EP0870843A1 - Stahlblech mit hervorragenden magnetischen eigenschaften und herstellungsverfahren - Google Patents

Stahlblech mit hervorragenden magnetischen eigenschaften und herstellungsverfahren Download PDF

Info

Publication number
EP0870843A1
EP0870843A1 EP96942675A EP96942675A EP0870843A1 EP 0870843 A1 EP0870843 A1 EP 0870843A1 EP 96942675 A EP96942675 A EP 96942675A EP 96942675 A EP96942675 A EP 96942675A EP 0870843 A1 EP0870843 A1 EP 0870843A1
Authority
EP
European Patent Office
Prior art keywords
recesses
steel sheet
recess
widthwise direction
electromagnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96942675A
Other languages
English (en)
French (fr)
Other versions
EP0870843A4 (de
Inventor
Naoya-Nippon Steel Corporation HAMADA
Tatsuhiko-Nippon Steel Corporation SAKAI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of EP0870843A1 publication Critical patent/EP0870843A1/de
Publication of EP0870843A4 publication Critical patent/EP0870843A4/xx
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Definitions

  • This invention relates to a grain-oriented electromagnetic steel sheet possessing excellent magnetic properties and, more particularly, to a grain-oriented electromagnetic steel sheet possessing excellent magnetic properties which, even when subjected to strain release annealing, does not lose the excellent iron loss properties.
  • Japanese Examined Patent Publication Kokoku No. 58-26405 discloses a method wherein magnetic domains are subdivided by laser beam irradiation. According to this method for reducing iron loss, a stress is introduced into a grain-oriented electromagnetic steel sheet by the reactive force of a thermal shock wave created by laser beam irradiation to subdivide magnetic domains, thereby lowering eddy-current loss while suppressing an increase in hysteresis loss.
  • the mechanical method using a sprocket roll is disadvantageous in that the sprocket is abraded in a short time due to high hardness of the electromagnetic steel sheet and the iron loss value cannot be satisfactorily lowered as compared with the method for controlling magnetic domains by laser energy which does not change the geometry.
  • the chemical etching method although it does not suffer from the problem of the abrasion of the sprocket, involves more a complicated process than the mechanical method and in addition has room for improvement in iron loss reduction.
  • the method wherein grooves are formed by a Q switch CO 2 laser beam on the surface of a steel sheet forms recesses in a non-contact manner. Therefore, this method does not suffer from the problem of the abrasion of the sprocket and the problem of the complicated process. In this method, however, the optimal geometry of the recesses has not been investigated in detail, and there is room for improvement in iron loss reduction.
  • the present invention solves the above problems and provides a grain-oriented electromagnetic steel sheet, possessing excellent magnetic properties, which has a lower iron loss value than the conventional grain-oriented electromagnetic steel sheet and does not lose its excellent magnetic properties even at high temperatures, and a process for producing the same.
  • a pulsed laser beam is applied to the surface of an electromagnetic steel sheet to form recesses satisfying the following requirements and offering such an effect that the formation of the recesses subdivides magnetic domains to reduce the iron loss and, in addition, even when the steel sheet is subjected to strain release annealing, the magnetic domain subdivision effect does not disappear.
  • the recesses are formed so that rows of recesses arranged along the widthwise direction (a direction normal to the rolling direction) of the steel sheet are provided in the rolling direction at given spacings and, in addition, the recesses satisfy the following requirements:
  • a great feature of the present invention is that the iron loss can be reduced by specifying the recess pitch Pc in the widthwise direction of the steel sheet, among the above requirements, in connection with the recess length dc in the widthwise direction of the steel sheet.
  • a steel sheet produced based on the present invention that is, a steel sheet having recesses 6 formed on the surface 2 of a grain-oriented electromagnetic steel sheet 1 in rows 5, is schematically shown in Fig. 1.
  • Fig. 2 (a) is a partially enlarged plan view of Fig. 1 wherein, in connection with the recesses 6, dc represents the length of the recess in the widthwise direction of the steel sheet, Pc the recess pitch in the widthwise direction of the steel sheet, and Pl the row pitch of the recesses in the rolling direction.
  • Fig. 2 (b) is a cross-sectional view taken on line X-X of Fig. 1, wherein recesses 6 are successively provided and a protrusion 7 is provided between adjacent recesses 6, thereby giving a comb-like shape on the whole.
  • the back surface 3 is smooth, and, in the lamination of electromagnetic steel sheets, no gap is created between the steel sheets, thus avoiding a lowering in percentage of lamination.
  • the geometry of the recesses are specified as follows.
  • the dl value should be 50 ⁇ m ⁇ dl ⁇ 300 ⁇ m.
  • the dc value should be 100 ⁇ m ⁇ dc ⁇ 3000 ⁇ m.
  • the d value should be 10 ⁇ m ⁇ d ⁇ 30 ⁇ m.
  • the Pl value should be 3 mm ⁇ Pl ⁇ 10 mm.
  • the surface of a grain-oriented electromagnetic steel sheet was irradiated with a circular focused light beam having a diameter of 140 ⁇ m and a rectangular focused light beam having a size of 90 x 270 ⁇ m from a pulsed laser oscillator while successively varying the recess pitch Pc in the widthwise direction of the steel sheet to form recesses.
  • the steel sheet was held at a temperature of 800°C for 2 hr, thereby conducting strain release annealing.
  • the percentage improvement in iron loss and the degree of deterioration in magnetic flux density in the recesses were measured. The results are shown in Figs. 7 (a) and (b) for comparison of the two cases.
  • the percentage improvement in iron loss is the proportion of the improved iron loss value to the initial iron loss value.
  • the present inventors have confirmed that when the recess pitch Pc in the widthwise direction of the steel sheet is in the range of from (dc - 50 ⁇ m) to (dc + 50 ⁇ m) independently of whether the recess is circular or elliptical, the percentage improvement in iron loss is large, that is, the iron loss value is significantly lowered. Further, they have found that when the recess pitch Pc in the widthwise direction of the steel sheet is substantially equal to the length dc of the recess in the widthwise direction of the steel sheet, the percentage improvement in iron loss becomes a maximum.
  • a pulsed laser oscillator such as a CO 2 laser oscillator or a YAG laser oscillator
  • a laser beam having a pulse width of not more than 30 ⁇ sec is focused, in a substantially rectangular or elliptical form, on the surface of the steel sheet, elongated in the widthwise direction thereof to form recesses.
  • the pulse width exceeds 30 ⁇ sec, the recess formability (depth d) is deteriorated due to heat transfer loss.
  • Fig. 3 is a schematic diagram showing a recess forming apparatus including the above pulsed laser oscillator.
  • a pulsed laser beam LB is emitted from a pulsed laser oscillator 11, for example, a Q switch CO 2 laser oscillator, reflected by means of a plane total reflection mirror 13 provided in front of a beam emitting port of the oscillator, and enters a polygon mirror 15 provided at a position facing the plane total reflection mirror 13.
  • a pulsed laser oscillator 11 for example, a Q switch CO 2 laser oscillator
  • a polygon mirror 15 is rotated to scan the pulsed laser beam LB in the widthwise direction of the electromagnetic steel sheet 1.
  • the pulsed laser beam LB then enters a parabolic mirror 16 disposed just above the steel sheet, and the reflected light beam is focused on the surface of the electromagnetic steel sheet 1 to form recesses.
  • the recess pitch Pc in the widthwise direction of the steel sheet is regulated by the frequency of the pulsed laser and the number of revolutions of the polygon mirror 15.
  • the recess pitch Pl in the rolling direction is regulated by the number of revolutions per minute of the polygon mirror 15 and the feed rate of the steel sheet.
  • the pulsed laser has a waveform shown in Fig. 4.
  • the initial spiked section A is a giant pulse oscillated section characteristic of par minute a Q switch laser, and the half value width is 10 nsec to 1 ⁇ sec.
  • This Q switch CO 2 laser pulse has a long tail section B after the initial spike.
  • the maximum length of the tail section B is about 30 ⁇ sec.
  • the maximum value of the pulse repetition frequency is up to about 100 kHz in the case of Q switch oscillation using a conventional continuous wave oscillation CO 2 laser.
  • the pulse energy is substantially in inverse proportion to the pulse repetition frequency, that is, a constant average laser output can be provided.
  • Fig. 5 (a) is for a circular focused beam having a diameter of 140 ⁇ m
  • Fig. 5 (b) is for a rectangular focused beam having a size of 90 x 270 ⁇ m.
  • a cylindrical lens 14 is disposed between the plane total reflection mirror 13 and the polygon mirror 15.
  • a cylindrical mirror may be used instead of the cylindrical lens.
  • a row of recesses is formed by using a circular focused beam having a diameter of 140 ⁇ m shown in Fig. 5 (a) so as to provide a recess pitch Pc in the widthwise direction of the steel sheet of 125 ⁇ m is shown in Figs. 6 (a), (b), and (c).
  • Fig. 6 (a) is a schematic diagram showing an enlarged photograph of the row of recesses taken from above.
  • the recess length dc is about 140 ⁇ m.
  • Fig. 6 (b) is a cross-sectional view taken on line X-X of Fig. 6 (a), Fig. 6 (c) a cross-sectional view taken on line Y-Y of Fig. 6 (a).
  • These drawings show the results of measurement of the sectional form of the row of recesses with a profile meter. The average recess depth is about 30 ⁇ m.
  • Fig. 6 (d) is a schematic diagram showing an enlarged photograph of the row of recesses taken from above.
  • Fig. 6 (e) is a cross-sectional view taken on line X-X of Fig. 6 (d)
  • Fig. 6 (f) a cross-sectional view taken on line Y-Y of Fig. 6 (d).
  • FIGS. 1-10 show the results of measurement of the sectional form of the row of recesses with a profile meter.
  • the average recess depth is substantially equal to that in the case of recesses formed using a circular focused beam having a diameter of 140 ⁇ m and is about 30 ⁇ m.
  • the recess depth d is regulated by the energy of a laser pulse.
  • the rows of recesses, as shown in Figs. 6 (d) to (f), formed based on the conditions specified in the present invention even when subjected to strain release annealing, do not cause the disappearance of the magnetic domain subdivision effect and in addition can offer further improved iron loss properties.
  • Rectangular (invention) and circular and continuous groove (conventional) recesses were formed on the surface of a grain-oriented electromagnetic steel sheet (width: 900 mm, thickness: 0.23 mm).
  • the applied pulsed laser was such that the output was 5 kW, the pulse repetition frequency was 100 kHz, the focused beam size was 90 x 270 ⁇ m, and the recesses had the following dimensions.
  • the grain-oriented electromagnetic steel sheet according to the present invention had a percentage improvement in iron loss of 14%, whereas, in the conventional examples, the percentage improvement in iron loss was 11% or 8%.
  • the grain-oriented electromagnetic steel sheet of the present invention can provide a higher percentage improvement in iron loss (for example, 12 to 14%) than a grain-oriented electromagnetic steel sheet with recesses created by the conventional pulsed laser irradiation. This can contribute to a further improved efficiency of transformers, motors and other equipment and markedly reduced cost, so that the present invention is very useful from the viewpoint of industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
EP96942675A 1995-12-27 1996-12-27 Stahlblech mit hervorragenden magnetischen eigenschaften und herstellungsverfahren Withdrawn EP0870843A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34174495 1995-12-27
JP341744/95 1995-12-27
PCT/JP1996/003877 WO1997024466A1 (fr) 1995-12-27 1996-12-27 Tole d'acier magnetique ayant d'excellentes proprietes magnetiques, et son procede de fabrication

Publications (2)

Publication Number Publication Date
EP0870843A1 true EP0870843A1 (de) 1998-10-14
EP0870843A4 EP0870843A4 (de) 1998-10-28

Family

ID=18348435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96942675A Withdrawn EP0870843A1 (de) 1995-12-27 1996-12-27 Stahlblech mit hervorragenden magnetischen eigenschaften und herstellungsverfahren

Country Status (2)

Country Link
EP (1) EP0870843A1 (de)
WO (1) WO1997024466A1 (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367140A1 (de) * 2002-05-31 2003-12-03 Nippon Steel Corporation Kornorientiertes Elektroblech mit hervorragenden magnetischen Eigenschaften und Herstellung desselben
EP1607487A1 (de) * 2003-03-19 2005-12-21 Nippon Steel Corporation Kornorientiertes magnetisches stahlblech mit hervorragendem magnetischem verhalten und herstellungsverfahren dafür
CN102639726A (zh) * 2009-12-04 2012-08-15 Posco公司 低铁损、高磁通密度取向电工钢板
CN102941413A (zh) * 2012-11-23 2013-02-27 武汉钢铁(集团)公司 一种取向硅钢多次激光刻槽降低铁损的方法
CN104755637A (zh) * 2012-11-08 2015-07-01 新日铁住金株式会社 激光加工装置以及激光照射方法
EP2813593A4 (de) * 2012-02-08 2015-11-11 Jfe Steel Corp Kornorientierte elektrostahlplatte
EP2843062A4 (de) * 2012-04-27 2015-12-30 Nippon Steel & Sumitomo Metal Corp Kornorientiertes elektrisches stahlblech und herstellungsverfahren dafür
CN107109512A (zh) * 2014-12-24 2017-08-29 Posco公司 取向电工钢板及其制造方法
CN110100018A (zh) * 2016-12-22 2019-08-06 Posco公司 取向电工钢板的磁畴细化方法
CN110093486A (zh) * 2018-01-31 2019-08-06 宝山钢铁股份有限公司 一种耐消除应力退火的低铁损取向硅钢的制造方法
US10465259B2 (en) 2015-02-24 2019-11-05 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method therefor
US10804015B2 (en) 2011-12-29 2020-10-13 Posco Electrical steel sheet and method for manufacturing the same
EP3760745A4 (de) * 2018-03-30 2021-01-06 Baoshan Iron & Steel Co., Ltd. Kornorientierter siliciumstahl mit verfeinertem hitzebeständigem magnetischem bereich und herstellungsverfahren dafür
US11000920B2 (en) 2016-01-22 2021-05-11 Posco Method and device for magnetic domain refinement of oriented electrical steel plate
US11060163B2 (en) 2016-01-22 2021-07-13 Posco Method for refining magnetic domains of grain-oriented electrical steel plates, and apparatus therefor
RU2763025C1 (ru) * 2021-02-04 2021-12-24 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Лист из анизотропной электротехнической стали со стабилизацией магнитных потерь и термостабильными лазерными барьерами
US11254994B2 (en) 2016-12-23 2022-02-22 Posco Method for refining magnetic domain of grain-oriented electrical steel plate and device therefor
RU2767370C1 (ru) * 2021-02-04 2022-03-17 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Способ производства анизотропной электротехнической стали с термостабильными лазерными барьерами
US11293070B2 (en) * 2017-02-17 2022-04-05 Jfe Steel Corporation Grain-oriented electrical steel sheet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032884A1 (fr) * 1997-01-24 1998-07-30 Nippon Steel Corporation Tole d'acier a grains orientes presentant d'excellentes caracteristiques magnetiques, procede et dispositif de fabrication
JP4705382B2 (ja) * 2005-02-25 2011-06-22 新日本製鐵株式会社 一方向性電磁鋼板およびその製造方法
JP2012013396A (ja) * 2010-07-05 2012-01-19 Toshiba Corp 伝熱部材の製造方法および伝熱部材
JP2015140470A (ja) * 2014-01-30 2015-08-03 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
KR102044320B1 (ko) 2017-12-26 2019-11-13 주식회사 포스코 방향성 전기강판 및 그 자구미세화 방법
KR20240110624A (ko) 2022-01-20 2024-07-15 닛폰세이테츠 가부시키가이샤 방향성 전자 강판, 방향성 전자 강판 제조 장치, 및 방향성 전자 강판 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2563729B2 (ja) * 1992-08-07 1996-12-18 新日本製鐵株式会社 パルスco2レーザを用いた方向性電磁鋼板の鉄損改善方法および装置
JP3152554B2 (ja) * 1994-02-04 2001-04-03 新日本製鐵株式会社 磁気特性の優れた電磁鋼板

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
No further relevant documents disclosed *
See also references of WO9724466A1 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367140A1 (de) * 2002-05-31 2003-12-03 Nippon Steel Corporation Kornorientiertes Elektroblech mit hervorragenden magnetischen Eigenschaften und Herstellung desselben
US7045025B2 (en) 2002-05-31 2006-05-16 Nippon Steel Corporation Grain-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
EP1607487A1 (de) * 2003-03-19 2005-12-21 Nippon Steel Corporation Kornorientiertes magnetisches stahlblech mit hervorragendem magnetischem verhalten und herstellungsverfahren dafür
EP1607487A4 (de) * 2003-03-19 2006-11-15 Nippon Steel Corp Kornorientiertes magnetisches stahlblech mit hervorragendem magnetischem verhalten und herstellungsverfahren dafür
CN100402673C (zh) * 2003-03-19 2008-07-16 新日本制铁株式会社 磁特性良好的方向性电磁钢板及其制造方法
US7442260B2 (en) 2003-03-19 2008-10-28 Nippon Steel Corooration Grain-oriented electrical steel sheet superior in electrical characteristics and method of production of same
CN102639726A (zh) * 2009-12-04 2012-08-15 Posco公司 低铁损、高磁通密度取向电工钢板
CN102639726B (zh) * 2009-12-04 2014-03-26 Posco公司 低铁损、高磁通密度取向电工钢板
US10804015B2 (en) 2011-12-29 2020-10-13 Posco Electrical steel sheet and method for manufacturing the same
US9761361B2 (en) 2012-02-08 2017-09-12 Jfe Steel Corporation Grain-oriented electrical steel sheet
EP2813593A4 (de) * 2012-02-08 2015-11-11 Jfe Steel Corp Kornorientierte elektrostahlplatte
US10131018B2 (en) 2012-04-27 2018-11-20 Nippon Steel & Sumitomo Metal Corporation Grain-oriented magnetic steel sheet and method of producing the same
EP2843062A4 (de) * 2012-04-27 2015-12-30 Nippon Steel & Sumitomo Metal Corp Kornorientiertes elektrisches stahlblech und herstellungsverfahren dafür
US9607744B2 (en) 2012-11-08 2017-03-28 Nippon Steel & Sumitomo Metal Corporation Laser processing apparatus and laser irradiation method
CN104755637A (zh) * 2012-11-08 2015-07-01 新日铁住金株式会社 激光加工装置以及激光照射方法
CN102941413B (zh) * 2012-11-23 2015-07-01 武汉钢铁(集团)公司 一种取向硅钢多次激光刻槽降低铁损的方法
CN102941413A (zh) * 2012-11-23 2013-02-27 武汉钢铁(集团)公司 一种取向硅钢多次激光刻槽降低铁损的方法
CN107109512A (zh) * 2014-12-24 2017-08-29 Posco公司 取向电工钢板及其制造方法
US10815545B2 (en) 2014-12-24 2020-10-27 Posco Grain-oriented electrical steel plate and manufacturing method thereof
CN107109512B (zh) * 2014-12-24 2019-11-12 Posco公司 取向电工钢板及其制造方法
US10465259B2 (en) 2015-02-24 2019-11-05 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method therefor
US11060163B2 (en) 2016-01-22 2021-07-13 Posco Method for refining magnetic domains of grain-oriented electrical steel plates, and apparatus therefor
US11000920B2 (en) 2016-01-22 2021-05-11 Posco Method and device for magnetic domain refinement of oriented electrical steel plate
CN110100018B (zh) * 2016-12-22 2021-05-25 Posco公司 取向电工钢板的磁畴细化方法
EP3561088A4 (de) * 2016-12-22 2019-11-27 Posco Verfahren zum verfeinern der magnetischen bereiche eines kornorientierten elektrischen stahlblechs
CN110100018A (zh) * 2016-12-22 2019-08-06 Posco公司 取向电工钢板的磁畴细化方法
US11313011B2 (en) 2016-12-22 2022-04-26 Posco Method for refining magnetic domains of grain-oriented electrical steel sheet
US11254994B2 (en) 2016-12-23 2022-02-22 Posco Method for refining magnetic domain of grain-oriented electrical steel plate and device therefor
US11293070B2 (en) * 2017-02-17 2022-04-05 Jfe Steel Corporation Grain-oriented electrical steel sheet
US11459634B2 (en) 2018-01-31 2022-10-04 Baoshan Iron & Steel Co., Ltd. Method for manufacturing stress-relief-annealing-resistant, low-iron-loss grain-oriented silicon steel
CN110093486A (zh) * 2018-01-31 2019-08-06 宝山钢铁股份有限公司 一种耐消除应力退火的低铁损取向硅钢的制造方法
CN110093486B (zh) * 2018-01-31 2021-08-17 宝山钢铁股份有限公司 一种耐消除应力退火的低铁损取向硅钢的制造方法
RU2757364C1 (ru) * 2018-03-30 2021-10-14 Баошань Айрон Энд Стил Ко., Лтд. Текстурированная кремнистая сталь, имеющая жаростойкий магнитный домен, и способ ее изготовления
EP3760745A4 (de) * 2018-03-30 2021-01-06 Baoshan Iron & Steel Co., Ltd. Kornorientierter siliciumstahl mit verfeinertem hitzebeständigem magnetischem bereich und herstellungsverfahren dafür
US20210023659A1 (en) * 2018-03-30 2021-01-28 Baoshan Iron & Steel Co., Ltd. A grain-oriented silicon steel having heat-resistant magnetic domain and manufacturing method thereof
US11633809B2 (en) * 2018-03-30 2023-04-25 Baoshan Iron & Steel Co., Ltd. Grain-oriented silicon steel having heat-resistant magnetic domain and manufacturing method thereof
RU2767370C1 (ru) * 2021-02-04 2022-03-17 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Способ производства анизотропной электротехнической стали с термостабильными лазерными барьерами
RU2763025C1 (ru) * 2021-02-04 2021-12-24 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Лист из анизотропной электротехнической стали со стабилизацией магнитных потерь и термостабильными лазерными барьерами

Also Published As

Publication number Publication date
WO1997024466A1 (fr) 1997-07-10
EP0870843A4 (de) 1998-10-28

Similar Documents

Publication Publication Date Title
EP0870843A1 (de) Stahlblech mit hervorragenden magnetischen eigenschaften und herstellungsverfahren
EP0897016B1 (de) Verfahren und vorrichtung zur herstellung von kornorientiertem stahlblech mit hervorragenden magnetischen eigenschaften
EP0102732B1 (de) Laserbehandlung von elektrischem Stahl und optische Abtasteinrichtung dafür
EP0100638B1 (de) Laserbehandlung von Elektrostahl
JP3152554B2 (ja) 磁気特性の優れた電磁鋼板
JP4319715B2 (ja) 磁気特性の優れた一方向性電磁鋼板とその製造方法
JP4189143B2 (ja) 低鉄損一方向性電磁鋼板の製造方法
RU2509163C1 (ru) Текстурованный лист электротехнической стали и способ его получения
JP5423646B2 (ja) 方向性電磁鋼板の製造方法
KR100676936B1 (ko) 자기 특성이 우수한 방향성 전자 강판과 그 제조 방법
CN101896626B (zh) 利用激光照射磁区得以控制的方向性电磁钢板的制造方法
JP3361709B2 (ja) 磁気特性の優れた方向性電磁鋼板の製造方法
JP2013510239A (ja) 低鉄損高磁束密度の方向性電気鋼板
KR100523770B1 (ko) 자기 특성이 우수한 일방향성 전자 강판 및 그 제조 방법
JP3482340B2 (ja) 一方向性電磁鋼板とその製造方法
EP0662520A1 (de) Kornorientiertes elektromagnetisches Stahlblech mit niedrigem Eisenverlust und Verfahren zur dessen Herstellung
EP1149924B1 (de) Kornorientiertes Elektroblech mit ausgezeichneten magnetischen Eigenschaften
US5089062A (en) Drilling of steel sheet
JP4384451B2 (ja) 磁気特性の優れた方向性電磁鋼板およびその製造方法
JP6838321B2 (ja) 方向性電磁鋼板の製造方法、及び方向性電磁鋼板
JPH0790385A (ja) 磁気特性の優れた方向性電磁鋼板
JP3828830B2 (ja) 巻き鉄芯とその製造方法
JP7372520B2 (ja) 方向性電磁鋼板、巻鉄芯、方向性電磁鋼板の製造方法、及び、巻鉄芯の製造方法
CN118401335A (zh) 方向性电磁钢板、方向性电磁钢板制造装置及方向性电磁钢板制造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

A4 Supplementary search report drawn up and despatched

Effective date: 19980911

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19990927

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000208