EP0871865B1 - Dispositif de mesure de la pression partielle de gaz dissous dans des liquides - Google Patents

Dispositif de mesure de la pression partielle de gaz dissous dans des liquides Download PDF

Info

Publication number
EP0871865B1
EP0871865B1 EP95942708A EP95942708A EP0871865B1 EP 0871865 B1 EP0871865 B1 EP 0871865B1 EP 95942708 A EP95942708 A EP 95942708A EP 95942708 A EP95942708 A EP 95942708A EP 0871865 B1 EP0871865 B1 EP 0871865B1
Authority
EP
European Patent Office
Prior art keywords
measuring
gas
light
measuring chamber
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95942708A
Other languages
German (de)
English (en)
Other versions
EP0871865A2 (fr
Inventor
Michael Dieckmann
Rainer Buchholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euroferm Gesellschaft fur Fermentation und Messtechnik Mbh
Original Assignee
Euroferm Gesellschaft fur Fermentation und Messtechnik Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Euroferm Gesellschaft fur Fermentation und Messtechnik Mbh filed Critical Euroferm Gesellschaft fur Fermentation und Messtechnik Mbh
Publication of EP0871865A2 publication Critical patent/EP0871865A2/fr
Application granted granted Critical
Publication of EP0871865B1 publication Critical patent/EP0871865B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/40Means for regulation, monitoring, measurement or control, e.g. flow regulation of pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8578Gaseous flow
    • G01N2021/8585Gaseous flow using porous sheets, e.g. for separating aerosols

Definitions

  • the present invention relates to a novel device for measurement of the gas partial pressure in liquid media.
  • This process causes a change in the pH value in the electrolytic solution pH probe is measured.
  • the disadvantage of this measuring principle is that The fact that carbon dioxide is not direct, but its ionic form is measured. Since the proportion of the ionic form is less than 0.1% this method is not sufficiently precise. Apart from that, others bother volatile acidic or basic gases the pH value measurement. Furthermore very high maintenance is required.
  • pCO 2 optodes are known from the prior art. This is also a membrane-covered sensor system (SPIE Vol. 798 Fiber Optic Sensors II (1987) pp. 249-252; Anal. Chim. Acta 160 (1984) pp. 305-309; Proc. Int. Meeting on Chemical Sensors , Fukuoka, Japan, Elsevier, pp. 609-619, 1983, Talanta 35 (1988) 2 p.109-112, Anal.Chem. 65 (1993) p.331-337, Fresenius Z. Anal.Chem. 325 ( 1986) pp. 387-392).
  • pH indicators which change their absorption or fluorescence properties as a function of the proton concentration are used as the indicator phase (Anal. Chem. 52 (1980), pp. 864-869, DE-OS 3 343 636 and 3 343 637, U.S. Pat. Appl. 855,384).
  • gases for example carbon dioxide
  • Such carbon dioxide optodes work analogously to the Severinghaus electrodes.
  • the disadvantages of optical pH and thus pCO 2 measurements lie in the very limited analytical measuring range and the ionic strength dependency. The wide use of the optodes is also opposed by the disadvantages already mentioned with regard to the Severinghaus electrodes.
  • a sapphire ATR (attenuated total reflection) crystal is arranged in a flow measuring cell for fluid substances, for example beer, perpendicular to the direction of flow.
  • the infrared light which is fed to the crystal on one side, passes through the crystal and is totally reflected several times. With each reflection, the radiation gets several ⁇ m into the sample liquid and is weakened by the carbon dioxide present. The amount of residual light at the other end of the crystal is measured.
  • the disadvantage of this method is that no partial pressures can be measured. On the other hand, with changing fluids, the results can be falsified by changing the reflective properties.
  • German patent application 2435493 is a Differential pressure meter for the determination of carbonic acid known.
  • this device can only be used in flowing media. Therefore, it is particularly unsuitable for use in conventional stirred or solid medium reactors, such as those in particular in the fermentation industry.
  • German patent application 2926138 is a device for continuous measurement of the dissolved carbon dioxide content in Known liquids.
  • the measuring principle is based on the determination of the Conductivity difference.
  • the device is equipped with a membrane that on one side of the liquid containing dissolved carbon dioxide, and on the other hand from a neutral or basic Measuring fluid is flown.
  • One conductivity sensor each is in the path of the measuring liquid before and after the permeable Membrane arranged. Disadvantage of the measurement is that it is not for one changing in their chemical and physical properties Liquids is suitable.
  • a division into two beam paths is already from GB 2194333 known. With this method, only one light beam is passed through the material to be measured directed. The remaining radiation is used as a reference light also increase the accuracy.
  • the present invention has now set itself the task of a Device for measuring the partial pressure of dissolved in liquids To provide gases using optical methods that are not more the described disadvantages of the prior art Known devices and in particular the Gas partial pressure measurement with longer long-term stability of the device precise and changing chemical-physical in media Composition as well as in clear, cloudy and changeable cloudy Allows media.
  • measuring chamber e.g. in fermentations
  • Beverage production or wastewater treatment is used designed as a sterilizable device.
  • the membrane materials that have proven themselves in this area primarily for use. This includes above all polytetrafluoroethylene (silicone and other fluoride polymers).
  • gas selective membrane solubility membrane These can be used into the sample chamber (10) an equilibrium between the sample liquid and adjust the inner mixture.
  • the measuring chamber is preferably chemical and filled with biologically inert fluid. This is chosen so that it the gas to be determined, which through the membrane into the measuring chamber diffuses, absorbs. Suitable for this purpose are in the same way Liquids or gases can be used. The type of fluids mentioned judges the gases to be measured.
  • the preferred light emission source is Luminescent diodes used.
  • Luminescent diodes used.
  • the emission is relatively narrow-band, i.e. the use of Interference filtering is not essential to the appropriate To selectively determine gas. Due to the relatively low power consumption in principle it is possible to make the measurement setup portable with battery operation shape.
  • a decisive advantage over conventional infrared sources is the high level of performance. Therefore, it may be possible, without a comparison route or compensation circuits without building moving parts. Such a system is mechanically little susceptible. At the same time, the high level of performance guarantees a long service life Operation without recalibration.
  • the LEDs are so small dimensioned that a coupling of the light into optical fibers is easily possible. This allows the sensitive parts to be positioned externally are and are not one of the thermal-mechanical loads Subject to steam sterilization.
  • the luminescent diodes come compatible detectors.
  • photo diodes photo resistors and lead selenide photo detectors (PbSe) detectors.
  • PbSe lead selenide photo detectors
  • the latter mainly work in the infrared range and are particularly suitable for the determination of carbon dioxide.
  • optical fibers For guiding the light waves from the light emission source to the measuring chamber optical fibers are used. The same applies to the management of the Light from the measuring chamber to the measuring arrangement for determining the not absorbed light components.
  • the measuring arrangement is according to the invention preferably with a special circuit for evaluation, Storage and display of the signals connected. Because of that it is suitable the device according to the invention in particular for Automation of plants. Using an integrated Evaluation unit can automatically collect and all data be fed into a control process.
  • the possibility of a pressure-resistant is also advantageous according to the invention Design of the device. It is only necessary that Adapt the housing construction of the probe accordingly. In this manner can the device according to the invention at pressures of 200 bar be used. Preferably the probe is at pressures up to 20 bar used. When used for fermentation processes is only make sure that the probe is under sterilization conditions to withstand the increased pressures that occur.
  • Another object of the present invention is a method for Measurement of the partial pressure of gases dissolved in liquids.
  • This method is the device according to the invention in the Liquid present in the sample chamber is immersed in such a way that the membrane is completely wetted with sample liquid.
  • the gas to be determined selectively through the membrane into the measuring chamber diffuse.
  • Through the light emission source is over optical fiber a beam of light is passed through the measuring chamber. That over there diffusing gas absorbs part of the radiation.
  • the not absorbed Part of the light beam is through an optical fiber Measuring arrangement for determining the gas partial pressure supplied.
  • storage and display facilities can be measured from the non-absorbed Determine and evaluate the light beam the gas partial pressure.
  • one is preferably provided by luminescent diodes generated electromagnetic radiation used. Most notably the infrared range is preferred.
  • the device according to the invention and the method according to the invention are particularly suitable for using the measurement of the Carbon dioxide partial pressure.
  • Carbon dioxide represents a considerable amount Production factor in the food industry, especially in the Beverage industry. In the drinks themselves there is carbon dioxide for the Shelf life and the refreshing taste responsible. Most Today determinations are made via simultaneous printing and Temperature control.
  • a carbon dioxide partial pressure measurement is also required for optimal process control of biotechnical processes.
  • the supply of gases to the microorganisms and their inhibitory properties are a function of the corresponding partial pressures and not of the concentrations.
  • the carbon dioxide partial pressure has not been sufficiently taken into account to date.
  • a satisfactory solution to its determination has not yet been found.
  • the main problems when choosing a suitable determination method are the lack of equipment and the high chemical stability of carbon dioxide. Carbon dioxide is the highest oxidation state of carbon and is therefore very inert at room temperature. In solution, unlike other heterogeneous gases, it does not form hydrogen bonds.
  • the Measuring chamber filled with a carrier fluid for carbon dioxide.
  • This fluid must have solubility for carbon dioxide.
  • Another condition is that it is chemically and biologically inert.
  • the device is not specific Carrier fluid set. Their composition and chemical Rather, they depend on the type of gas to be measured and the conditions of use of the probe.
  • the device according to the invention then consists of the Probe (1).
  • the probe body is made of made of stainless steel. However, it is possible to manufacture from any other material. As a rule, it acts However, these are corrosion-free substances.
  • the probe (1) has a connector (2), which allows the Pressure-proof probe (1) in the pipeline or the wall (5) of a vessel use.
  • the connector (2) and the O-ring arrangement (3) allow the probe (1) to be sealed in an access pipe (4) on the Attach the wall (5).
  • the access pipe (4) has the corresponding Connection piece to the connection piece (2).
  • This construction enables the probe head undergo steam sterilization and use in sterile operation.
  • the Light source (6) around a luminescent diode and in the measuring arrangement (7) a photo receiver. Both parts of the device are with the electrical Provide lines (8) and (9).
  • the LED (6) is on the Line (8) supplied with power.
  • the photo receiver (7) transmits one Signal pulse via line (9) to a means for amplifying and Record the signal.
  • the luminescent diode (6) and the photo receiver (7) are outside the Liquid space (10) arranged. They are extrinsic Optical waveguides (12) and (13) which are used to transmit the light (12) from the liminescent diode (6) and the non-absorbed light to Serve photo receiver (7) used.
  • the optical fibers can be made any materials suitable for the transmission of light his. In the example according to the invention is in the infrared range worked. Therefore, there are preferably light guides made of transparent Material, e.g. from silver halides and chalcogenides.
  • optical fibers are thermally resilient and are therefore suitable for use in a steam-sterilizable environment.
  • the measuring chamber (14) is located at the tip of the head of the probe (1).
  • this is chemically and biologically inert fluid filled which is a high physical Has absorption capacity for carbon dioxide. In Fermentation processes select fluids whose boiling point is chosen so that it does not get too high during sterilization Pressure fluctuations comes.
  • the measuring space (14) is gas-permeable from the sample space (10) Separated membrane (11).
  • the membrane (11) is in the invention
  • Example a thermally stable membrane made of steam sterilizable Material is made.
  • polytetrafluoroethylene is used for this and / or silicone preferred.
  • the dissolved gas diffuses through the membrane (11) into the sample space (10) until equilibrium is reached. Because the diffusion of Gases controlled by a partial pressure membrane determines the Probe (1) the partial pressure. So the probe measures you biologically significant parameter; because the supply of the microorganisms is like all transport processes from the cells or into the cells, partial pressure and not concentration controlled.
  • the luminescent diode (6) emits narrowband light that is selective is absorbed by the gas to be determined.
  • the wavelength can be in with regard to the gas to be examined in both UV / VIS and in Infrared range. For carbon dioxide this is preferably 4.3 ⁇ m.
  • the emitted wavelength range can be limited by one Heat radiator with interference filter or preferably through a narrow band luminescent diode.
  • the particular advantage in use the luminescence diode is that the radiation can be modulated what detection is increased and effects such as DC drift are minimized.
  • the emitted radiation is the via the optical waveguide (12) Measuring room fed.
  • the gas present specifically weakens it emitted radiation.
  • the weakened light is partly from the Optical waveguide (13) recorded and the photo receiver (7) fed. This measures the weakened light and produces electrical signal proportional to the attenuated light. If modulated light is used, the electrical signal also modulate.
  • the length of the measuring chamber (14) corresponds to the optical path length.
  • a optimal optical path length is selected in the measuring room (14) so that the Probe (1) covers the entire measuring range.
  • the measuring range is inversely proportional to the path length. The smaller the path length of the Measuring chamber (14) of the probe (1), the larger the detectable Area and the smaller the resolution.
  • the advantages achieved by the invention are in particular that especially in the case of carbon dioxide partial pressure measurement by separation of the measuring room from the sample room not by the presence of clouding and changing their concentration arise. Furthermore, through the implementation of the membrane Measurement of partial pressure guaranteed. In principle it is possible to use Using Henry's law to convert concentration into partial pressures. But it requires the simultaneous knowledge of temperature and Pressure as well as the media properties. The latter is particularly the case with Difficult to use fermentation media. Furthermore, the Long-term stability, accuracy and the measuring range compared to pH-sensitive Partial pressure probes increased.
  • the probe according to the invention is both in the beverage industry Can also be used particularly well in biotechnology.
  • probes for measuring ranges from to to create 10 bar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measuring Fluid Pressure (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Claims (18)

  1. Dispositif de mesure de la pression partielle de gaz dissous dans des liquides, contenant
    a) une chambre de mesure (14), qui est séparée, à l'aide d'une membrane perméable aux gaz (11), qui est perméable au gaz à déterminer, d'un espace échantillon (19), qui contient le liquide avec le gaz à déterminer qui y est dissous,
    b) une source d'émission lumineuse (6) en vue de la production d'un rayon lumineux traversant la chambre de mesure (14) d'une longueur d'onde, qui est absorbée par le gaz à déterminer,
    c) un arrangement de mesure (7) en vue de la détermination du rayon lumineux quittant la chambre de mesure (14),
    caractérisé en ce que
    d) la chambre de mesure (14) est remplie d'un fluide inerte du point de vue chimique et biologique en vue de l'absorption du gaz à déterminer.
  2. Dispositif selon la revendication 1, caractérisé en ce que la chambre de mesure (14), la source d'émission lumineuse (6) et l'arrangement de mesure (7) sont disposés dans une sonde en forme de tige (1).
  3. Dispositif selon la revendication 2, caractérisé en ce que la sonde (1) peut être stérilisée.
  4. Dispositif selon la revendication 3, caractérisé en ce que la sonde (1) peut être stérilisée à l'aide de vapeur.
  5. Dispositif selon la revendication 1 à 4, caractérisé en ce que la membrane se compose de polytétrafluoroéthylène.
  6. Dispositif selon les revendications 1 à 5, caractérisé en ce que la membrane est une membrane de solubilité à sélectivité vis-à-vis des gaz, par l'intermédiaire de laquelle s'établit un équilibre entre l'espace échantillon (10) et la chambre de mesure (14).
  7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le fluide est un liquide.
  8. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le fluide est un gaz.
  9. Dispositif selon les revendications 1 à 7, caractérisé en ce que l'on y arrange un guide d'ondes lumineuses (12) en vue de la conduite du rayon lumineux de la source d'émission lumineuse (6) vers la chambre de mesure (14) et un guide d'ondes lumineuses (13) en vue de la conduite de la lumière de la chambre de mesure (14) vers l'arrangement de mesure (7).
  10. Dispositif selon les revendications 1 à 9, caractérisé en ce que la source d'émission lumineuse (6) est une diode luminescente.
  11. Dispositif selon les revendications 1 à 10, caractérisé en ce que l'arrangement de mesure (7) est une photodiode, une photorésistance ou un photodétecteur au séléniure de plomb.
  12. Dispositif selon les revendications 1 à 11, caractérisé en ce que l'arrangement de mesure (7) est relié à un arrangement de commutation en vue de l'évaluation, de la mise en mémoire et de l'affichage des signaux.
  13. Dispositif selon les revendications 1 à 12, caractérisé en ce qu'il est équipé pour résister à la pression.
  14. Dispositif selon la revendication 13, caractérisé en ce qu'il est conçu pour le fonctionnement à des pressions allant jusqu'à 200 bars, de préférence, jusqu'à 20 bars.
  15. Procédé de mesure de la pression partielle de gaz dissous dans des liquides à l'aide d'un dispositif selon l'une quelconque des revendications 1 à 14, caractérisé en ce que
    a) sa membrane (11) est immergée dans le liquide présent dans l'espace échantillon (10),
    b) le gaz à déterminer, présent dans le liquide, diffuse à travers la membrane (11) dans la chambre de mesure (14),
    c) un rayon lumineux ayant une longueur d'onde, qui est absorbée par le gaz à déterminer, est conduit à travers la chambre de mesure (14), et
    d) la lumière non absorbée est acheminée à l'arrangement de mesure (7).
  16. Procédé selon la revendication 15, caractérisé en ce que la mesure est effectuée à l'aide de rayonnement infrarouge.
  17. Utilisation du dispositif selon l'une quelconque des revendications 1 à 14, en vue de la détermination de la pression partielle d'oxygène ou de dioxyde de carbone.
  18. Utilisation du dispositif selon l'une quelconque des revendications 1 à 14, en vue de la mesure, de la commande et de la régulation de processus de fermentation, de procédés de fabrication de boissons et d'installations de purification d'eaux résiduaires.
EP95942708A 1994-12-21 1995-12-20 Dispositif de mesure de la pression partielle de gaz dissous dans des liquides Expired - Lifetime EP0871865B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4445668A DE4445668C2 (de) 1994-12-21 1994-12-21 Vorrichtung zur Messung des Partialdruckes von in Flüssigkeiten gelösten Gasen in Anlagen zur Durchführung von biotechnologischen oder lebensmitteltechnologischen Prozessen
DE4445668 1994-12-21
PCT/EP1995/005050 WO1996019723A2 (fr) 1994-12-21 1995-12-20 Dispositif de mesure de la pression partielle de gaz dissous dans des liquides

Publications (2)

Publication Number Publication Date
EP0871865A2 EP0871865A2 (fr) 1998-10-21
EP0871865B1 true EP0871865B1 (fr) 2003-02-19

Family

ID=6536506

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95942708A Expired - Lifetime EP0871865B1 (fr) 1994-12-21 1995-12-20 Dispositif de mesure de la pression partielle de gaz dissous dans des liquides

Country Status (7)

Country Link
EP (1) EP0871865B1 (fr)
JP (1) JPH10512668A (fr)
AT (1) ATE232977T1 (fr)
AU (1) AU695408B2 (fr)
CA (1) CA2208597A1 (fr)
DE (3) DE4445668C2 (fr)
WO (1) WO1996019723A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220308030A1 (en) * 2021-03-25 2022-09-29 Endress+Hauser Group Services Ag Sensor for determining a measurand and method for determining a measurand with a sensor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6003362A (en) * 1994-12-21 1999-12-21 Euroferm Gmbh I.G. Apparatus for measuring the partial pressure of gases dissolved in liquids
CA2259275A1 (fr) * 1996-06-21 1997-12-31 Euroferm Gmbh Dispositif pour mesurer la pression partielle de gaz dissous dans des liquides
DE19705195C2 (de) * 1997-02-12 1999-11-04 Draegerwerk Ag Meßanordnung zur Bestimmung der Konzentration von in einem flüssigen Medium gelösten Gasen
DE59811266D1 (de) * 1997-09-01 2004-06-03 Buechs Jochen Verfahren und Vorrichtung zur Ermittlung und Überwachung des physiologischen Zustandes mikrobieller Kulturen
DE19925842C2 (de) * 1999-06-01 2003-12-11 Ufz Leipzighalle Gmbh Verfahren zur Messung der Konzentration oder des Partialdruckes von Gasen, insbesondere Sauerstoff, in Fluiden und Gassensor
DE19934043C2 (de) * 1999-07-16 2002-10-31 Harro Kiendl Verfahren zur meßtechnischen Bestimmung der Konzentration gelöster verdampfbarer Inhaltsstoffe in einem flüssigen Medium, insbesondere Alkohol in Wasser, und Verwendung des Verfahrens
DE10030920C2 (de) * 2000-06-24 2003-01-02 Glukomeditech Ag Messvorrichtung zur gleichzeitigen refraktrometrischen und ATR-spektrometrischen Messung der Konzentration flüssiger Medien und Verwendung dieser Vorrichtung s
AT411067B (de) * 2001-11-30 2003-09-25 Sy Lab Vgmbh Vorrichtung zur detektion von kohlendioxid
DE10216653A1 (de) * 2002-04-15 2003-11-06 Biotechnologie Kempe Gmbh Sonde zur Alkoholmessung in Flüssigkeiten
DE10220944C1 (de) * 2002-04-29 2003-12-18 Ufz Leipzighalle Gmbh Messverfahren und Messzelle zur Bestimmung der Einzelgaskonzentrationen in einem Fluid
DE10353291B4 (de) * 2003-11-14 2011-07-14 ebro Electronic GmbH & Co. KG, 85055 Meßgerät zur Bestimmung des CO2-Gehalts eines Getränks
JP2007514150A (ja) * 2003-12-08 2007-05-31 セントロニック ゲーエムベーハー ゲゼルシャフト ファー オプティーシェ メスシステーメ パッケージ化した媒体内部の化学的及び/又は物理的状態変化を光学的に検出するための検知システム
EP1630543A1 (fr) * 2004-08-30 2006-03-01 Mettler-Toledo GmbH Détecteur pour la détermination spectroscopique des composants résolus dans un milieu liquide
DE102005035932A1 (de) * 2005-07-28 2007-02-08 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Optischer Sensor für in-situ Messungen
JP5777063B2 (ja) * 2012-01-13 2015-09-09 国立大学法人 東京大学 ガスセンサ
DE102022101191A1 (de) * 2022-01-19 2023-07-20 Argos Messtechnik Gmbh Vorrichtung zur Analyse von Messgasen, insbesondere Tiefseemessungen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2435493A1 (de) * 1974-07-24 1976-02-05 Thormetall Gmbh Geraet zur kontinuierlichen messung des kohlendioxydgehaltes kohlensaeurehaltiger fluessigkeiten
US4041932A (en) * 1975-02-06 1977-08-16 Fostick Moshe A Method for monitoring blood gas tension and pH from outside the body
DE2508637C3 (de) * 1975-02-28 1979-11-22 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Anordnung zur optischen Messung von Blutgasen
US4201222A (en) * 1977-08-31 1980-05-06 Thomas Haase Method and apparatus for in vivo measurement of blood gas partial pressures, blood pressure and blood pulse
US4200110A (en) * 1977-11-28 1980-04-29 United States Of America Fiber optic pH probe
DE2926138A1 (de) * 1979-06-28 1981-01-08 Siemens Ag Einrichtung zur kontinuierlichen messung des gehalts an geloestem kohlendioxyd in fluessigkeiten
DE3001669A1 (de) * 1980-01-18 1981-08-06 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Anordnung zur optischen messung von physikalischen groessen und stoffkonzentrationen
AT380957B (de) * 1982-12-06 1986-08-11 List Hans Sensorelement fuer fluoreszenzoptische messungen, sowie verfahren zu seiner herstellung
DE3343636A1 (de) * 1982-12-07 1984-06-07 AVL AG, 8201 Schaffhausen Sensorelement fuer fluoreszenzoptische messung sowie verfahren zu seiner herstellung
DE3344019C2 (de) * 1983-12-06 1995-05-04 Max Planck Gesellschaft Vorrichtung zur optischen Messung der Konzentration einer in einer Probe enthaltenen Komponente
GB2194333B (en) * 1986-07-01 1990-08-29 Electricity Council Detection method and device
US4800886A (en) * 1986-07-14 1989-01-31 C. R. Bard, Inc. Sensor for measuring the concentration of a gaseous component in a fluid by absorption
GB9013870D0 (en) * 1990-06-21 1990-08-15 Laser Monitoring Systems Limit Optical sensors
DE9200389U1 (de) * 1992-01-15 1992-04-02 Hannemann, Birgit, Dr.rer.nat., 09119 Chemnitz Sensormaterial zur Bestimmung von Sauerstoff

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220308030A1 (en) * 2021-03-25 2022-09-29 Endress+Hauser Group Services Ag Sensor for determining a measurand and method for determining a measurand with a sensor
US11879882B2 (en) * 2021-03-25 2024-01-23 Endress+Hauser Group Services Ag Sensor for determining a measurand and method for determining a measurand with a sensor

Also Published As

Publication number Publication date
DE19624844C2 (de) 1999-12-16
DE4445668C2 (de) 1997-05-15
DE4445668A1 (de) 1996-06-27
DE59510559D1 (de) 2003-03-27
WO1996019723A2 (fr) 1996-06-27
DE19624844A1 (de) 1998-01-02
JPH10512668A (ja) 1998-12-02
AU4388196A (en) 1996-07-10
AU695408B2 (en) 1998-08-13
ATE232977T1 (de) 2003-03-15
WO1996019723A3 (fr) 1996-08-22
EP0871865A2 (fr) 1998-10-21
CA2208597A1 (fr) 1996-06-27

Similar Documents

Publication Publication Date Title
EP0871865B1 (fr) Dispositif de mesure de la pression partielle de gaz dissous dans des liquides
US5420432A (en) Organic pollutant monitor
US4577110A (en) Optical apparatus and method for measuring the characteristics of materials by their fluorescence
DE69024631T2 (de) Verfahren und Apparat zum Nachweis biologischer Aktivitäten in einer Probe
DE102016117733A1 (de) Messeinrichtung
CH684809A5 (de) Verfahren zur exakten Bestimmung der Konzentration eines Gases, eines Dampfs oder eines in einer Probe gelösten Gases sowie dafür verwendete Fluoreszenz-Messeinrichtung.
US5483080A (en) Method and device for measuring and controlling cell density in microbiological culture
US20190391111A1 (en) Sensor arrangement
CN111678899A (zh) 一种荧光法溶解氧传感器
Sipior et al. Phase fluorometric optical carbon dioxide gas sensor for fermentation off‐gas monitoring
AT404514B (de) Vorrichtung und verfahren zur messung der konzentration von stoffen in flüssigkeiten
US6003362A (en) Apparatus for measuring the partial pressure of gases dissolved in liquids
DE19611931A1 (de) Verfahren und Vorrichtung zur optischen Messung von Partikeln und Stoffen in Fluiden
He et al. Linear response function for fluorescence-based fiber-optic CO2 sensors
EP1036312A1 (fr) Dispositif pour mesurer la pression partielle de gaz dissous dans des liquides
GB2256043A (en) Organic pollutant monitor
CN213181234U (zh) 一种基于涂层长周期光纤光栅的pH值监测装置
CN213302014U (zh) 一种荧光法溶解氧传感器
AT507749B1 (de) Verfahren und messanordnung zur bestimmung einer gelösten konzentration eines stoffes wie gasgehalts in einem fluid
RU211486U1 (ru) Проточная измерительная ячейка для контроля качества питьевой воды в режиме реального времени
Gassmann et al. Colorimetric microfluidic Nitrite sensor with optical fiber coupling
NL8600209A (nl) Werkwijze en inrichting voor het bepalen van de hoeveelheid gedispergeerd vast materiaal in een vloeistof.
JPS62203047A (ja) アンモニアセンサ−
Weber et al. Effects of light intensity and PH on photosynthesis in Elodea densa
DE102015122175A1 (de) Verfahren zur Bestimmung einer Manganionenkonzentration und Analysegerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971028

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010705

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030219

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59510559

Country of ref document: DE

Date of ref document: 20030327

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030519

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030519

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030519

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATMED AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030828

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 0871865E

Country of ref document: IE

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

26N No opposition filed

Effective date: 20031120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20041229

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051222

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051227

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20051228

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060131

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060223

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061231

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070703

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061220

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061220

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061220

BERE Be: lapsed

Owner name: *EUROFERM G.- FUR FERMENTATION UND MESSTECHNIK M.B

Effective date: 20061231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060131

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071220