EP0867989B1 - Source de lumière à semi-conducteur à longueur d'onde accordable - Google Patents

Source de lumière à semi-conducteur à longueur d'onde accordable Download PDF

Info

Publication number
EP0867989B1
EP0867989B1 EP98301888A EP98301888A EP0867989B1 EP 0867989 B1 EP0867989 B1 EP 0867989B1 EP 98301888 A EP98301888 A EP 98301888A EP 98301888 A EP98301888 A EP 98301888A EP 0867989 B1 EP0867989 B1 EP 0867989B1
Authority
EP
European Patent Office
Prior art keywords
etalon
wavelength
transmittance
output
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98301888A
Other languages
German (de)
English (en)
Other versions
EP0867989A1 (fr
Inventor
Madoka c/o Ando Electric Co. Ltd. Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Publication of EP0867989A1 publication Critical patent/EP0867989A1/fr
Application granted granted Critical
Publication of EP0867989B1 publication Critical patent/EP0867989B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1055Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating

Definitions

  • the present invention relates to a semiconductor laser light source tunable in wavelength, which is used in any technical field which requires a light signal source, in particular, in an optical telecommunication or a coherent optical measuring technical field.
  • an external resonator type of semiconductor laser (hereinafter, may be simply referred to LD) is generally used as a light source unit in a light source tunable in wavelength.
  • An optical filter which is a wavelength selection element is disposed in the external resonator thereof to get a singlemode oscillation.
  • Such a technique enables wavelength scanning in a wide range by mechanically varying the transmitted (or reflected) wavelength from the optical filter.
  • FIG. 11 shows a construction example of a conventional wavelength tunable LD light source.
  • the reference numeral 1 denotes an external resonator type of LD light source unit
  • 2 denotes an optical filter
  • 3 denotes a drive unit
  • 4 denotes a control unit
  • 20 denotes an origin switch.
  • the drive unit 3 is moved to a position at which the origin switch 20 is operated thereby, by the control unit 4.
  • the origin switch 20 is operated, the drive unit 3 is reset and the position thereof is used as the origin.
  • the wavelength of the output of the wavelength tunable LD light source when the drive unit 3 is at the origin is measured in advance by using a precise wavemeter and is memorized as the origin wavelength.
  • the drive unit 3 can mechanically change wavelength of the transmitted beam or of the reflected beam, from the optical filter 2, and when occasion demands, it carries out also adjustment for the length of an external resonator.
  • the relationship between the state of the drive unit 3 and the oscillation wavelength of the external resonator is already known.
  • a wavelength set is carried out on the basis of a formula showing the known relationship.
  • the control unit 4 also controls the LD drive current in order to control the optical output level of the LD light source unit 1.
  • a prior art wavelength tunable LD light source is e.g. disclosed in US 5 442 651A.
  • FIG. 5 shows a construction example of an external resonator type of LD light source unit 1.
  • the reference numeral 101 denotes a diffraction grating
  • 102, 105 and 107 denote lenses
  • 103 denotes an anti-reflection film
  • 104 denotes an LD
  • 106 denotes an optical isolator
  • 108 denotes an optical fiber
  • 109 denotes an LD driving circuit.
  • the diffraction grating 101 which corresponds to the above-described optical filter 2, as shown in FIG. 4, also functions as a mirror in one side of the external resonator.
  • the external resonator is formed by the end surface B of the LD and the diffraction grating 101.
  • the length of the resonator is defined by the segment AB of a line.
  • An anti-reflection film 103 is formed on an end surface in the side of the diffraction grating 101, of the LD 104 in order to remove unnecessary reflection.
  • Each of the lenses 102 and 105 is a collimator for changing the output beam of the LD 104 to a collimated beam.
  • the output beam from the external resonator LD 104 which is obtained from the side of the LD end surface B, is condensed through the lens 107 and is taken out by the optical fiber 108.
  • the optical isolator 106 is disposed on the way in the output side.
  • the LD driving circuit 109 feeds an LD driving current corresponding to a desired optical output level.
  • the diffraction grating 101 is shown in FIG. 5, as the optical filter 2, it is possible to use an optical element other than the diffraction grating 101, for example, to use an interference filter or the like, as the optical filter 2. When occasion demands, combination of a plurality of optical elements can be also used as the optical filter 2.
  • FIG. 6 shows an optical system of a diffraction grating 101.
  • is the angle of the normal N gr to the diffraction grating 101 with the optical axis
  • d is the pitch of the diffraction grating
  • the incident light and the reflected (diffracted) light are set on the same optical axis X, like the above-described external resonator shown in FIG. 5.
  • the spectrum of the reflected light when an incident white light came into the diffraction grating 101 is the filter characteristics of the diffraction grating. A filter characteristics is obtained, as shown in FIG. 7.
  • the characteristics of the interference filter 201 in the optical system shown in FIG. 8 has periodic transmittance peaks, as shown in FIG. 9.
  • FIGS. 10A to 10E an example of characteristics of wavelength tunable LD light source, using an optical filter comprising a combination of a diffraction grating and an interference filter is illustrated in FIGS. 10A to 10E.
  • FIG. 10A shows a gain characteristics of LD, which generally has a gain in a wavelength range not less than 100 nm.
  • FIG. 10B shows a resonator mode corresponding to the formula (3), which are oscillation longitudinal modes.
  • a single mode is selected by using the filter characteristics of the interference filter shown in FIG. 10D.
  • a single mode oscillation is obtained, as shown in FIG. 10E.
  • the drive unit 3 having a combination of a motor, a rotary table, a directly linear-moving mechanism and the like realizes a state of particular values of L, ⁇ , and ⁇ , corresponding to the set wavelength.
  • WDM Widelength division multiplexing
  • optical communication system which is recently focused on is one multiplexing several wavelengths with a difference of wavelengths of about 1 nm.
  • wavelengths difference is finely adjusted at a level of about 0.1 nm, wavelength accuracy having a level of about 0.01 nm which is taken a figure down in comparison with that of the wavelengths difference is required.
  • the obtained set resolving power in the former art is a level of 0.001 nm
  • the set wavelength accuracy thereof is about a level of ⁇ 0.1 nm because of error factors, e.g., a backlash or a hysteresis on the mechanism, or set condition reproducibility including a fluctuation in temperature, a change with the passage of time or the like.
  • the present invention was developed in view of these problems.
  • An object of the invention is to provide a wavelength tunable LD light source which can assure a wavelength accuracy having a level of about ⁇ 0.01 nm.
  • the wavelength tunable semiconductor laser light source comprises; an external resonator type of semiconductor laser source unit; an optical filter for selecting an output beam of the external resonator type of semiconductor laser source unit in a single mode; a drive unit for changing wavelength of a transmitted beam or of a reflected beam, from the optical filter; a control unit for controlling the drive unit; an optical coupler for receiving the output beam of the external resonator type of semiconductor laser source unit as one of incident beams and for outputting it into two branches; a fiber grating for receiving an output beam from the optical coupler; a first etalon for receiving a reflected beam from the fiber grating through the optical coupler; a first measuring unit for etalon transmittance, for measuring a transmittance of the first etalon to transmit to the control unit; a second etalon for receiving the other of the two branched output beams of the optical coupler; and a second measuring unit for a
  • a wavelength tunable LD light source having such a construction, it is possible to set a wavelength optically while monitoring the output wavelength, by transmitting the transmittance of the first etalon and the transmittance of the second etalon, to the control unit and by adjusting the wavelength of a transmitted beam or of a reflected beam, from the optical filter of the external resonator type of semiconductor laser source unit.
  • the semiconductor laser light source further comprises; a first beam splitting device for receiving the reflected beam from the fiber grating through the optical coupler and for outputting it into two branches, one of which is output to the first etalon and the other is output to the first measuring unit for etalon transmittance, so that the first measuring unit for etalon transmittance compares a light intensity of transmitted beam through the first etalon with the other of output beams from the first beam splitting device to measure the transmittance of the first etalon; and a second beam splitting device for receiving the other of the two branched output beams of the optical coupler and for outputting it into two branches, one of which is output to the second etalon and the other is output to the second measuring unit for etalon transmittance, so that the second measuring unit for etalon transmittance compares a light intensity of transmitted beam through the second etalon with the other of output beams from the second beam splitting device to measure the transmittance of the second etalon.
  • each of the first and second measuring units can compare a light intensity of transmitted beam through each etalon with the other of output beams from each beam splitting device to measure the transmittance of each etalon, it is possible to perform wavelength setting more precisely.
  • the first etalon may comprise an interference filter.
  • the first etalon has a free spectral range which is wider than a full width at half maximum of a reflection curve of the fiber grating. Accordingly, it is possible to make the light intensity of beam passed through the first etalon an approximate single mode.
  • the facet of the first etalon has a reflectivity not less than 90%, in order to make the FWHM thereof narrower because the wavelength origin is determined by using the transmission spectrum of the first etalon.
  • the semiconductor laser light source tunable in wavelength comprises; an external resonator type of semiconductor laser source unit; an optical filter for selecting an output beam of the external resonator type of semiconductor laser source unit in a single mode; a drive unit for changing wavelength of a transmitted beam or of a reflected beam, from the optical filter; and a control unit for controlling the drive unit; a first beam splitting device for receiving the output beam of the external resonator type of semiconductor laser source unit as one of incident beams and for outputting it into two branches; an etalon for receiving one of output beams from the first beam splitting device; a measuring unit for etalon transmittance, for measuring a transmittance of the etalon to transmit it to the control unit; and a wavemeter for specifying a wavelength of the output beam of the semiconductor laser source unit with an accuracy in a free spectral range of the etalon, on the basis of the output beam of the semiconductor laser source unit or on the basis of
  • a wavelength tunable LD light source having such a construction, it is possible to set a wavelength optically while monitoring the output wavelength, to prevent error factors on the mechanism from adverse effect to the set wavelength, and to assure a set wavelength accuracy having a level of about ⁇ 0.01 nm.
  • the semiconductor laser light source tunable in wavelength further comprising; a second beam splitting device for receiving the one of output beams from the first beam splitting device and for outputting it into two branches, one of which is output to the etalon and the other is output to the measuring unit for etalon transmittance, so that the measuring unit for etalon transmittance compares a light intensity of transmitted beam through the etalon with the other of output beams from the second beam splitting device to measure the transmittance of the etalon.
  • FIGS. 1 to 3 An embodiment of the semiconductor laser (LD) light source tunable in wavelength according to the invention will be explained with reference to FIGS. 1 to 3, as follows.
  • LD semiconductor laser
  • FIG. 1 is a block diagram for showing a construction of the wavelength tunable LD light source according to an embodiment of the invention.
  • the same elements and the like as corresponding ones in FIG. 11 have the same reference numerals, and the detailed explanation for them will be omitted.
  • the reference numeral 5 denotes an optical coupler
  • 6 denotes a fiber grating
  • 7 and 10 are first and second beam splitting devices, respectively
  • 8 and 11 are first and second etalons, respectively
  • 9 and 12 are first and second measuring units for etalon transmittance, respectively.
  • the optical coupler 5 receives an output beam from the external resonator type of LD light source unit 1 as one input and produces branched two outputs. One of the two output beams branched at the optical coupler 5 is inputted into the fiber grating 6. The transmitted light of the fiber grating 6 is used as the output beam of the wavelength tunable LD light source.
  • the reflected light from the fiber grating 6 is inputted into the optical coupler 5 again and produces branched two outputs into the side of the external resonator type of LD light source unit 1.
  • One of the branched two output lights is inputted into the first beam splitting device 7.
  • the first beam splitting device 7 splits the inputted light into two outputs. One of the two output lights splitted at the first beam splitting device 7 transmits the first etalon 8 and thereafter inputs into the first measuring unit 9 for the first etalon transmittance. The other of the two output lights splitted at the first beam splitting device 7 inputs into the first measuring unit 9 for etalon transmittance directly.
  • the transmitted light through the first etalon 8 and the direct inputted light from the first beam splitting device 7 are measured, and the ratio of intensities, i.e., the transmittance of the first etalon 8, is found. The result is sent to the control unit 4.
  • the other of the two output beams branched at the optical coupler 5, from the external resonator type of LD light source unit 1 is input to the second beam splitting device 10.
  • the second beam splitting device 10 outputs the input beam into two branches. One of the two output lights splitted at the second beam splitting device 10 transmits the second etalon 11 and thereafter inputs into the second measuring unit 12 for the second etalon transmittance. The other of output beams from the second beam splitting device 10 is input to the second measuring unit 12 for etalon transmittance directly.
  • the transmitted beam through the second etalon 11 and the direct beam input from the second beam splitting device 10 are measured, and the intensity ratio, that is, transmittance of the second etalon 11, is determined and transmitted to the control unit 4.
  • the control unit 4 gives an instruction to the drive unit 3 so that the value of transmittance data from the first and second measuring units 9 and 12 for etalon transmittance correspond to the wavelength origin and the position of set wavelength, on the basis of the relationship between etalon transmittance and wavelength which were measured by using a precise wavemeter and stored in advance.
  • the fiber grating 6 is a fiber type of optical filter.
  • the index of refraction n f of the fiber core thereof periodically changes at a period ⁇ .
  • FWHM full width at half maximum
  • the etalon is an interference filter and FIGS. 8 and 9 and the above-described formula (2) can be referred for it.
  • the spacings between modes are called the free spectral range (hereinafter, it may be simply called FSR).
  • FSR free spectral range
  • An etalon having an FSR wider than FWHM of the reflection curve of the fiber grating shown in FIG. 2A, e.g., FSR1 5 nm, is used.
  • the light intensity passed through the first etalon 8 among the reflected beam from the fiber grating 6 comes to an approximate single mode, as shown in FIG. 2C.
  • the facet of the first etalon 8 is formed to have a high reflectivity, e.g., not less than 90%.
  • the FWHM of the first etalon 8 is determined in consideration of the balance with the second etalon 11, it is preferable to be not more than 0.1 nm.
  • the wavelength origin is put at, for example, the point corresponding to 50% of the rising of transmittance curve in FIG. 2C.
  • wavelength scanning is carried out by the drive unit 3.
  • the point corresponding to 50% in the rising of transmittance curve is found on the basis of the transmitted data from the first measuring unit 9 for the first etalon transmittance to determine the wavelength origin ⁇ 0 .
  • a shift to a desired wavelength to be set is carried out by using the transmission curve for the second etalon 11.
  • the transmittance of the second etalon 11 is shown in FIG. 3A.
  • the second etalon 11 having a facet reflectivity suppressed to approximately 27% gives a transmission curve having an approximate sine wave, as shown in this figure.
  • the points corresponding to 50% of the transmittance curve for the second etalon 11 appear at wavelength intervals of about FSR2/2 repeatedly.
  • the incident light into the second etalon 11 is a part of the output light of the external resonator type of LD light source unit 1 without through a filter, such points corresponding to 50% of the transmittance curve can be obtained over the whole range of set wavelengths.
  • the shift from the wavelength origin ⁇ 0 detected at the first etalon 8 to a wavelength through the second etalon 11 is supposed to be, for example, one to ⁇ 4 in FIG. 3.
  • FIG. 3B corresponds to an enlarged view of FIG. 2C.
  • transmittances for the first etalon (etalon 1) 8 and for the second etalon (etalon 2) 11 are illustrated by using the same axis for wavelength.
  • the wavelength range corresponding thereto is designed to be narrower than FSR2.
  • the wavelength origin ⁇ 0 is changed to, for example, a wavelength ⁇ 1 having a transmittance of 40%.
  • the wavelength ⁇ 1 approximately corresponds to ⁇ 3 . This enables determination of ⁇ 1 between ⁇ 2 - ⁇ 4 securely furthermore.
  • the desired wavelength ⁇ 4 can be obtained.
  • the resolving power of a general wavelength tunable LD light source is a level of 1 pm, it is possible to carry out a wavelength scanning easily while ascertaining peaks and valleys of the transmittance of the second etalon 11.
  • the greatest factor of unstableness in a quartz solid etalon which has both end surfaces polished in parallel is the change of refractive index of the quartz according to temperature change, which is about 10 -5 . This shows that a temperature stability of about ⁇ 0.1 °C enables assurance of wavelength accuracy of ⁇ 0.001 nm.
  • the fiber grating 6 is made of a material of quartz system and does not require temperature control. That is, because the wavelength error caused by a temperature change of about 0 to 40 °C is a level of ⁇ 0.2 nm and in consideration of it, FSR1 of the first etalon (etalon 1) 8 is set to be wide enough, it is not considered to detect an adjacent mode.
  • the fiber grating 6, the first etalon 8 and the second etalon 11 it is possible to carry out an optical wavelength setting while monitoring the output wavelength and to prevent the effect of error factors on the mechanism on the set wavelength.
  • a design described above enables assurance of a set wavelength accuracy having a level of about ⁇ 0.01 nm.
  • the wavelength tunable LD light source according to the embodiment of the invention is provided with an optical coupler, a fiber grating, first and second beam splitting devices, first second etalons, and first and second measuring units for etalon transmittance. Therefore, according to the embodiment, it is possible to obtain an advantageous effect of improvement of a wavelength accuracy having a level of about ⁇ 0.01 nm, without measuring to ascertain the wavelength of the light source output by a wavemeter every setting.
  • each of the first and second measuring units compares the light intensity of transmitted beam through each etalon with the other of output beams from each beam splitting device to measure the transmittance of each etalon, in order to perform wavelength setting more precisely, such a comparing means is not essential to accomplish the object of the invention.
  • FIG. 4 is a block diagram for showing a construction of the wavelength tunable LD light source according to another embodiment of the invention.
  • the same elements and the like as corresponding ones in FIG. 1 have the same reference numerals, and the detailed explanation for them will be omitted.
  • the reference numeral 15 denotes a first beam splitting device for receiving an output beam from the external resonator type of LD light source unit 1 as one input and produces branched two outputs.
  • One of the two output beams branched at the first beam splitting device 15 is used as the output beam of the wavelength tunable LD light source and the other is inputted into a second beam splitting device 17.
  • the second beam splitting device 17 splits the inputted light into two outputs.
  • One of the two output lights splitted at the second beam splitting device 17 transmits an etalon 18 and thereafter inputs into a measuring unit 19 for the etalon transmittance.
  • the other of the two output lights splitted at the second beam splitting device 17 inputs into the measuring unit 19 for etalon transmittance directly.
  • the transmitted light through the etalon 18 and the direct inputted light from the second beam splitting device 17 are measured, and the ratio of intensities, i.e., the transmittance of the etalon 18, is found. The result is sent to the control unit 4.
  • the reference numeral 23 denotes a wavemeter for specifying a wavelength of the output beam of the semiconductor laser source unit 1 with an accuracy in a free spectral range of the etalon 18, on the basis of the output beam of the semiconductor laser source unit 1.
  • the specified wavelength by the wavemeter 23 is given to the control unit 4.
  • the specification of wavelength can be carried out also by using information from the drive unit 3, with respect to wavelength to be set.
  • the control unit 4 gives an instruction to the drive unit 3 so that the data relating the specified wavelength from the wavemeter 23 and the transmittance data from the measuring unit 19 for etalon transmittance correspond to the wavelength origin and the position of wavelength to be set, on the basis of the relationship between etalon transmittance and wavelength which were measured and stored in advance.
  • a wavelength tunable LD light source having such a construction, it is possible to set a wavelength optically while monitoring the output wavelength, and therefore to prevent error factors on the mechanism from adverse effect to the set wavelength, and to assure a set wavelength accuracy having a level of about ⁇ 0.01 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Spectrometry And Color Measurement (AREA)

Claims (7)

  1. Source de lumière laser à semi-conducteur accordable en longueur d'onde, comprenant ;
    une unité de source laser à semi-conducteur du type à résonateur externe (1) ;
    un filtre optique (2) pour sélectionner un faisceau de sortie de l'unité de source laser à semi-conducteur du type à résonateur externe dans un seul mode ;
    une unité d'entraínement (3) pour modifier la longueur d'onde d'un faisceau transmis ou d'un faisceau réfléchi, provenant du filtre optique ;
    une unité de commande (4) pour commander l'unité d'entraínement ;
       caractérisé en ce que la source de lumière laser comprend de plus,
    un coupleur optique (5) pour recevoir le faisceau de sortie de l'unité de source laser à semi-conducteur du type à résonateur externe en tant que l'un des faisceaux incidents et pour le délivrer divisé en deux branches ;
    un réseau à fibres (6) pour recevoir un des deux faisceaux de sortie ramifiés provenant du coupleur optique ;
    un premier étalon (8) pour recevoir un faisceau réfléchi provenant du réseau à fibres à travers le coupleur optique ;
    une première unité de mesure (9) pour la transmittance de l'étalon, destinée à mesurer une transmittance du premier étalon à transmettre à l'unité de commande ;
    un deuxième étalon (11) pour recevoir l'autre des deux faisceaux de sortie ramifiés du coupleur optique ; et
    une deuxième unité de mesure (12) pour la transmittance de l'étalon, destinée à mesurer une transmittance du deuxième étalon à transmettre à l'unité de commande.
  2. Source de lumière laser à semi-conducteur accordable en longueur d'onde selon la revendication 1, comprenant de plus ;
    un premier dispositif de séparation de faisceau pour recevoir le faisceau réfléchi provenant du réseau à fibres à travers le coupleur optique et pour le diviser en deux branches, dont l'une est appliquée au premier étalon et l'autre est appliquée à la première unité de mesure pour la transmittance de l'étalon, de sorte que la première unité de mesure pour la transmittance de l'étalon compare une intensité lumineuse d'un faisceau transmis à travers le premier étalon avec l'autre des faisceaux de sortie provenant du premier dispositif de séparation de faisceau pour mesurer la transmittance du premier étalon ; et
    un deuxième dispositif de séparation de faisceau pour recevoir l'autre des deux faisceaux de sortie ramifiés du coupleur optique et pour le diviser en deux branches, dont l'une est appliquée au deuxième étalon et l'autre est appliquée à la deuxième unité de mesure pour la transmittance de l'étalon, de sorte que la deuxième unité de mesure pour la transmittance de l'étalon compare une intensité lumineuse du faisceau transmis à travers le deuxième étalon avec celle de l'autre des faisceaux de sortie provenant du deuxième dispositif de séparation de faisceau pour mesurer la transmittance du deuxième étalon.
  3. Source de lumière laser à semi-conducteur accordable en longueur d'onde selon la revendication 1, dans laquelle le premier étalon constitue un filtre à interférence.
  4. Source de lumière laser à semi-conducteur accordable en longueur d'onde selon la revendication 1, dans laquelle le premier étalon possède un domaine spectral libre qui est plus large qu'une largeur totale à mi-hauteur du maximum d'une courbe de réflexion du réseau à fibres.
  5. Source de lumière laser à semi-conducteur accordable en longueur d'onde selon la revendication 1, dans laquelle une facette du premier étalon possède une réflectivité pas inférieure à 90%.
  6. Source de lumière laser à semi-conducteur accordable en longueur d'onde, comprenant ;
    une unité de source laser à semi-conducteur du type à résonateur externe (1) ;
    un filtre optique (2) pour sélectionner un faisceau de sortie de l'unité de source laser à semi-conducteur du type à résonateur externe dans un seul mode ;
    une unité d'entraínement (3) pour modifier la longueur d'onde d'un faisceau transmis ou d'un faisceau réfléchi, provenant du filtre optique ; et
    une unité de commande (4) pour commander l'unité d'entraínement ; caractérisé en ce que la source de lumière laser comprend de plus
    un premier dispositif de séparation de faisceau (15) pour recevoir le faisceau de sortie de l'unité de source laser à semi-conducteur du type à résonateur externe en tant que l'un des faisceaux incidents et pour le diviser en deux branches ;
    un étalon (18) pour recevoir l'un des faisceaux de sortie provenant du premier dispositif de séparation de faisceau ;
    une unité de mesure (19) pour la transmittance d'étalon, destinée à mesurer une transmittance de l'étalon en vue de la transmettre vers l'unité de commande ; et
    un onde-mètre (23) pour spécifier une longueur d'onde du faisceau de sortie de l'unité de source laser à semi-conducteur avec une précision dans un domaine spectral libre de l'étalon, sur la base du faisceau de sortie de l'unité de source laser à semi-conducteur ou sur la base d'informations provenant de l'unité d'entraínement, afin d'appliquer la longueur d'onde spécifiée à l'unité de commande.
  7. Source de lumière laser à semi-conducteur accordable en longueur d'onde selon la revendication 6, comprenant de plus ;
       un deuxième dispositif de séparation de faisceau pour recevoir l'un des faisceaux de sortie provenant du premier dispositif de séparation de faisceau et pour le diviser en deux branches, dont l'une est appliquée à l'étalon et l'autre est appliquée à l'unité de mesure pour la transmittance de l'étalon, de sorte que l'unité de mesure pour la transmittance d'étalon compare une intensité lumineuse du faisceau transmis à travers l'étalon avec celle de l'autre des faisceaux de sortie provenant du deuxième dispositif de séparation de faisceau en vue de mesurer la transmittance de l'étalon.
EP98301888A 1997-03-24 1998-03-13 Source de lumière à semi-conducteur à longueur d'onde accordable Expired - Lifetime EP0867989B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP07008397A JP3385898B2 (ja) 1997-03-24 1997-03-24 可変波長半導体レーザ光源
JP7008397 1997-03-24
JP70083/97 1997-03-24

Publications (2)

Publication Number Publication Date
EP0867989A1 EP0867989A1 (fr) 1998-09-30
EP0867989B1 true EP0867989B1 (fr) 1999-09-01

Family

ID=13421302

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98301888A Expired - Lifetime EP0867989B1 (fr) 1997-03-24 1998-03-13 Source de lumière à semi-conducteur à longueur d'onde accordable

Country Status (4)

Country Link
US (1) US5970076A (fr)
EP (1) EP0867989B1 (fr)
JP (1) JP3385898B2 (fr)
DE (1) DE69800018T2 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052789A2 (fr) * 1999-03-01 2000-09-08 The Regents Of The University Of California Source laser accordable a surveillance integree de la longueur d'ondes, et mode de mise en oeuvre
EP1156563A2 (fr) * 2000-03-31 2001-11-21 Hitachi, Ltd. Stabilisation de longueur d'onde pour laser dans un systèm de communications optiques
US6580517B2 (en) 2000-03-01 2003-06-17 Lambda Physik Ag Absolute wavelength calibration of lithography laser using multiple element or tandem see through hollow cathode lamp
US6597462B2 (en) 2000-03-01 2003-07-22 Lambda Physik Ag Laser wavelength and bandwidth monitor
US6608848B2 (en) 1998-06-01 2003-08-19 Lambda Physik Ag Method and apparatus for wavelength calibration
US6667804B1 (en) 1999-10-12 2003-12-23 Lambda Physik Ag Temperature compensation method for wavemeters
US6747741B1 (en) 2000-10-12 2004-06-08 Lambda Physik Ag Multiple-pass interferometric device
US6807205B1 (en) 2000-07-14 2004-10-19 Lambda Physik Ag Precise monitor etalon calibration technique
US7006541B2 (en) 1998-06-01 2006-02-28 Lambda Physik Ag Absolute wavelength calibration of lithography laser using multiple element or tandem see through hollow cathode lamp

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373868B1 (en) * 1993-05-28 2002-04-16 Tong Zhang Single-mode operation and frequency conversions for diode-pumped solid-state lasers
JPH11103124A (ja) * 1997-09-26 1999-04-13 Ando Electric Co Ltd 外部共振器型光源
US6120190A (en) * 1997-11-26 2000-09-19 Lasertron, Inc. Spatially variable bandpass filter monitoring and feedback control of laser wavelength especially in wavelength division multiplexing communication systems
US6498800B1 (en) * 1999-08-10 2002-12-24 Coretek, Inc. Double etalon optical wavelength reference device
WO2001011392A2 (fr) * 1999-08-10 2001-02-15 Coretek, Inc. Dispositif de référence de longueur d'onde de fibres optiques
DE60034068T2 (de) * 1999-08-13 2007-12-06 California Institute Of Technology, Pasadena Frequenzverriegelungsvorrichtung in einer Faser
US6744792B1 (en) 1999-10-26 2004-06-01 Nortel Networks, Ltd. Wavelength stabilization of tunable lasers by current modulation
WO2001057487A1 (fr) * 2000-01-31 2001-08-09 Mitsubishi Denki Kabushiki Kaisha Dispositif de controle de longueur d'onde, procede de reglage correspondant, source lumineuse stabilisee, et systeme de communication utilisant des sources lumineuses stabilisees
DE60001139T2 (de) * 2000-08-16 2003-09-11 Agilent Technologies Inc Wellenlängenmesser mit grober und feiner Messanlage
US6724788B1 (en) * 2000-09-06 2004-04-20 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method and device for generating radiation with stabilized frequency
US6898221B2 (en) * 2001-03-15 2005-05-24 Iolon, Inc. Apparatus for frequency tuning and locking and method for operating same
US7378673B2 (en) 2005-02-25 2008-05-27 Cymer, Inc. Source material dispenser for EUV light source
US7405416B2 (en) * 2005-02-25 2008-07-29 Cymer, Inc. Method and apparatus for EUV plasma source target delivery
US7598509B2 (en) 2004-11-01 2009-10-06 Cymer, Inc. Laser produced plasma EUV light source
US7372056B2 (en) 2005-06-29 2008-05-13 Cymer, Inc. LPP EUV plasma source material target delivery system
US7439530B2 (en) 2005-06-29 2008-10-21 Cymer, Inc. LPP EUV light source drive laser system
US6717964B2 (en) * 2001-07-02 2004-04-06 E20 Communications, Inc. Method and apparatus for wavelength tuning of optically pumped vertical cavity surface emitting lasers
US20030118268A1 (en) * 2001-12-21 2003-06-26 Christopher Wimperis System and method for producing optical circuits
US7146064B2 (en) * 2001-12-21 2006-12-05 Gsi Group Corporation System and method for producing optical circuits
JP2003234527A (ja) * 2002-02-06 2003-08-22 Acterna R & D Kk 波長可変光源装置
US6847662B2 (en) * 2002-03-25 2005-01-25 Fujitsu Limited Wavelength-selectable laser capable of high-speed frequency control
WO2003088436A1 (fr) * 2002-04-15 2003-10-23 Mitsubishi Denki Kabushiki Kaisha Appareil de controle de longueur d'onde
JP3766347B2 (ja) * 2002-05-16 2006-04-12 東芝電子エンジニアリング株式会社 光送信用デバイス
WO2004068660A1 (fr) * 2003-01-28 2004-08-12 Fujitsu Limited Appareil de verrouillage de longueur d'onde et procede de verrouillage de longueur d'onde
US7256893B2 (en) * 2003-06-26 2007-08-14 Cymer, Inc. Method and apparatus for measuring bandwidth of an optical spectrum output of a very small wavelength very narrow bandwidth high power laser
US6952267B2 (en) * 2003-07-07 2005-10-04 Cymer, Inc. Method and apparatus for measuring bandwidth of a laser output
US7304748B2 (en) * 2003-06-26 2007-12-04 Cymer, Inc. Method and apparatus for bandwidth measurement and bandwidth parameter calculation for laser light
US20060146906A1 (en) * 2004-02-18 2006-07-06 Cymer, Inc. LLP EUV drive laser
US7193228B2 (en) 2004-03-10 2007-03-20 Cymer, Inc. EUV light source optical elements
TWI240794B (en) * 2004-03-02 2005-10-01 Ind Tech Res Inst Wavelength meter
US7087914B2 (en) * 2004-03-17 2006-08-08 Cymer, Inc High repetition rate laser produced plasma EUV light source
JP2006086429A (ja) * 2004-09-17 2006-03-30 Yokogawa Electric Corp 波長可変光源
US7355191B2 (en) 2004-11-01 2008-04-08 Cymer, Inc. Systems and methods for cleaning a chamber window of an EUV light source
US7109503B1 (en) * 2005-02-25 2006-09-19 Cymer, Inc. Systems for protecting internal components of an EUV light source from plasma-generated debris
US7327471B2 (en) * 2005-02-25 2008-02-05 Lockheed Martin Coherent Technologies, Inc. Apparatus and method for stabilizing lasers using dual etalons
US7449703B2 (en) * 2005-02-25 2008-11-11 Cymer, Inc. Method and apparatus for EUV plasma source target delivery target material handling
US7482609B2 (en) 2005-02-28 2009-01-27 Cymer, Inc. LPP EUV light source drive laser system
US7317536B2 (en) 2005-06-27 2008-01-08 Cymer, Inc. Spectral bandwidth metrology for high repetition rate gas discharge lasers
US7402825B2 (en) * 2005-06-28 2008-07-22 Cymer, Inc. LPP EUV drive laser input system
US7653095B2 (en) * 2005-06-30 2010-01-26 Cymer, Inc. Active bandwidth control for a laser
JPWO2007007848A1 (ja) * 2005-07-13 2009-01-29 日本電気株式会社 外部共振器型波長可変レーザ及びその実装方法
US7453077B2 (en) 2005-11-05 2008-11-18 Cymer, Inc. EUV light source
JP4557907B2 (ja) * 2006-02-16 2010-10-06 アンリツ株式会社 Mems波長掃引光源の波長校正装置及び方法
US7583711B2 (en) * 2006-03-17 2009-09-01 Lockheed Martin Coherent Technologies, Inc. Apparatus and method for stabilizing the frequency of lasers
US7440170B2 (en) * 2006-06-23 2008-10-21 Lucent Technologies Inc. Method and apparatus for monitoring optical signal-to-noise ratio
WO2014096292A1 (fr) * 2012-12-20 2014-06-26 Faz Technology Limited Système et procédé permettant de compenser des distorsions de fréquence et des effets induits par la polarisation dans des systèmes optiques
CN110501141A (zh) * 2019-08-21 2019-11-26 中国科学院合肥物质科学研究院 利用频率梳光源测fp的透过率曲线的装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2520153B2 (ja) * 1988-07-01 1996-07-31 国際電信電話株式会社 半導体レ―ザ光源制御装置
JP2631553B2 (ja) * 1989-05-22 1997-07-16 株式会社小松製作所 レーザの波長制御装置
JPH06112583A (ja) * 1992-09-25 1994-04-22 Ando Electric Co Ltd 外部共振器型半導体レーザ光源
JPH0799359A (ja) * 1993-09-27 1995-04-11 Ando Electric Co Ltd 外部共振器型周波数可変半導体レーザ光源

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608848B2 (en) 1998-06-01 2003-08-19 Lambda Physik Ag Method and apparatus for wavelength calibration
US7006541B2 (en) 1998-06-01 2006-02-28 Lambda Physik Ag Absolute wavelength calibration of lithography laser using multiple element or tandem see through hollow cathode lamp
WO2000052789A2 (fr) * 1999-03-01 2000-09-08 The Regents Of The University Of California Source laser accordable a surveillance integree de la longueur d'ondes, et mode de mise en oeuvre
US6667804B1 (en) 1999-10-12 2003-12-23 Lambda Physik Ag Temperature compensation method for wavemeters
US6580517B2 (en) 2000-03-01 2003-06-17 Lambda Physik Ag Absolute wavelength calibration of lithography laser using multiple element or tandem see through hollow cathode lamp
US6597462B2 (en) 2000-03-01 2003-07-22 Lambda Physik Ag Laser wavelength and bandwidth monitor
EP1156563A2 (fr) * 2000-03-31 2001-11-21 Hitachi, Ltd. Stabilisation de longueur d'onde pour laser dans un systèm de communications optiques
EP1156563A3 (fr) * 2000-03-31 2004-06-09 Hitachi, Ltd. Stabilisation de longueur d'onde pour laser dans un systèm de communications optiques
US6807205B1 (en) 2000-07-14 2004-10-19 Lambda Physik Ag Precise monitor etalon calibration technique
US6747741B1 (en) 2000-10-12 2004-06-08 Lambda Physik Ag Multiple-pass interferometric device

Also Published As

Publication number Publication date
JPH10270800A (ja) 1998-10-09
DE69800018D1 (de) 1999-10-07
DE69800018T2 (de) 2000-05-04
JP3385898B2 (ja) 2003-03-10
EP0867989A1 (fr) 1998-09-30
US5970076A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
EP0867989B1 (fr) Source de lumière à semi-conducteur à longueur d'onde accordable
EP0641052B1 (fr) Source lumineuse à longueur d'onde accordable comprenant un interféromètre comme filtre optique dans la cavité externe
EP0875743B1 (fr) Ondemètre et un appareil de réglage de la longueur d'onde d'une source de lumière
US5798859A (en) Method and device for wavelength locking
JP3979703B2 (ja) 波長分割多重光伝送システム用の波長監視制御装置
US5691989A (en) Wavelength stabilized laser sources using feedback from volume holograms
EP1052526A2 (fr) Etalon controllé pour longueurs d'ondes multiples
EP1417740B1 (fr) Appareil et procede de reglage de la longueur d'onde de fonctionnement d'un laser
US7038782B2 (en) Robust wavelength locker for control of laser wavelength
US7355162B2 (en) Optical wavelength measuring device using guiding body and diffractive structure
US6992774B2 (en) Wavelength determining apparatus and method
US7075656B2 (en) Method and algorithm for continuous wavelength locking
US6859469B2 (en) Method and apparatus for laser wavelength stabilization
JP2000035554A (ja) 光波長調整装置及びそれを用いた光源、光波長分離装置、波長多重光通信システム
KR100343310B1 (ko) 파장안정화 광원 모듈
EP1671403B1 (fr) Unite de controle de laser angulaire
US20020081065A1 (en) Fabry-perot etalon, wavelength measuring apparatus, and wavelength tunable light source device with built-in wavelength measuring apparatus
US20030053064A1 (en) Wavelength detector and optical transmitter
US20150116801A1 (en) Single longitudinal mode diode laser module with external resonator
KR20010073962A (ko) 파장안정화를 위한 파장검출 및 안정화 방법과 이를이용한 파장안정화 광원모듈
JP2000353854A (ja) 外部共振器型波長可変光源
JP2004132704A (ja) 波長モニタ及びその基準値設定方法
JPH11274643A (ja) 可変波長半導体レーザ光源
JPH10107370A (ja) 外部共振器型波長可変半導体レーザ光源の位相調整装置
JPH0945983A (ja) 波長可変半導体レーザ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17P Request for examination filed

Effective date: 19981030

17Q First examination report despatched

Effective date: 19981217

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

AKX Designation fees paid

Free format text: DE FR GB

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69800018

Country of ref document: DE

Date of ref document: 19991007

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020312

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020327

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031127

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST