhung des Volumenstromes VE.
  • 2. Erniedrigung des Volumenstromes VE in diskreten Schritten, bis die Temperatur TRE nicht mehr weiter abnimmt.
  • Das Verfahren beruht auf der folgenden Idee: Im angestrebten stationären Zustand fliesst weder warmes Vorlaufwasser noch kaltes Rücklautwasser durch die hydraulische Weiche 3 hindurch: VW = 0. Die Erhöhung des Volumenstromes VE im ersten Schritt um beispielsweise 10% bewirkt daher, dass warmes Wasser durch die hydraulische Weiche 3 hindurch in die Rücklaufleitung 5 fliesst, daja der Volumenstrom VV durch die Wärmeverbraucher 10 unverändert bleibt. Somit erhöht sich die Temperatur TRE. Im zweiten Verfahrensschritt wird der Volumenstrom VE in diskreten Schritten, beispielsweise in Schritten von 2%, wieder reduziert. Gleichzeitig reduziert sich der warme Volumenstrom VW durch die hydraulische Weiche 3 wieder, so dass die Temperatur TRE wieder abnimmt. Die Temperatur TRE kann aber nur solange abnehmen, wie noch warmes Wasser durch die hydraulische Weiche 3 hindurch fliesst und dem kühleren Rücklaufwasser beigemischt wird. Nimmt die Temperatur TRE nicht mehr weiter ab, dann darf auch der Volumenstrom VE nicht mehr weiter reduziert werden, da sonst kaltes Wasser in umgekehrter Richtung durch die hydraulische Weiche 3 hindurch fliessen wurde.
    Dieses Verfahren bietet den Vorteil, dass nur ein einziger Temperaturfühler erforderlich ist. Es ist vor allem dann anwendbar, wenn der verbraucherseitig benötigte Volumenstrom VV nicht allzu grossen Schwankungen unterliegt. Die Häufigkeit, mit der das Verfahren durchgeführt wird, ist deshalb bevorzugt an die Bedürfnisse der Benutzer angepasst. In der Praxis ist dieses Verfahren insbesondere dann interessant, wenn die Heizungsanlage nur einen einzigen Wärmeerzeuger 6 aufweist.

    Claims (6)

    1. Heizungsanlage mit einem Erzeugerkreis (1) und einem Verbraucherkreis (2) mit einer gemeinsamen Vorlaufleitung (4, 8) und einer gemeinsamen Rücklaufleitung (5, 9), die durch eine hydraulische Weiche (3) verbunden sind, und mit wenigstens einem Mittel (7) zur Steuerung des im Erzeugerkreis (1) fliessenden Volumenstromes VE, dadurch gekennzeichnet, dass ein oder mehrere Temperaturfühler vorhanden sind, aus dessen bzw. deren Signalen sich Richtung und Grösse eines allenfalls durch die hydraulische Weiche (3) fliessenden Volumenstromes VW ableiten lässt, und dass das oder die Mittel (7) den im Erzeugerkreis (1) fliessenden Volumenstrom VE derart regeln, dass der durch die hydraulische Weiche (3) fliessende Volumenstrom VW möglichst gering ist.
    2. Heizungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass als Sensoren ein Temperaturfühler zur Messung der Temperatur TVE in der Vorlaufleitung (4) des Erzeugerkreises (1) sowie ein Temperaturfühler zur Messung der Temperatur TVV in der Vorlaufleitung (8) des Verbraucherkreises (2) vorhanden sind und dass das oder die Mittel (7) den Volumenstrom VE derart regeln, dass die Differenz TVE - TVV möglichst gering, aber grösser als ein positiver Wert dT1 ist.
    3. Heizungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass als Sensoren ein Temperaturfühler zur Messung der Temperatur TRE in der Rücklaufleitung (5) des Erzeugerkreises (4) sowie ein Temperaturfühler zur Messung der Temperatur TRV in der Rücklaufleitung (5) des Verbraucherkreises (2) vorhanden sind und dass das oder die Mittel (7) den Volumenstrom VE derart regeln, dass die Differenz TRE - TRV möglichst gering, aber grösser als ein positiver Wert dT2 ist.
    4. Heizungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass als Sensoren ein Temperaturfühler zur Messung der Temperatur TVE in der Vorlaufleitung (4) des Erzeugerkreises (1), ein Temperaturfühler zur Messung der Temperatur TVV in der Vorlaufleitung (8) des Verbraucherkreises (2), ein Temperaturfühler zur Messung der Temperatur TRE in der Rücklaufleitung (5) des Erzeugerkreises (1) sowie ein Temperaturfühler zur Messung der Temperatur TRV in der Rücklaufleitung (9) des Verbraucherkreises (2) vorhanden sind und dass das oder die Mittel (7) den Volumenstrom VE verkleinern, sofern TRE > TRV ist und den Volumenstrom VE erhöhen, sofern TVE > TVV ist.
    5. Heizungsanlage nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass wenigstens einer der Temperaturfühler zur Messung der Temperaturen TRE, TRV, TVE oder TVV in der hydraulischen Weiche (3) plaziert ist.
    6. Heizungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass als Sensor ein Temperaturfühler zur Messung der Temperatur TRE in der Rücklaufleitung (5) des Erzeugerkreises (1) eingesetzt ist und dass wiederholt ein Verfahren zur Bestimmung der Steuer- und/oder Regelwerte für das Mittel oder die (7) zur Steuerung des erzeugerseitigen Volumenstromes VE vorgesehen ist, das die folgenden Schritte aufweist:
      1. Erhöhung des Volumenstromes VE.
      2. Erniedrigung des Volumenstromes VE in diskreten Schritten, bis die Temperatur TRE nicht mehr weiter abnimmt.
    EP97106527A 1997-04-21 1997-04-21 Heizungsanlage mit einer hydraulischen Weiche Expired - Lifetime EP0874200B1 (de)

    Priority Applications (3)

    Application Number Priority Date Filing Date Title
    DE59706553T DE59706553D1 (de) 1997-04-21 1997-04-21 Heizungsanlage mit einer hydraulischen Weiche
    EP97106527A EP0874200B1 (de) 1997-04-21 1997-04-21 Heizungsanlage mit einer hydraulischen Weiche
    AT97106527T ATE214141T1 (de) 1997-04-21 1997-04-21 Heizungsanlage mit einer hydraulischen weiche

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP97106527A EP0874200B1 (de) 1997-04-21 1997-04-21 Heizungsanlage mit einer hydraulischen Weiche

    Publications (2)

    Publication Number Publication Date
    EP0874200A1 true EP0874200A1 (de) 1998-10-28
    EP0874200B1 EP0874200B1 (de) 2002-03-06

    Family

    ID=8226710

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97106527A Expired - Lifetime EP0874200B1 (de) 1997-04-21 1997-04-21 Heizungsanlage mit einer hydraulischen Weiche

    Country Status (3)

    Country Link
    EP (1) EP0874200B1 (de)
    AT (1) ATE214141T1 (de)
    DE (1) DE59706553D1 (de)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1154205A2 (de) * 2000-05-11 2001-11-14 Eugen Gerster Wärmetransportsystem mit volumenstromgeregelter Wärmeerzeugungseinrichtung
    EP2187136A2 (de) 2008-11-17 2010-05-19 Olaf Brüning Verfahren zum Betreiben eines Systems zum Transport thermischer Energie über ein flüssiges Medium
    EP4249811A1 (de) * 2022-03-21 2023-09-27 Enerpipe GmbH Wärmeübergabestation für ein kaltwärmenetz

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2634873A1 (fr) * 1988-08-01 1990-02-02 Cerco Semip Dispositif et procede en vue de la regulation d'echanges thermiques
    EP0427655A1 (de) * 1989-11-08 1991-05-15 Société SATEL SA Zentralheizungsanlage
    DE9415749U1 (de) * 1994-09-29 1995-03-16 Sican Gmbh Einrichtung zur Regelung von Heiz- und Kesselkreisen einer Heizungsanlage

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2634873A1 (fr) * 1988-08-01 1990-02-02 Cerco Semip Dispositif et procede en vue de la regulation d'echanges thermiques
    EP0427655A1 (de) * 1989-11-08 1991-05-15 Société SATEL SA Zentralheizungsanlage
    DE9415749U1 (de) * 1994-09-29 1995-03-16 Sican Gmbh Einrichtung zur Regelung von Heiz- und Kesselkreisen einer Heizungsanlage

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1154205A2 (de) * 2000-05-11 2001-11-14 Eugen Gerster Wärmetransportsystem mit volumenstromgeregelter Wärmeerzeugungseinrichtung
    EP1154205A3 (de) * 2000-05-11 2003-01-02 Eugen Gerster Wärmetransportsystem mit volumenstromgeregelter Wärmeerzeugungseinrichtung
    EP2187136A2 (de) 2008-11-17 2010-05-19 Olaf Brüning Verfahren zum Betreiben eines Systems zum Transport thermischer Energie über ein flüssiges Medium
    DE102008057730A1 (de) 2008-11-17 2010-05-20 Brüning, Olaf Verfahren zum Betreiben eines Systems zum Transport thermischer Energie über ein flüssiges Medium
    EP2187136A3 (de) * 2008-11-17 2014-09-10 Olaf Brüning Verfahren zum Betreiben eines Systems zum Transport thermischer Energie über ein flüssiges Medium
    EP4249811A1 (de) * 2022-03-21 2023-09-27 Enerpipe GmbH Wärmeübergabestation für ein kaltwärmenetz

    Also Published As

    Publication number Publication date
    DE59706553D1 (de) 2002-04-11
    ATE214141T1 (de) 2002-03-15
    EP0874200B1 (de) 2002-03-06

    Similar Documents

    Publication Publication Date Title
    DE3741935C2 (de) Verfahren zum Steuern der Kühlwirkung eines Partikelkühlers für einen zirkulierenden Wirbelschichtreaktor und regelbarer Partikelkühler
    EP0267209A1 (de) Anordnung für die dosierung von kraftstoff sowie dosiervorrichtung dafür.
    DE102007035976A1 (de) Dampftemperatursteuerung unter Verwendung eines integrierten Funktionsblocks
    EP2187136A2 (de) Verfahren zum Betreiben eines Systems zum Transport thermischer Energie über ein flüssiges Medium
    DE3235364C2 (de) Warmwasser-Heizungsanlage
    EP1114971B1 (de) Kühleinrichtung
    EP0874200B1 (de) Heizungsanlage mit einer hydraulischen Weiche
    EP0379542B1 (de) Einrichtung zum kühlen einer aufgeladenen kolbenbrennkraftmaschine
    DE60119551T2 (de) Fernwärmeanordnung, lokale Einheit einer Fernwärmeanordnung, Steuereinheit für die lokale Einheit und Verfahren zum Betreiben einer Fernwärmeanordnung
    AT406081B (de) Heizanlage
    DE2837540C2 (de)
    AT393330B (de) Einrichtung zur regelung der anteilsmaessigen zufuhr verschieden temperierter brauchwasserdurchsaetze
    EP0445310A1 (de) Verfahren und Vorrichtung zur Regelung der Vorlauftemperatur in Mehrkessel-Heizungssystemen.
    AT411190B (de) Heizanlage und/oder kühlanlage mit mindestens einer wärmequelle
    DE2320755A1 (de) Schaltung fuer die regelung eines dampferzeugers
    DE10144595B4 (de) Zentralheizungsanlage
    EP0694742B1 (de) Warmwasserheizungssystem
    EP3139103A1 (de) Verfahren zum bereitstellen von warmem trinkwasser, ein system und ein wärmeerzeuger hierzu
    AT6001U1 (de) Heizanlage oder kühlanlage mit mindestens einer wärmequelle
    CH626426A5 (en) Internal combustion engine system with a pressure-charged, water-cooled engine
    EP1154205B1 (de) Wärmetransportsystem mit volumenstromgeregelter Wärmeerzeugungseinrichtung
    DE670557C (de) Reglungsanlage einer Dampfkraftanlage fuer Fahrzeuge
    DE830055C (de) Heissdampfkuehler
    AT410130B (de) Einrichtung zur erzeugung von warmem brauchwasser im durchlaufsystem
    DE2615043A1 (de) Regeleinrichtung fuer eine heizungsanlage

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT CH DE FR IT LI NL SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;RO;SI

    17P Request for examination filed

    Effective date: 19990428

    AKX Designation fees paid

    Free format text: AT CH DE FR IT LI NL SE

    TPAD Observations filed by third parties

    Free format text: ORIGINAL CODE: EPIDOS TIPA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: SIEMENS BUILDING TECHNOLOGIES AG

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20010710

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT CH DE FR IT LI NL SE

    REF Corresponds to:

    Ref document number: 214141

    Country of ref document: AT

    Date of ref document: 20020315

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59706553

    Country of ref document: DE

    Date of ref document: 20020411

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20021209

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20060315

    Year of fee payment: 10

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070421

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: SIEMENS AKTIENGESELLSCHAFT

    Free format text: SIEMENS BUILDING TECHNOLOGIES AG#GUBELSTRASSE 22#6300 ZUG (CH) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE)

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: SD

    Effective date: 20110318

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: SIEMENS SCHWEIZ AG, CH

    Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59706553

    Country of ref document: DE

    Owner name: SIEMENS SCHWEIZ AG, CH

    Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

    Effective date: 20150407

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Owner name: SIEMENS SCHWEIZ AG, CH

    Effective date: 20160202

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20160420

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20160620

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20160428

    Year of fee payment: 20

    Ref country code: SE

    Payment date: 20160414

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20160429

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20160704

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59706553

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20170420

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL