EP0866732B1 - Appareil d'alimentation en gaz de type labyrinthe et procede de canon a detonation - Google Patents
Appareil d'alimentation en gaz de type labyrinthe et procede de canon a detonation Download PDFInfo
- Publication number
- EP0866732B1 EP0866732B1 EP96945614A EP96945614A EP0866732B1 EP 0866732 B1 EP0866732 B1 EP 0866732B1 EP 96945614 A EP96945614 A EP 96945614A EP 96945614 A EP96945614 A EP 96945614A EP 0866732 B1 EP0866732 B1 EP 0866732B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- detonation
- fuel
- combustion chamber
- barrel
- wave front
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/0006—Spraying by means of explosions
Definitions
- This invention relates to the held of gas detonation coating apparatus for industrial use for applying protective coatings to workpieces.
- Spray coating processes utilizing powder coating materials offer high quality protection in some of these applications.
- a common method of spray coating is the detonation gun process. This process uses kinetic energy from the detonation of combustible mixtures of gases to deposit powdered coating materials on workpieces.
- Typical coating materials used in conjunction with detonation guns in the spray coating process include powder forms of metals, metal-ceramic, ceramic, erosion resistant, thermal protection, electrically insularing, electrically conductive, and other coating materials. in addition powder forms of other materials can be utilized in conjunction with the detonation gun process for pans cleaning, hole drilling, making powders, and other conceivable applications.
- a typical detonation gun functions in the following manner.
- a certain amount of a combustible gas mixture oxygen and acetylene for example, is fed into a tubular combustion chamber have a closed end and an open e; d where it is subsequently ignited by a spark plug.
- the ignition of the gas brings about detonation and the formation of a shock wave.
- the shock wave travels down the combustion chamber to the open end which is attached to a tubular barrel
- a suitable coating powder is typically injected into the barrel in front of the propagating shock wave and is subsequently carried out the open end of the barrel and deposited onto a substrate positioned in front of the barrel. The impact if be powder onto the substrate produces a high density coating with good adhesive characteristics.
- an inert gas such as nitrogen, may be fed into the combustion chamber after the ignition to halt combustion and prevent backfire into the fuel and oxygen supply and to purge the barrel of combustion products.
- Detonation produces shock waves that travel at supersonic velocities, as high as 4000 m/s, and elevated temperatures, as high as 3137° C.
- Detonation in the detonation gun is controlled by the type of fuel used, such as propane, acetylene, butane, etc., the fuel and oxygen mixture ratio, the initial pressure of the gases in the combustion chamber, and the geometry of the combustion chamber. After ignition of the fuel and oxygen mixture deflagration produces an initial detonation wave front that increases the temperature and pressure within the combustion chamber which in tum propagates ignition of the combustible mixture throughout the combustion chamber.
- the detonation continues to propagate until all available fuel and oxygen is consumed.
- the detonation front moves toward the open end of the combustion chamber and into the barrel.
- the combustion chamber be of sufficient length, for the specific detonable mixture in use, to. complete the transition from deflagration to detonation before entering the barrel or the detonation wave front may not be sustained within the barrel.
- the detonation wave front is made up of a system of individual stationary detonation cells.
- the behavior of detonation at the cell level is an important attribute in the control and operation of a typical detonation gun.
- the detonation cell is a multidimensional structure which includes both the detonation wave front and transverse detonation waves moving perpendicular to the detonation front.
- the frontal surface of a detonation cell consists of convex shaped mach wave. Behind the mach wave is a reaction zone where the chemical reactions take place that lead to detonation.
- transverse shock waves form at substantially right angles to the frontal surface of the detonation cell.
- the transverse waves have acoustic tails that extend from the aft edges of the transverse waves and define the aft edge of the detonation cell.
- the transverse waves move from cell to cell and reflect off of each other and off of any limiting structure such as the combustion chamber wall.
- the detonation wave front structure can be negatively influenced by collisions with reflecting transverse waves and reflecting refracted waves from the detonation front while moving through the combustion chamber. These collisions diminish the intensity of the detonation cells and therefor lessen the amount of kinetic energy available to be transferred to the coating powder. This reduction in energy transferred to the coating powders translates into a reduction of the coatings produced in terms of density and adherence with the substrate.
- the residuum of detonation wave front moves from the combustion chamber into the barrel and out onto the workpiece.
- the size of the detonation cell is another important attribute in the control and operation of a detonation gun.
- Cell size is a function of the molecular nature of the fuel, the initial pressure within the combustion chamber, and the fuel/oxygen ratio. The particular cell size for certain conditions can be determined experimentally.
- the width of a cell, Sc is measured along the wave front between successive transverse waves.
- the length of a cell, Lc is the perpendicular distance from a tine tangent to the wave front measured to the intersection point of the acoustic tails from adjacent transverse waves.
- the physical parameters of a particular typical detonation gun such as the isgeometry and operating pressures, are determined by the cell size of a particular fuel and oxygen mixture.
- the operating pressure within the combustion chamber is influenced by the behavior of the detonation cells. Prior to ignition the pressure within the combustion chamber is controlleci by the fuel and oxygen supply pressures and the geometry of the combustion chamber. After ignition of the mixture the pressure within the combustion chamber increases and reaches a maximum when detonation occurs. As the detonation wave travels down the barrel and reaches the open end of the barrel a peak rarefaction pressure is measured within the combustion chamber. A positive pressure peak is then subsequently measured within the combustion chamber due to the presence of reflected waves from the detonation wave front.
- the coating powder such as Amperit
- the coating powder is fed either directly into the barrel directly or into the combustion chamber and then carried into the banrel by inert gases ahead of the detonation wave.
- a certain powder feeder utilizes a continuos supply of air or inert gas to carry the powder fed from a continuos source through a valve arrangement and finally into the gun.
- the operation of the valve is coordinated with the firing of the spark plug so that the powder and carrying gases are in position along the barrel to be property effected by the detonation wave.
- the valves are opened by mechanical means such as a cam and lappets or a solenoid.
- the deposition rate is controlled, and at times limited, by a variety of factors such as the type of fuel, the fuel supply system, the geometries of the combustion chamber and barrel, the powder feeder system, and the purging of the system between successive ignitions.
- Deposition rate is expressed as the ratio between the spray rate and spray spot square.
- the spray rate is stated in terms of the mass of coating powder utilized per unit time, typically Kg/hr, and typically ranges from I to 6 Kg hr. Spray rate is obviously influenced to great extent by the rate at which the spark plug is ignited. In a typical detonation gun the spark plug is ignited at the maximum rate of 6 to 10 times per second.
- the spray spot square is the area costed by a single ignition of the gun and is roughly equal to the area of the barrel and is typically expressed as mm2.
- a typical industrial detonation gun has a deposition rate of about .001 to .02 Kg mm2-hr.
- combustible fuels and oxygen are supplied in gas form either into a mixing chamber or directly into the combustion chamber itself through a series of valves.
- the combustible gases are supplied under pressure of about 1 to 3 Mpa from a continuous source to the valve system before being issued into the gun.
- the opening of the valve system is synchronized to properly proportion the gases and to prevent backfire.
- a valve system as employed in a typical detonation gun raises serious concems about rate, reliability and safety.
- the shock waves carry the coating powders at such velocities and, therefore, the coatings that are produced achieve higher densities and better adhesive qualities than other spray coating methods.
- the velocity of the costing powder as it exits the banrel is influenced by, among other things, the type of fuel used, and the geometries of the combustion chamber and barrel.
- Typical detonation wave velocities for detonable gas mixtures lie between 1200 m/sec and 4000 m/sec with H2-O2 at 2830 m/sec and CH4-O2 at 2500 m/sec.
- the maximum achievable velocity in present detonation gun configurations is approximately 3000 m/sec.
- the temperatures surrounding the operation of a detonation gun is yet another important characteristic affecting the quality of the coatings produced and concerning its use as an industrial coating apparatus.
- Typical adiabatic flame temperatures for detonable gas mixtures of concern range from 1947°C to 3137°C with H2-O2 at 2807°C and CH4-O2 at 2757°C. It is often desirable to melt the coating powders before depositing them on the substrate and given the correct parameters these temperatures are high enough to melt certain powder coating materials.
- the temperature imparted to the powders is in part controlled by barrel geometry and in part controlled by active cooling of the barrel. These temperatures are high enough to melt most substrate materials, however, the discontinuous nature of the combustion within a detonation gun prevents the substrate from being adversely affected.
- non-combustible gases in the operation of a detonation gun also effects the quality of the coatings produced.
- Purging gases typically are inert gases and are used primarily to purge the combustion chamber between successive firings of the spark plug to arrest the combustion process. This is important in the typical detonation gun because the combustion chamber must be filled between successive firings of the spark plug with new amounts of combustible fuel and oxygen mixture through a series of valves. If combustion continued in the combustion chamber while the valves are opened it is possible that the combustion would continue into the fuel and oxygen supply and cause an explosion.
- purging gases mix with the combustible gases and lower the overall kinetic energy of the detonation because the inert gases are by their very nature non-combustible. Therefore the kinetic energy available for transfering to the coating powders is lessened and coating density and adhesion will be adversely affected.
- the purging gases mix with the coating powder and slightly alter the final composition of the coatings produced.
- powder carrier gases. frequently compressed air are typically used to transfer the costing powders from a reservoir to the barrel of the detonation gun in front of the detonation wave front. These gases also lessen the kinetic energy available for transfer to the coating powders because they lower the temperature and velocity of the detonation wave front.
- inert gases are also mixed with the detonable gases. These are typically used in small amounts to control the temperature, velocity and chemical environment of the combustible products.
- the British patent UK-2.099.332 refers to a detonation coating apparatus comprising a mixture device (4) having two chambers to provide a homogeneous three-component mixture of gases by mixing the component of an explosive mixture and an inert gas in two subsequent stages.
- a first chamber 27 is connected via valves 9 and 10.
- a second chamber 38 communicates with the first chamber 27 and is connected via a valve 11 with a source 6 of another component.
- Valves 9, 10, 11 y 12 between the feed lines and the gun open and close in each firing cycle, i.e. they open to fill the combustion chamber with explosive mixture and close before firing to prevent backfiring during detonation. For this reason this kind of guns have to work with firing frequencies of less than 10 Hz, because they can not achieve a greater speed with such mechanical elements as valves.
- This apparatus also uses an inert gas after injecting the combustible mixture to prevent backfiring, which results in cycle time being very high and which also fosters the low of the firing frequencies obtained with that gun, (less than 10 Hz).
- French patent FR-2.274.365 shows a gas detonation apparatus utilizing energy from a detonation wave front for applying powdered coatings to a work piece, the gas detonation apparatus having a fuel 25, 28 and oxygen 23, 26 supply, an ignition source 21, a means 6 for supplying powder and a barrel 2. There is also shown a combustion chamber 1 having restricted gas flow orifices 11 formed in its side walls and separating the combustion camber from a chamber 10' containing the ignition source.
- the French patent uses valves and an inert gas, which valves open and close in each cycle and the inert gas acts as a barrier to prevent backfiring.
- the orifices 11 provided in the walls of the combustion chamber, make up a flame distributor or multiplier, but are not designed to prevent backfiring because the explosion takes place behind those orifices 11, and this orifices serve for the explosion flame to pass into the chamber 1' in a distributed manner through many of them.
- the present invention overcomes the above described disadvantages, providing a labyrinth gas feed apparatus and method for a detonation gun, which is not affected by the mechanical restrictions originated by the use of valves for preventing backfiring. Is object of the present invention to overcome such restrictions by providing a labyrinth which on its own fully prevent backfiring and therefore it enables the gun to work at frequencies over 100 Hz.
- the present invention is a labyrinth shaped gas feed system for detonation coating apparatus which substantially increases safety, reliability and productivity.
- the labyrinth functions to supply a fuel and oxygen mixture to a combustion chamber wherein detonation takes place.
- the labyrinth works to preclude the detonation from subsequently migrating into the fuel and oxygen supply thus preventing backfire.
- the labyrinth functions as a valve to instantaneously interrupt the flow of fuel and oxygen into the combustion chamber.
- the labyrinth of the present invention is associated with the combustion chamber and positioned between the combustion chamber and the fuel and oxygen supply of a detonation gun.
- the fuel and oxygen mixture flows through the labyrinth into the combustion chamber.
- the fuel and oxygen mixture is then ignited to produce a detonation wave front.
- As the detonation wave front travels past and opening to the labyrinth a portion thereof diffracts off of the detonation wave front and moves into the opening of the labyrinth.
- the labyrinth has a tortuous path that interferes with and destroys the detonation cells of the diffracted portion of the detonation wave front thereby precluding detonation from traveling into the fuel and oxygen supply and causing backfire.
- the residuum of the pressure from the diffracted portion of the detonation wave front overcomes the opposing pressure of the fuel and oxygen supply and acts to instantaneously interrupt the flow of the fuel and oxygen mixture into the combustion chamber.
- the combined effect of the present invention is to both preclude backfire into the fuel and oxygen supply and to act as a valve to interrupt the flow of the fuel and oxygen supply into the combustion chamber.
- FIG. 1 is a plan view, partially in section, of a detonation gun and pulsed powder feeder system of the present invention.
- FIG. 2 is an illustration, partially in section, of the labyrinth of the present invention.
- FIG. 2A is an enlarged view of area I in figure 2 illustrating the labyrinth in the circumferential direction.
- FIG. 2B is an enlarged view taken substantially along line B-B in FIG. 2A illustrating the detail of the labyrinth in the axial direction.
- FIG. 3 is a plan view, partially in section, of an alternative embodiment of the labyrintyh.
- FIG. 3A is an enlarged view of area I in FIG. 3 in accordance with a preferred embodiment of the present invention presented in a first position with three sets of open apertures.
- FIG. 3B is an enlarged view of area I in FIG. 3 in accordance with a preferred embodiment of the present invention presented in a second position with two sets of open apertures.
- FIG. 4 is a plan view, partially in section, of the recoil system of an embodiment of the present invention.
- FIG. 5 is an illustration of a combustion chamber of the prior art with a representation of detonation waves and depicting thc detrimental effects of reflected energy within a combustion chamber.
- FIG. 6A is a plan view, partially in section, of a detonation gun illustrating an exemplary energy bleed system of the present invention.
- FIG. 6B is a plan view, partially in section, of a detonation gun illustrating an alternative embodiment of an energy bleed system of the present invention.
- FIG. 6C is a plan view, partially in section, of a multiple barrel detonation gun of the present invention.
- FIG. 7A is a section view of the combustion chamber and barrel in accordance with; a preferred embodiment of the present invention illustrating the progression of a detonation wave front within the combustion chamber.
- FIG. 7B is a section view of the combustion chamber and barrel in accordance with a preferred embodiment of the present invention illustrating the diffraction of a detonation cell from a detonation wave front within the combustion chamber.
- FIG. 7C is a section view of the combustion chamber and barrel in accordance with a preferred embodiment of the present invention illustrating the progression of a diffracted detonation cell within the barrel.
- FIG. 8 is a plan view, partially in section illustrating an improved pulsed powder feeder in accordance with one embodiment of the present invention.
- FIG. 9 is a plan view, partially in section a detonation gun and multiple pulsed powder feeders in accordance with one embodiment of the present invention.
- FIG. 1 An apparatus is shown in FIG. 1 for applying coatings to a substrate 1 which comprises a detonation gun 2, and a powder feeder system 7.
- the detonation gun comprises a combustion chamber 12, a barrel 13, and a spark plug 14
- the powder feeder system comprises a high pressure chamber 38, a stop valve 39, a branch pipe 40, a powder inlet pipe 35, a nozzle 36, a hopper 31, and a powder outlet tube 37.
- Supply gases enter a mixing chamber 25 through supply pipes 16, 17 where they form a combustible mixture before passing into the combustion chamber 12.
- the combustible mixture is ignited by the spark plug and produces a detonation wave front 100 that travels out of the combustion chamber and into the barrel 13.
- a carrier gas 18 is supplied to the high pressure chamber 38 of the powder feeder system.
- a spraying powder 32 is fed into the hopper 31 from a powder source (not shown).
- the stop valve 39 introduces the carrier gas into the powder hopper wherein it transports a portion of the spraying powder out of the hopper through the powder outlet removal tube 37 and into the barrel 13.
- the opening of the stop valve 39 is timed such that the powder is introduced into the barrel just ahead of the detonation wave front 100.
- the force of the detonation wave front carries the Spraying powder down the barrel and onto the substrate 1.
- the combustion chamber 12 is coaxially positioned between an arrangement of concentric bushings 70, 69, 26, and the mixing chamber 25.
- Located in the sidewall 27 of the combustion chamber and bashings are apertures 72, 71, 28 and 29.
- the bushings are adjustable with respect to the combustion chamber in the axial and circumferential directions and are registered with the combustion chamber and each other such that the apertures therein form a labyrinth 30 between the combustion chamber and the mixing chamber.
- the labyrinth for a given combustible mixture is defined by the registration of the apertures in such a manner that the opening between adjacent apertures is no greater than the detonation cell length in the axial direction FIG.
- the alignment of non-adjacent apertures are staggered such that there is no through hole created from the combustion chamber to the mixing chamber.
- the purpose of the labyrinth is to destroy detonation cells which would otherwise propagate into the mixing chamber and cause backfiring into the supply pipes 16, 17 and to act as a gas-dynamic valve to interrupt the flow of the combustible mixture to the combustion chamber.
- the combustible mixture flows through the labyrinth 30 into the combustion chamber.
- the spark plug 14 ignites the mixture and a detonation wave front forms, propagates in all directions and moves down the combustion chamber toward the barrel 13 of the detonation gun 2.
- the detonation propagates until it encounters a limiting structure or depletes the supplied fuel and oxygen.
- Detonation cells diffract from the propagating detonation wave front and enter into the first aperture 29 of the labyrinth.
- the labyrinth destroys the detonation cells by restricting the size of the opening such that a full cell cannot progress through the labyrinth without colliding with at least one bashing wall.
- the labyrinth destroys the detonation cells by reflecting detonation cells that come into contact with the bushing walls backwards into subsequently diffracted oncoming detonation cells.
- the restrictions within the labyrinth and collisions of the detonation cells produce a pressure drop in the diffracted detonation cells sufficient to arrest the otherwise self supporting nature of detonation and rendering it impossible for detonation to proceed into the mixing chamber.
- the ability of the labyrinth to destroy detonation cells averts the need for complex backfire prevention apparatus.
- the residuum of pressure associated with the destroyed, diffracted detonation cells overcomes the pressure of the fuel and oxygen supply in the labyrinth and functions as a gas-dynamic valve.
- the fuel and oxygen supply is instantaneously interrupted by the gas-dynamic valve allowing the combustion chamber to be depleted of all combustible gases as is explained more fully herein below.
- FIG. 3 Another embodiment of the present invention of the labyrinth is shown in FIG. 3.
- the combustion chamber 12 in FIG. 3A is adjusted such that apertures 28 and 29 form labyrinth 30 as described herein above.
- FIG. 3B the combustion chamber has been adjusted axially to misregister apertures 28 and 29 such that aperture 28 is registered with aperture 91 to thereby form a labyrinth and aperture 29 is closed off from the mixing chamber 25.
- the amount of fuel and oxygen is limited to the two rows of remaining labyrinth in FIG. 3B.
- This limiting feature is valuable in the ability to utilize the detonation gun of the present invention with different fuel and oxygen mixtures and different applications where varying amounts of fuel and oxygen are required.
- the mixing chamber 25 in FIG. I has an optional converging portion located between the fuel and oxygen supply and the labyrinth.
- the converging portion of the mixing chamber acts with combusted gases to create a gas-dynamic valve similar to that described above.
- the gas-dynamic valve instantaneously disrupts the flow of combustible gas into the combustion chamber.
- the labyrinth destroys the diffracted detonation cells as the combusted gases travel through it from the combustion chamber to the mixing chamber, however, the combusted gases remain at sufficient pressure to overcome the supply pressure of the fuel and oxygen.
- the gas-dynamic valve within the mixing chamber stops the flow of the combusted gases and prevents the combusted gases from flowing into the fuel and oxygen supply and at the same time instantaneously interrupts the flow of fuel and oxygen into the combustion chamber.
- the flow of fuel and oxygen interrupted within the mixing chamber the detonation within the combustion chamber depletes all available fuel and oxygen within the combustion chamber itself.
- This use of the labyrinth as a gas-dynamic salve provides for a discontinuous flow of combustible gases to the combustion chamber from a continuous source without the need for complicated valves and eliminates the need for purging gases.
- the elimination of mechanical valves to interrupt the flow of fuel and oxygen increases the reliability and safety of the detonation gun.
- the abolishment of purging gases produces a much better quality coating for several reasons.
- the detonation itself is more stable because the combustion chamber is filled only with combustible gases and therefore the detonations are stronger and more consistent resulting in coating layers that are more dense and have better adhesion both with the substrate and between layers.
- the coatings that are produced are more homogeneous because there are no byproducts of the purging gases to mix with the coating powder.
- the stresses through thc coating thickness layers are reduced and, therefore, the coatings can be applied much thicker than in prior art detonation guns.
- the abolishment of the purging gases leads to higher deposition efficiency because the coating powders do not interact with the relatively cold purging gas.
- FIG. 4 An alternative embodiment to the labyrinth is shown in FIG. 4.
- the combustion chamber reciprocates to close off the fuel and oxygen supply from the combustion chamber.
- the combustion chamber 12 is located in a similar fashion to the previously described embodiment with the exception that it is slidably mounted in the axial direction within the body 99 of the detonation gun 2.
- Located in the wall of the combustion chamber is aperture 29 and bushing 26 with at least one aperture 28.
- the upstream end of the combustion chamber is closed and houses the spark plug 14.
- the downstream end of the combustion chamber is open and in communication with the barrel 13.
- a spring 73 is concentrically located on the outer surface of the combustion chamber and captured between the body and. the combustion chamber. The spring biases the combustion chamber in the downstream direction.
- the aperture 29 With the combustion chamber in the biased position the aperture 29 is aligned with the aperture 28 to allow for the flow of combustible gases into the combustion chamber.
- the peak pressure force acts on the upstream end of the combustion chamber, overcomes the spring force, and the combustion chamber moves upstream relative to the detonation gun body.
- the aperture 29 advances past the aperture 28 to isolate the mixing chamber from the combustion chamber, prevents backfiring into the fuel and oxygen supply and instantaneously interrupts the flow of fuel and oxygen into the combustion chamber.
- Detonation propagates cell by cell in the combustion chamber until it depletes the fuel and oxygen supply or meets with an obstruction such as the wall of the combustion chamber.
- an obstruction such as the wall of the combustion chamber.
- detonation cells meet obstructions some of the energy is absorbed and the remainder is reflected back off of the obstruction.
- these reflected waves have a negative effect on the performance of the detonation gun as they collide with and diminish the intensity of the detonation wave front. These collisions are most detrimental as the detonation wave front moves down the combustion chamber and as it moves down the barrel.
- FIG. 5 illustrates how this occurs.
- the detonation wave front 100 is initiated in the combustion chamber 12 and is forwarded to the banrel 13.
- the detonation wave front interacts with converging surface 75 and the resulting reflected waves 98 collide with the detonation wave font and diminish the intensity or destroy the detonation wave front before passing into the barrel.
- an energy bleed system as illustrated in FIG. 6A is provided to extract the reflected waves that would otherwise interfere with the detonation wave front.
- the system utilizes a bleed aperture 76 located in the converging wall 75 to remove the portion of the detonation wave front that would otherwise be reflected off of thc converging wall.
- the bleed aperture can take on a number of configurations such as holes, slots, porous material 79 in FIG. 6B, or any other configuration capable of eliminating the detrimental reflected waves.
- An additional feature of the present invention is a means to adjust the cross sectional area of the bleed aperture via a regulator 77 as in FIG. 6A or the absorbtivity of the porous medium via a damper 80 as in FIG. 6B.
- the use of an energy bleed system eliminates the reflected waves that would otherwise diminish the intensity of the detonation wave front and allow the detonation wave front to progress into the barrel with the highest available kinetic energy. The costing quality is thereby increased because more energy can be transferred to the powder.
- FIG. 6A is an illustration of a mini detonation gun wherein a single detonation cell is forwarded to the barrel 13 from the combustion chamber 12 Because there is only one cell within the barrel, it is impossible for reflected waves to occur within the barrel.
- the mini detonation gun is made possible through the use of the aforementioned energy bleed system and the judicious selection of barrel diameters.
- the reflected waves have the greatest destructive impact at point O where they converge on the center of the detonation wave front.
- the center of the detonation wave front retains its integrity and is forwarded to the barrel with maximum intensity.
- the present invention takes advantage of the extremely strong detonation wave and forwards a single detonation cell to the barrel of the detonation gun by employing a barrel with a diameter no smaller than the diameter of a single detonation cell.
- the detonation cell is intense enough to be sustained within the barrel length and because only a single detonation cell is forwarded to the barrel no reflective waves are created to diminish the detonation cell's intensity as it travels within the barrel.
- the product is an increase in coating quality, increased coating thickness per shot and increased adhesion strength because the extremely strong detonation is maintained throughout the barrel with a maximum amount of energy transfer to the coating powder and a minimum heating of the substrate because of the small amount of energy exhausted out of the barrel.
- the deposition rate is increased through the use of a single detonation cell and associated barrel diameter.
- the deposition rate is the ratio between the spray rate and the spray spot square.
- the spray spot square is dramatically reduced, from a barrel area of 314 mm2 to 28 mm2 for a given fuel and oxygen mixture, resulting in a proportional increase in deposition rate. This is extremely beneficial in coating small workpieces such as edges of turbine airfoils for jet engines.
- the energy bleed system would be arranged to bleed off that part of the detonation wave front which was not desired.
- the barrel associated with this embodiment has a diameter equal to the total frontal area of all of the detonation cells selected.
- FIG. 6C An alternative embodiment to the mini detonation gun has multiple single cell barrels and is illustrated in FIG. 6C.
- the barrels 13, 81, 82, 83 are positioned at the end of the combustion chamber 12 and each arc fitted with a powder delivery system 7, 8.
- each of the barrels is positioned such that reflected energy waves from the converging surface 75 do not destroy the detonation wave front at the centerline of the barrel.
- An alternative to the preferred embodiment employs the aforementioned energy bleed system.
- the advantages of the multiple barrel mini detonation gun include the benefit of more of the detonation energy being used in the coating process rather than being absorbed by the energy bleed system, the ability to deposit more coating per shot, and increasing the deposition rate.
- layers of different types of coatings are readily achievable by supplying different coating powders to separate powder feeder systems. For instance a first coating is applied by barrels 13 and 81 supplied from powder feeder 7 and then a second different costing is applied by barrels 82 and 83 supplied from powder feeder system 8.
- Another alternative embodiment to the mini detonation gun comprises a barrel mounted to the wall of the combustion chamber and takes advantage of the diffraction waves produced by the detonation wave front.
- the detonation wave front 100 progress down the combustion chamber of the detonation gun toward the opened end 13.
- Mounted in the side of the combustion chamber is a barrel 88 having an inside diameter no smaller than the height of a single detonation cell.
- the barrel At least one single detonation cell 97 diffracts off of the detonation wave front and moves into the barrel FIG. 7B.
- the powder feeder system 7 utilizes pressure from a carrier gas 18 from a constant source (not shown) controlled by a regulating valve 24 to fill a high pressure chamber 38. Exhaust from the high pressure chamber is carried through a branch pipe 40 and controlled by a stop valve 39. The branch pipe exhausts through a nozzle 36 fitted into a hopper 31. Mounted concentrically inside of the nozzle is a supply pipe 35 feeding coating powder 32 from a powder source (not shown). The powder source is sealed from the atmosphere and controlled by the pressure of the came gas. The carrier gas transports the powder from the hopper through a removal tube 37 into a barrel 13. The powder feeder system functions in the following manner.
- the high pressure chamber is filled from the external pressure source to a certain mass of compressed gas, preferably air.
- the hopper is being filled with a coating powder at a controlled mass rate from the powder source.
- the stop valve is opened instantaneously to release the entire mass of air from the high volume chamber into the hopper through the nozzle.
- the effect of the exhausting of the high pressure chamber is to completely fill and evacuate the hopper and removal tube, sending the powder into the barrel.
- the timing of the stop valve is such that the costing powder is released into the barrel just ahead of the detonation wave as it travels down the barrel.
- An additional feature of the powder feeder system is that at rapid successive cycling of the stop valve the powder within the hopper forms s a fluidized bed, remains in suspension in the air, and is easily transported out into the banrel.
- the volume of the high pressure chamber is critical in this regard as it must not exceed the combined volumes of the external powder source, the hopper and the removal tube or an excess of air will over pressurize the hopper and preclude the ability to keep the powder in suspension.
- the relatively short lengths of the branch pipe and the nozzle is the relatively short lengths of the branch pipe and the nozzle. The shorter the length of these two components the shorter the lag between a command to open the stop valve from an external controller (not shown) and the discharge of the powder into the banrel.
- the benefit of this small lag in time is the ability to precisely control the mass of compressed air needed to transport the powder into the barrel.
- the benefit to detonation gun operation of keeping the powder in suspension is that a relatively small amount of carrier gas is needed to effectively transport the powder into the barrel.
- the combined effect of these two features is that a relatively small precisely controlled amount of compressed air is released into the banrel which will not substantially reduce the temperature and velocity of the detonation wave. Since the temperature and the velocity of the detonation wave are not substantially disturbed more of the kinetic energy from the detonation is transferred to coating powder resulting in better control of coating quality.
- pressure from the detonation process is utilized to supplement the compressed air source in filling the high pressure chamber as shown in FIG. 8.
- a transfer pipe 41 is mounted to the barrel 13 of the detonation gun downstream of the point where the detonation process reaches its completion and upstream of the removal tube 37.
- the transfer pipe is connected to the high pressure chamber via a throttle valve 42 and a one-way valve 43. As the detonation wave front moves down the barrel and encounters the opening of the transfer pipe detonation cells diffract from the detonation wave front and move into the transfer pipe. The amount of pressure transferred from the detonation cell into the powder feeder system is controlled by the throttle valve.
- the compressed air source operates as described above to provide a constant volume of air to the powder feeder system the addition of the one-way valve is necessary to prevent the flow of air into the barrel via the transfer pipe between successive firings of the spark plug. Because the detonation cell moves into the powder feeder system at supersonic speeds it makes it possible to fill the high pressure chamber very rapidly and at virtually the same rate as the firing of the spark plug. As the rate of spark plug firings increases so too does the rate at which the high pressure chamber is filled. This allows the powder feeder system to operate at a very rapid pace thus not limiting the deposition rate of the detonation gun itself.
- Yet another embodiment of the present detonation gun inventions is concerned with the ability to apply multi-layered coatings from a single barrel in a single pass over the substrate.
- the barrel 13 of the detonation gun 2 is fitted with a primary powder feeder system 7 and a secondary powder feeder system 8 downstream of the primary powder feeder system.
- the two powder feeder systems operate in concert to inject powder ahead of an advancing detonation wave front to form a layered coating on the substrate after each firing of the spark plug 14.
- An example of the usefulness of the system would be the production of a Cr3C2-NiCr layered coating in a single pass of the detonation gun over the substrate to produced a hardening coating with good adhesion quality.
- the Cr3C2 powder is introduced into the barrel upstream of the NiCr through the powder feeder system 7 and the NiCr powder is introduced through the powder feeder system 8.
- the NiCr would impact the substrate first and establish a good band with the substrate and then provide a good bonding layer for the subsequently impacting layer of Cr3C2.
- An advantage of the present invention is that multiple layered coatings can be applied in a single pass from a single barrel while eliminating the problems with multiple pass coatings such as preparation, storage, and handling of the substrate between layers.
- Another advantage of the present invention is that coatings of different densities can be used without the danger of over mixing whereby the denser of the coating powders overtakes the advancement of the less dense coating material as they travel down the barrel.
- the NiCr is more dense than the Cr3C2. If the NiCr is introduced upstream of at the same point as or together with the Cr3C2 then the NiCr would overtake the Cr3C2 in the barrel, defined herein as overmixing, and the desired coating described above would not be achieved. With the more dense NiCr introduced into the barrel downstream of the Cr3C2 the powders travel separately within the barrel and produced the desired multi-layered Cr3C2-NiCr coating on the substrate.
- the inventions described herein above contribute individually and in various combinations to enhance the quality and productivity of coating workpieces utilizing a detonation gun process.
- the velocity of the detonation wave ranges from 1000 m/sec to 3600 m/sec. This represents a 20% increase in maximum velocity over the prior an and translates into better coating quality in terms of density, hardness and resistance to erosion.
- the deposition rate for the present inventions range from .006 kg/mm2-hr to 1.38 kg mm2-hr representing a an increase in productivity of 68 times that of the prior art.
Landscapes
- Nozzles (AREA)
- Coating By Spraying Or Casting (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Gas Burners (AREA)
Claims (8)
- Un appareil de détonation de gaz utilisant de l'énergie d'un front d'onde de détonation pour appliquer des revêtements en poudre dans une direction en aval sur une pièce de travail, l'appareil de détonation de gaz ayant une alimentation (16, 17) en combustible et en oxygène, une source (14) d'ignition, des moyens pour fournir de la poudre et un canon (13) ; de plus, l'appareil comprend :une chambre (12) de combustion située en amont du canon (13) et communiquant avec la source d'ignition et sur les parois de la chambre (12) de combustion est situé au moins un labyrinthe (30) pour communiquer, par une chambre (25) à mélange, directement avec l'alimentation (16, 17) en combustible et en oxygène, les parois du labyrinthe (30) définissant une trajectoire de gaz tortueuse afin de détruire les cellules de détonation diffractées du front d'onde de détonation.
- Un appareil de détonation de gaz comme dans la revendication 1, dans lequel les parois du labyrinthe (30) comprennent une bon nombre de surfaces planes situées perpendiculairement à la trajectoire du gaz, afin de détruire par collision contre les surfaces planes, les cellules de détonation diffractées du front d'onde de détonation et empêcher de la sorte le retour de flamme dans l'alimentation (16, 17) en combustible et en oxygène.
- Un appareil de détonation de gaz utilisant de l'énergie d'un front d'onde de détonation pour appliquer des revêtements en poudre dans une direction en aval sur une pièce de travail, l'appareil de détonation de gaz ayant une alimentation (16, 17) en combustible et en oxygène, une source (14) d'ignition, des moyens pour fournir de la poudre et un canon (13) ; de plus, l'appareil comprend :une chambre (12) de combustion située entre la source (14) d'ignition et le canon (13) et à laquelle on fournit directement par une chambre (25) à mélange, un mélange combustible de combustible et d'oxygène fourni par l'alimentation (16, 17) en combustible et en oxygène;la chambre (12) de combustion qui comprend au moins deux cylindres concentriques en contact concentrique entre eux ; yles cylindres (70, 69, 26) qui possèdent un bon nombre d'orifices (72, 71, 28) coïncidant entre eux de façon sélective, sont situés sur les parois (27) de la chambre (12) de combustion pour fournir de la communication entre la chambre (12) de combustion et l'alimentation (16, 17) en combustible et en oxygène.
- Un appareil de détonation de gaz comme dans la revendication 3 dans lequel les cylindres concentriques sont réglables sur la circonférence et sur l'axe.
- Un appareil de détonation de gaz comme dans la revendication 4 dans lequel les cylindres (70, 69, 26) concentriques sont situés entre eux, de sorte que la valeur de coïncidence entre deux orifices consécutifs soit inférieure à la hauteur de la cellule de détonation dans la direction axiale et plus petite que la largeur de la cellule de détonation dans la direction circonférentielle, afin de détruire des portions indésirées des cellules de détonation et d'empêcher le retour de flamme dans l'alimentation (16, 17) en combustible et en oxygène.
- Un appareil de détonation de gaz comme dans la revendication 5 dans lequel les nombreux orifices (72, 71, 28) sont déplacés sur les parois de cylindres adjacents et où les cylindres (70, 69, 26) concentriques sont situés entre eux, de sorte que la valeur de coïncidence entre deux orifices consécutifs soit plus petite que la hauteur de la cellule de détonation dans la direction axiale et plus petite que la largeur de la cellule de détonation dans la direction circonférentielle, afin de détruire les cellules de détonation diffractées d'un front d'onde de détonation et d'empêcher le retour de flamme dans l'alimentation (16, 17) en combustible et en oxygène et de sorte que la non coïncidence d'au moins une paire d'orifices définisse une trajectoire de gaz entièrement coupée, afin de limiter le flux de combustible et d'oxygène à l'intérieur de la chambre (12) de combustion.
- Un appareil de détonation de gaz comme dans les revendications 1, 2, 3, 4, 5 ou 6 dans lequel la chambre (25) à mélange est une chambre annulaire, située entre l'alimentation (16, 17) en combustible et en oxygène et la chambre (12) de combustion ; de plus, la chambre (25) annulaire à mélange comprend en disposition en série :une première section communiquant avec l'alimentation en combustible et en oxygène ;une deuxième section communiquant avec la première section et convergeant radialement dans la direction en amont ;une troisième section communiquant avec la deuxième et divergeant radialement dans la direction en aval etune quatrième section communiquant avec la troisième section et avec la chambre (12) de combustion et permettant qu'entre suffisamment de reflux de combustion dans la troisième section de la chambre (25) à mélange depuis la chambre (12) de combustion, pour interrompre instantanément l'alimentation en combustible depuis la deuxième section, empêchant de la sorte le retour de flamme.
- Une méthode empêchant le retour de flamme dans un appareil de détonation de gaz qui utilise de l'énergie d'un front d'onde de détonation, le front d'onde de détonation ayant des cellules de détonation pour appliquer des revêtements en poudre dans une direction en aval sur une pièce de travail, l'appareil de détonation de gaz ayant une alimentation (16, 17) en combustible et en oxygène, une source (14) d'ignition, une chambre (12) à combustion, un labyrinthe (30) avec des parois définissant une trajectoire tortueuse à l'intérieur des parois de la chambre (12) de combustion et communiquant directement par une chambre (25) à mélange, avec l'alimentation (16, 17) en combustible et en oxygène, des moyens pour fournir de la poudre et un canon (13), la méthode servant à :produire un front d'onde de détonation à l'intérieur de la chambre à combustion ;permettre qu'une portion du front d'onde de détonation entre dans la trajectoire tortueuse etfaire entrer en collision la portion du front d'onde de détonation contre les parois de la trajectoire tortueuse et détruire, par conséquent, les cellules de détonation et empêcher le retour de flamme à l'intérieur de l'alimentation (16, 17) en combustible et en oxygène.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
UA95125490 | 1995-12-26 | ||
UA95125490 | 1995-12-26 | ||
PCT/US1996/020160 WO1997023303A1 (fr) | 1995-12-26 | 1996-12-23 | Appareil d'alimentation en gaz de type labyrinthe et procede de canon a detonation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0866732A1 EP0866732A1 (fr) | 1998-09-30 |
EP0866732B1 true EP0866732B1 (fr) | 2002-10-30 |
Family
ID=21689096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96945614A Expired - Lifetime EP0866732B1 (fr) | 1995-12-26 | 1996-12-23 | Appareil d'alimentation en gaz de type labyrinthe et procede de canon a detonation |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0866732B1 (fr) |
JP (2) | JP2000502285A (fr) |
AT (1) | ATE226851T1 (fr) |
AU (1) | AU720536B2 (fr) |
BR (1) | BR9612822A (fr) |
CA (1) | CA2241867C (fr) |
DE (1) | DE69624587T2 (fr) |
ES (1) | ES2185818T3 (fr) |
RU (1) | RU2176162C2 (fr) |
WO (1) | WO1997023303A1 (fr) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE291967T1 (de) * | 1997-09-11 | 2005-04-15 | Aerostar Coatings Sl | System zur einspritzung von gas in eine vorrichtung für detonationsspritzen |
WO2004110644A1 (fr) * | 2003-05-08 | 2004-12-23 | Kadyrov, Togrul Abdulla Oglu | Installation a detonation de gaz destinee a l'application de poudres |
US7601431B2 (en) | 2005-11-21 | 2009-10-13 | General Electric Company | Process for coating articles and articles made therefrom |
ES2373144T3 (es) | 2006-05-12 | 2012-01-31 | Fundacion Inasmet | Procedimiento de obtención de recubrimientos cerámicos y recubrimientos cerámicos obtenidos. |
US8262812B2 (en) | 2007-04-04 | 2012-09-11 | General Electric Company | Process for forming a chromium diffusion portion and articles made therefrom |
EP2202328A1 (fr) | 2008-12-26 | 2010-06-30 | Fundacion Inasmet | Processus pour obtenir un revêtement protecteur pour hautes températures avec rugosité élevée et revêtement obtenu |
RU2460591C1 (ru) * | 2011-03-30 | 2012-09-10 | Открытое акционерное общество "НовосибирскНИИхиммаш" | Детонационный метатель |
RU2618060C1 (ru) * | 2016-04-04 | 2017-05-02 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" | Устройство для детонационного напыления покрытий |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4004735A (en) * | 1974-06-12 | 1977-12-25 | Zverev Anatoly | Apparatus for detonating application of coatings |
US4258091A (en) * | 1979-02-06 | 1981-03-24 | Dudko Daniil A | Method for coating |
CH651766A5 (en) * | 1981-04-30 | 1985-10-15 | Ts K Bjuro Leninskaya Kuznitsa | Explosive-coating system |
CH670657A5 (fr) * | 1986-04-25 | 1989-06-30 | Inst Sverkhtverdykh Mat | |
WO1990006813A1 (fr) * | 1988-12-20 | 1990-06-28 | Institut Gidrodinamiki Imeni M.A.Lavrentieva Sibirskogo Otdelenia Akademii Nauk Sssr | Cylindre d'une installation d'application de revetements par detonation de gaz |
US5542606A (en) * | 1994-06-17 | 1996-08-06 | Demeton Usa, Inc. | Gas detonation spraying apparatus |
-
1996
- 1996-12-23 DE DE69624587T patent/DE69624587T2/de not_active Expired - Lifetime
- 1996-12-23 EP EP96945614A patent/EP0866732B1/fr not_active Expired - Lifetime
- 1996-12-23 CA CA002241867A patent/CA2241867C/fr not_active Expired - Fee Related
- 1996-12-23 AU AU16858/97A patent/AU720536B2/en not_active Ceased
- 1996-12-23 AT AT96945614T patent/ATE226851T1/de not_active IP Right Cessation
- 1996-12-23 ES ES96945614T patent/ES2185818T3/es not_active Expired - Lifetime
- 1996-12-23 JP JP9523783A patent/JP2000502285A/ja active Pending
- 1996-12-23 WO PCT/US1996/020160 patent/WO1997023303A1/fr active IP Right Grant
- 1996-12-23 RU RU98114092/12A patent/RU2176162C2/ru not_active IP Right Cessation
- 1996-12-23 BR BR9612822-4A patent/BR9612822A/pt not_active IP Right Cessation
-
2007
- 2007-03-20 JP JP2007072716A patent/JP4091097B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
ES2185818T3 (es) | 2003-05-01 |
CA2241867C (fr) | 2002-04-02 |
DE69624587T2 (de) | 2003-07-03 |
AU1685897A (en) | 1997-07-17 |
WO1997023303A1 (fr) | 1997-07-03 |
DE69624587D1 (de) | 2002-12-05 |
ATE226851T1 (de) | 2002-11-15 |
JP2000502285A (ja) | 2000-02-29 |
RU2176162C2 (ru) | 2001-11-27 |
BR9612822A (pt) | 2000-05-16 |
JP4091097B2 (ja) | 2008-05-28 |
JP2007181832A (ja) | 2007-07-19 |
CA2241867A1 (fr) | 1997-07-03 |
AU720536B2 (en) | 2000-06-01 |
EP0866732A1 (fr) | 1998-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0889756B1 (fr) | Appareil de detonation autonome | |
US2714563A (en) | Method and apparatus utilizing detonation waves for spraying and other purposes | |
JP4091097B2 (ja) | デトネーション・ガンのためのラビリンス・ガス供給装置および方法 | |
US6517010B1 (en) | System for injecting gas into a detonation projection gun | |
US6787194B2 (en) | Method and apparatus for pulsed detonation coating of internal surfaces of small diameter tubes and the like | |
CA2388618C (fr) | Frequence d'impulsion a haute frequence et pistolet de projection par detonation a productivite eleve | |
AU2006312076A1 (en) | Flame spraying process and apparatus | |
US6146693A (en) | Energy bleed apparatus and method for a detonation gun | |
US6000627A (en) | Detonation gun apparatus and method | |
US6168828B1 (en) | Labyrinth gas feed apparatus and method for a detonation gun | |
CN101473057B (zh) | 热喷涂方法和装置 | |
CN114525464A (zh) | 一种基于旋转爆震的喷涂装置 | |
US5985373A (en) | Method and apparatus for applying multi-layered coatings by detonation | |
WO1997023301A1 (fr) | Appareil d'evacuation d'energie et procede pour canon a detonation | |
WO1997023302A1 (fr) | Procede et appareil d'application de revetements multicouches par detonation | |
WO1997023298A1 (fr) | Appareil d'alimentation en poudre par pulsations et procede de canon a detonation | |
WO1997023299A1 (fr) | Appareil de type canon a detonation et procede s'y rapportant | |
WO1997023300A1 (fr) | Systeme d'alimentation en gaz par effet de recul pour canon a detonation | |
US8839738B2 (en) | Method and apparatus for thermal spraying of metal coatings using pulsejet resonant pulsed combustion | |
CA2247146C (fr) | Appareil de detonation autonome | |
RU2236910C2 (ru) | Высокопроизводительный детонационный пистолет-распылитель с высокой частотой повторения импульсов | |
JP3448671B2 (ja) | 爆発溶射装置 | |
JPH02131159A (ja) | 爆発溶射装置 | |
JPH0299155A (ja) | 爆発溶射装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980724 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19990709 |
|
APAB | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPE |
|
APAD | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOS REFNE |
|
APAB | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021030 |
|
REF | Corresponds to: |
Ref document number: 226851 Country of ref document: AT Date of ref document: 20021115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69624587 Country of ref document: DE Date of ref document: 20021205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021223 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER & PEDRAZZINI AG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030130 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030130 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2185818 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030701 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20030731 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20091231 Year of fee payment: 14 Ref country code: FI Payment date: 20091231 Year of fee payment: 14 Ref country code: CH Payment date: 20091228 Year of fee payment: 14 Ref country code: AT Payment date: 20091202 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20091224 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20091229 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20091230 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20100212 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20091230 Year of fee payment: 14 |
|
BERE | Be: lapsed |
Owner name: *AEROSTAR COATINGS S.L. Effective date: 20101231 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20110701 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20101223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101223 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101223 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101224 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110701 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101223 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20131230 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20131226 Year of fee payment: 18 Ref country code: FR Payment date: 20131217 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69624587 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20160127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141224 |