EP0865596A2 - Rückkühlsystem - Google Patents

Rückkühlsystem

Info

Publication number
EP0865596A2
EP0865596A2 EP96945758A EP96945758A EP0865596A2 EP 0865596 A2 EP0865596 A2 EP 0865596A2 EP 96945758 A EP96945758 A EP 96945758A EP 96945758 A EP96945758 A EP 96945758A EP 0865596 A2 EP0865596 A2 EP 0865596A2
Authority
EP
European Patent Office
Prior art keywords
cooling
water
condenser
water supply
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96945758A
Other languages
English (en)
French (fr)
Other versions
EP0865596B1 (de
Inventor
Gerhard Kratz
Rudolf Lehmann
Siegfried MÜNCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0865596A2 publication Critical patent/EP0865596A2/de
Application granted granted Critical
Publication of EP0865596B1 publication Critical patent/EP0865596B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid
    • F28B9/06Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid with provision for re-cooling the cooling water or other cooling liquid

Definitions

  • the invention relates to a cooling system for cooling water from the condenser of a steam power plant.
  • a steam power plant is usually used to generate electrical energy or to drive a machine.
  • a working medium usually a water-steam mixture, carried in an evaporator circuit of the steam power plant is evaporated in an evaporator.
  • the steam generated thereby relaxes while performing work in the steam turbine of the steam power plant and is then fed to its condenser.
  • the working medium condensed in the condenser is then fed again to the evaporator via a feed water pump.
  • the condensation of the working medium in the condenser is usually carried out by exchanging heat with this supplied cooling water, which heats up in the process.
  • the heated cooling water is usually in turn cooled in a recooling system by exchanging heat with the ambient air.
  • the cooled cooling water is then available again for cooling the condenser.
  • the recooling system usually comprises a number of cooling towers. Each cooling tower is associated with a collecting basin connected to a collecting channel, in which cooled cooling water is collected. From there, the recooled cooling water is returned to the condenser via a condenser pump.
  • a back-cooling system is generally adapted to the conditions of the power plant site and therefore requires considerable constructional and constructive effort. moreover for such a recooling system, a complex individual level control for the water level of each collecting basin is required.
  • the invention is therefore based on the object of specifying a recooling system for cooling water from the condenser of a steam power plant, which can be installed and operated in a particularly simple manner.
  • a recooling system of the above-mentioned type with a number of cooling modules, each of which can be fed via a water supply duct assigned to it, the water supply ducts in the manner of pipes communicating with one another and via a common main cooling water line are connected to the capacitor.
  • the invention is based on the consideration that the installation effort for the cooling system is reduced by standardized components.
  • this can be adapted in the manner of a modular system to the respective power plant.
  • the recooling system can also be operated particularly easily if an individual level control for each water collection basin assigned to a cooling module is replaced by a level control common to all water collection basins.
  • a level control common to all water reservoirs can be achieved in that a central water supply is designed for all cooling modules in such a way that a variation of the cooling water inflow to one cooling module leaves the cooling water inflow to the other cooling modules almost unchanged.
  • Such a design can be achieved by connecting the water supply shafts. the one based on the principle of communicating pipes.
  • the term "communicating pipes” is defined, for example, in "Duden: The Great Dictionary of the German Language", Volume 5 (1980), Bibliografisches Institut Mannheim.
  • the level of a liquid in the interconnected, open top tubes m of each tube is the same.
  • the water supply shafts of all cooling modules thus have the same water level, so that the inflow of cooling water to all cooling modules can be controlled centrally.
  • a particularly simple and reliable water level control namely based on the operating conditions prevailing in the condenser and also by means of the cooling water pump, can be achieved in that the interconnected water supply ducts are connected to the condenser via a common main cooling water line.
  • a water overflow is expediently connected to the water supply, whose output is connected to a water return flow.
  • the operating conditions for each cooling module are thus at least approximately independent of the cooling water conditions in the condenser and the operating state of the condenser pumps.
  • each water supply shaft can be shut off by means of an inlet fitting assigned to it.
  • the water supply to each cooling module can thus be regulated with particularly simple means. In the event of maintenance or Repair work on a cooling module can easily interrupt its water supply, the water overflow serving as a bypass for the excess cooling water flow. Thus, even when a cooling module is shut off, the water supply m is unchanged in the other cooling modules. This means that complex level control in the cooling module sump is not necessary, even if one or more cooling modules are shut off.
  • the advantages achieved by the invention consist in particular in that, on the one hand, due to the modular structure of the recooling system, it is particularly flexibly adaptable to a given power plant concept in the manner of a modular system, whereby standard components can be used.
  • the design of the water supply shafts which are in the manner of communicating pipes and are connected to the condenser of the steam power plant via a common main cooling water line, makes the recooling system particularly flexible during operation.
  • the total flow of the cooling water to be cooled can be divided into a first partial flow, which is cooled in cooling modules, and a second partial flow which is returned directly to the water return via the water overflow without cooling in the manner of a bypass.
  • the operation of each cooling module and the entire recooling system can also be maintained without the use of uncontrolled cooling water pumps within the tolerances specified without complex level regulation.
  • FIG. 1 a re-cooling system for cooling water from the condenser of a steam power plant with a number of cooling modules
  • the recooling system 1 for cooling water from the condenser 2 of a steam power plant according to FIG. 1, which is not shown in detail, comprises a number of cooling modules 4. Each cooling module 4 is associated with a fan 6. The cooling modules 4 are connected to the condenser 2 on the cooling water inlet side via a main cooling water line 8 and on the cooling water outlet side via a cooling tower return duct 10 and a cooling water pump unit 12. The condenser 2 is connected on the primary side to the only indicated water-steam circuit 14 of the steam power plant.
  • the cooling modules 4 smd are standardized in terms of their dimensions and rain area. An adaptation to the specific requirements of the steam power plant is possible in a particularly simple manner by a suitable selection and combination of the cooling modules 4. 1 shows a row arrangement of the cooling modules 4. Alternatively, however, other arrangements, for example in pairs or in block form, are also possible.
  • a water supply shaft 20 according to FIG. 2 is assigned to each cooling module 4.
  • the water supply shafts 20 are connected to the common main cooling water pipe 8.
  • the water supply shafts 20 smd both with each other via a water supply channel 22 and with the condenser sator 2 of the steam power plant connected via the main cooling water line 8 in the manner of communicating pipes.
  • the cooling module 4 assigned to the respective water supply shaft 20 can be supplied with cooling water K from the condenser 2 of the steam power plant via the main cooling water line 8 and the supply channel 22 and via the water distribution line 26.
  • each cooling module 4 is connected to a cooling tower return channel 10 common to all cooling modules 4 via a collecting basin (not shown) assigned to it and a basin drain shaft 28.
  • the cooling tower return duct 10 is in turn connected to the condenser 2 via the cooling water pump unit 12.
  • a water overflow 32 is connected to the main water line 8 and is connected on the outlet side to the cooling tower return channel 10.
  • a weir wall 34 arranged in the water overflow 32 maintains a constant water level 36 in the water overflow 32 and thus also a constant water level 36 'at the same height in each water supply shaft 20 connected to the water overflow 32 in the manner of communicating pipes.
  • a partial cooling water quantity K ′ that cannot be supplied to the cooling modules 4 flows over the weir wall 34 of the water overflow 32 and is thus directly mixed with the cooled cooling water K ′′ flowing in the cooling tower return channel 10 Bypasses an overfeed of the water supply shafts 20 and the water distribution lines 26 of the cooling modules 4.
  • cooling water K to be cooled For example, for maintenance or repair work on a cooling module 4, this can be done by means of the inlet type assigned to it. Matur 24 can be shut off so that the inflow of cooling water K to be cooled is prevented. In this case, the cooling water subset K 1 of the over the water overflow 32 to the ge ⁇ supercooled Kuhlwasser K "admixed ungekuhlten Kuhlwassers The influx, however, increased accordingly. Of to be cooled cooling water K to the non-locked Kuhlmodulen 4 remains due to the unchanged water level 36 'in these each assigned water supply chute 20 unchanged, so that even when a cooling module 4 is shut off, no complex level regulation or inflow regulation in the other cooling modules 4 is required.
  • the Ruckkuhlsystem 1 is thus particularly easy to adapt to different requirements.
  • the ratio of the recooled cooling water K to the non-recooled cooling water subset K 1 can be varied in a particularly simple manner and can thus be adapted to different operating conditions of the steam power plant.
  • the recooling system 1 of the steam power plant is particularly flexible and can be used in a simple manner.
  • the cooling modules 4 can be designed in a wooden construction, steel skeleton construction or also in a reinforced concrete construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Ein Rückkühlsystem für Kühlwasser (K) aus dem Kondensator (2) einer Dampfkraftanlage weist erfindungsgemäss eine Anzahl von Kühlmodulen (4) auf, von denen jedes über einen ihm zugeordneten Wasserzuführungsschacht (20) bespeisbar ist. Dabei sind die Wasserzuführungsschächte (20) über eine gemeinsame Hauptkühlwasserleitung (8) in der Art kommunizierender Röhren miteinander und mit dem Kondensator (2) verbunden. Ein derartiges Rückkühlsystem ist auf besonders einfache Weise installierbar und betreibbar.

Description

Beschreibung
Ruckkuhlsystem
Die Erfindung betrifft ein Ruckkuhlsystem für Kuhlwasser aus dem Kondensator einer Dampfkraftanlage.
Eine Dampfkraftanlage wird üblicherweise zur Erzeugung elek¬ trischer Energie oder auch zum Antrieb einer Arbeitsmaschine eingesetzt. Dabei wird ein in einem Verdampferkreislauf der Dampfkraftanlage geführtes Arbeitsmedium, üblicherweise ein Wasser-Dampf-Gemisch, in einem Verdampfer verdampft. Der da¬ bei erzeugte Dampf entspannt sich arbeitsleistend in der Dampfturbine der Dampfkraftanlage und wird anschließend deren Kondensator zugeführt. Das im Kondensator kondensierte Ar¬ beitsmedium wird dann über eine Speisewasserpumpe erneut dem Verdampfer zugeführt .
Die Kondensation des Arbeitsmediums im Kondensator erfolgt üblicherweise durch Warmetausch mit diesem zugefuhrtem Kuhl¬ wasser, das sich dabei erwärmt. Das erwärmte Kuhlwasser wird üblicherweise seinerseits in einem Ruckkuhlsystem durch War¬ metausch mit der Umgebungsluft gekühlt. Das gekühlte Kuhlwas¬ ser steht dann erneut zur Kühlung des Kondensators zur Verfu- gung.
Das Ruckkuhlsystem umfaßt üblicherweise eine Anzahl von Kuhl- turmen . Jedem Kuhlturm ist em mit einem Sammelkanal verbun¬ denes Auffangbecken zugeordnet, in dem gekühltes Kuhlwasser gesammelt wird. Das ruckgekuhlte Kuhlwasser wird von dort über eine Kondensatorpumpe m den Kondensator zuruckgeleitet . Ein derartiges Ruckkuhlsystem ist in der Regel an die Gege¬ benheiten des Kraftwerksgelandes angepaßt und erfordert somit einen erheblichen baulichen und konstruktiven Aufwand. Zudem ist für ein derartiges Ruckkuhlsystem eine aufwendige indivi¬ duelle Niveauregelung für den Wasserstand jedes Auffangbek- kens erforderlich.
Der Erfindung liegt daher die Aufgabe zugrunde, em Ruckkühl- system für Kuhlwasser aus dem Kondensator einer Dampfkraftan¬ lage anzugeben, das m besonders einfacher Weise mstallier- bar und betreibbar ist .
Diese Aufgabe wird erfindungsgemaß gelost durch em Ruckkuhl- system der obengenannten Art mit einer Anzahl von Kuhlmodu¬ len, von denen jedes über emen ihm zugeordneten Wasserzufüh¬ rungsschacht bespeisbar ist, wobei die Wasserzufuhrungs¬ schächte m der Art kommunizierender Rohren miteinander und über eine gemeinsame Hauptkühlwasserleitung mit dem Kondensa- tor verbunden sind.
Die Erfindung geht dabei von der Überlegung aus, daß der In- stallationsaufwand für das Rückkuhlsystem durch standardi¬ sierte Komponenten vermindert ist. Bei der Verwendung von standardisierten Komponenten oder Modulen für das Ruckkühlsy¬ stem kann dieses in der Art eines Baukastensystems an die je¬ weilige Kraftwerksanlage angepaßt werden.
Das Ruckkuhlsystem kann zudem besonders einfach betrieben werden, wenn eine individuelle Niveauregelung für jedes je¬ weils einem Kuhlmodul zugeordnete Wassersammelbecken ersetzt ist durch eme allen Wassersammelbecken gemeinsame Niveaure¬ gulierung. Eine allen Wassersammelbecken gemeinsame Niveaure- gulierung kann dadurch erreicht werden, daß eine zentrale Wasserversorgung für alle Kuhlmodule derart ausgelegt ist, daß eine Variation des Kuhlwasserzustroms zu einem Kuhlmodul den Kuhlwasserzustrom zu den anderen Kuhlmodulen annähernd unverändert laßt. Eme derartige Auslegung ist erreichbar durch die Verbindung der Wasserzufuhrungsschächte untereman- der nach dem Prinzip der kommunizierenden Rohren. Der Begriff "kommunizierende Rohren" ist beispielsweise definiert in "Duden: Das große Wörterbuch der Deutschen Sprache", Band 5 (1980) , Bibliografisches Institut Mannheim.
So ist nach dem Prinzip der kommunizierenden Rohren das Ni¬ veau einer Flüssigkeit m untereinander verbundenen, oben of¬ fenen Rohren m jeder Rohre gleich. Die Wasserzufuhrungs¬ schächte aller Kuhlmodule weisen somit den gleichen Wasεer- stand auf, so daß der Zufluß von Kuhlwasser zu allen Kuhlmo¬ dulen zentral steuerbar ist. Eine besonders einfache und zu¬ verlässige Wasserstandsregelung, namlich anhand der im Kon¬ densator herrschenden Betriebsbedingungen und auch mittels der Forderleistung der Kuhlwasserpumpe, ist dabei erreichbar, indem die miteinander verbundenen Wasserzufuhrungsschächte über eine gemeinsame Hauptkühlwasserleitung mit dem Kondensa¬ tor verbunden sind.
Um den Kuhlwasserzustrom zu einem Kuhlmodul auf besonders einfache Weise vom Kuhlwasserzustrom zu den anderen Kuhlmodu¬ len zu entkoppeln, ist zweckmaßigerweise ein Wasseruberlauf an die Wasserversorgung angeschlossen, der ausgangsseitig mit einem Wasserrucklauf verbunden ist. Somit ist ein konstanter Wasserstand in jedem Wasserzufuhrungsschacht auch bei varne- renden Druckverhaltnissen in der Wasserversorgung m beson¬ ders einfacher Weise aufrechterhalten. Die Betriebsbedingun¬ gen für jedes Kuhlmodul sind somit zumindest annähernd unab¬ hängig von den Kuhlwasserbedingungen im Kondensator und vom Betriebszustand der Kondensatorpumpen.
In weiterer vorteilhafter Ausgestaltung ist jeder Wasserzu- fuhrungsschacht mittels einer ihm zugeordneten Zulaufarmatur absperrbar. Somit ist der Wasserzulauf zu jedem Kuhlmodul mit besonders einfachen Mitteln regelbar. Bei Wartungs- oder Re- paraturarbeiten an einem Kuhlmodul kann dessen Wasserzulauf auf einfache Weise unterbrochen werden, wobei der Wasseruber- lauf als Bypass für den nun überschüssigen Kuhlwasserstrom dient. Somit ist auch beα Absperrung eines Kuhlmoduls der Wasserzulauf m die anderen Kuhlmodule unverändert. Dsher ist eine aufwendige Niveauregulierung in den Sammelbecken der Kühlmodule auch bei Absperrung eines oder mehrerer Kühlmodule nicht erforderlich.
Die mit der Erfindung erzielten Vorteile bestehen insbeson¬ dere darin, daß einerseits durch den modularen Aufbau des Ruckkuhlsystems dieses in der Art eines Baukastensystems an em vorgegebenes Kraftwerkskonzept besonders flexibel anpa߬ bar ist, wobei Standardbauteile Verwendung finden können. An- dererseits ist durch die Auslegung der Wasserzufuhrungs¬ schächte, die in der Art kommunizierender Rohren über eine gemeinsame Hauptkuhlwasserleitung mit dem Kondensator der Dampfkraftanlage verbunden sind, das Ruckkuhlsystem auch wäh¬ rend des Betriebs besonders flexibel.
Bei wechselnden Betriebsbedingungen, beispielsweise bei der Umschaltung von Sommer- auf Winterbetrieb, bei denen variie¬ rende Anforderungen an das Ruckkuhlsystem gestellt werden, ist der Gesamtstrom des zu kühlenden Kühlwassers aufteilbar in einen ersten Teilstrom, der in Kuhlmodulen gekühlt wird, und in einen zweiten Teilstrom, der über den Wasserüberlauf ohne Kühlung in der Art eines Bypasses direkt m den Wasser¬ rucklauf zurückgeführt wird. Dabei kann der Betrieb jedes Kuhlmoduls und des gesamten Ruckkühlsystems auch kein Einsatz ungeregelter Kuhlwasserpumpen innerhalb der diesem vorgegebe¬ nen Toleranzen ohne aufwendige Niveauregulierung aufrechter¬ halten werden.
Em Ausfuhrungsbeispiel der Erfindung wird anhand einer Zeichnung naher erläutert. Darm zeigen: Figur 1 em Ruckkuhlsystem für Kuhlwasser aus dem Kondensa¬ tor einer Dampfkraftanlage mit einer Anzahl von Kuhlmodulen, und
Figur 2 eme Wasserversorgung für das Ruckkuhlsystem gemäß
Figur 1.
Gleiche Teile sind in beiden Figuren mit den gleichen Be¬ zugszeichen versehen.
Das Ruckkuhlsystem 1 für Kuhlwasser aus dem Kondensator 2 ei¬ ner nicht näher dargestellten Dampfkraftanlage gemäß Figur 1 umfaßt eine Anzahl von Kuhlmodulen 4. Jedem Kuhlmodul 4 ist dabei em Ventilator 6 zugeordnet. Die Kuhlmodule 4 sind kuhlwasseremgangsseitig über eme Hauptkuhlwasserleitung 8 und kuhlwasserausgangsseitig über einen Kuhlturmrucklaufkanal 10 und eine Kühlwasserpumpeneinheit 12 an den Kondensator 2 angeschlossen. Der Kondensator 2 ist primarseitig m den nur angedeuteten Wasser-Dampf-Kreislauf 14 der Dampfkraftanlage geschaltet .
Die Kuhlmodule 4 smd hinsichtlich ihrer Bemaßungen und Re¬ genflache standardisiert. Eine Anpassung an die spezifischen Erfordernisse der Dampfkraftanlage ist durch eine geeignete Auswahl und Kombination der Kuhlmodule 4 in besonders einfa¬ cher Weise möglich. So zeigt Figur 1 eine Reihenanordnung der Kühlmodule 4. Alternativ smd aber auch andere Anordnungen, beispielsweise paarweise oder in Blockform, möglich.
Em Wasserzufuhrungsschacht 20 gemäß Figur 2 ist jedem Kuhl¬ modul 4 zugeordnet. Die Wasserzufuhrungsschächte 20 sind an die ihnen gemeinsame Hauptkuhlwasserleitung 8 angeschlossen. Die Wasserzufuhrungsschächte 20 smd dabei sowohl miteinander über emen Wasserzufuhrungskanal 22 als auch mit dem Konden- sator 2 der Dampfkraftanlage über die Hauptkühlwasserleitung 8 in der Art kommunizierender Rohren verbunden. Von jedem Wasserzufuhrungsschacht 20 zweigt eme mit einer Zulaufarma¬ tur 24 absperrbare Wasserverteilungsleitung 26 ab. Über die Hauptkuhlwasserleitung 8 und den Zufuhrungskanal 22 sowie über die Wasserverteilungsleitung 26 ist dem dem jeweiligen Wasserzuführungsschacht 20 zugeordneten Kύhlmodul 4 Kühlwas¬ ser K aus dem Kondensator 2 der Dampfkraftanlage zufuhrbar.
Kuhlwasserausgangsseitig ist jedes Kühlmodul 4 über ein ihm zugeordnetes (nicht dargestelltes) Sammelbecken und einen BeckenablaufSchacht 28 mit einem allen Kuhlmodulen 4 gemein¬ samen Kuhlturmrücklaufkanal 10 verbunden. Der Kuhlturmrück- laufkanal 10 ist seinerseits über die Kühlwasserpumpeneinheit 12 an den Kondensator 2 angeschlossen.
An die Hauptwasserleitung 8 ist em Wasserüberlauf 32 ange¬ schlossen, der ausgangsseitig mit dem Kühlturmrücklaufkanal 10 verbunden ist. Durch eine im Wasserüberlauf 32 angeordnete Wehrwand 34 wird ein konstanter Wasserstand 36 im Wasserüber¬ lauf 32 und somit auch ein konstanter Wasserstand 36 ' in gleicher Hohe in jedem mit dem Wasserüberlauf 32 in der Art kommunizierender Rohren verbundenen Wasserzufuhrungsschacht 20 aufrechterhalten. Im Falle einer Uberspeisung durch die Hauptkühlwasserleitung 8 überströmt eine den Kühlmodulen 4 nicht zuleitbare Kühlwasserteilmenge K' die Wehrwand 34 des Wasserüberlaufs 32 und wird somit direkt dem im Kühlturmruck¬ laufkanal 10 stromenden gekühlten Kuhlwasser K" zugemischt. Der Wasserüberlauf 32 verhindert somit m der Art eines Bypasses eine Überspeisung der Wasserzufuhrungsschächte 20 und der Wasserverteilungsleitungen 26 der Kuhlmodule 4.
Beispielsweise für Wartungs- oder Reparaturarbeiten an einem Kuhlmodul 4 ist dieses mittels der ihm zugeordneten Zulaufar- matur 24 absperrbar, so daß der Zustrom an zu kühlendem Kühl¬ wasser K unterbunden ist. In diesem Fall erhöht sich die Kühlwasserteilmenge K1 des über den Wasserüberlauf 32 dem ge¬ kühlten Kuhlwasser K" zugemischten ungekuhlten Kuhlwassers entsprechend. Der Zustrom von zu kühlendem Kühlwasser K zu den nicht abgesperrten Kuhlmodulen 4 bleibt jedoch aufgrund des unveränderten Wasserstandes 36' in den diesen jeweils zu¬ geordneten Wasserzufuhrungsschachten 20 unverändert, so daß auch bei Absperrung eines Kuhlmoduls 4 keine aufwendige Ni- veauregulierung oder Zustromregulierung in den anderen Kuhl¬ modulen 4 erforderlich ist.
Das Ruckkuhlsystem 1 ist somit auf besonders einfache Weise an unterschiedliche Anforderungen anpaßbar. Mittels der Zu- laufarmaturen 24 ist das Verhältnis von ruckgekühltem Kühl¬ wasser K zu der nicht ruckgekuhlten Kühlwasserteilmenge K1 auf besonders einfache Weise variierbar und somit an unter¬ schiedliche Betriebsbedingungen der Dampfkraftanlage anpa߬ bar. Insbesondere bei Umstellung von Sommer- auf Wmterbe- trieb ist somit das Ruckkuhlsystem 1 der Dampfkraftanlage be¬ sonders flexibel und auf einfache Weise einsetzbar.
Hinsichtlich der baulichen Ausfuhrung des Ruckkuhlsystems 1 smd verschiedene Bauweisen für die Kuhlmodule 4 möglich. Insbesondere können diese in Holzbauweise, Stahlskelettbau¬ weise oder auch in Stahlbetonbauweise ausgeführt sem.

Claims

Patentansprüche
1. Ruckkuhlsystem für Kuhlwasser (K) aus dem Kondensator (2) einer Dampfkraftanlage mit einer Anzahl von Kühlmodulen (4) , von denen jedes über emen ihm zugeordneten Wasserzufuhrungs¬ schacht (20) bespeisbar ist, wobei die Wasserzufuhrungs¬ schächte (20) m der Art kommunizierender Rohren miteinander und über eme gemeinsame Hauptkuhlwasserleitung (8) mit dem Kondensator (2) verbunden smd.
2. Ruckkuhlsystem nach Anspruch 1, g e k e n n z e i c h n e t d u r c h einen an die Haupt¬ kuhlwasserleitung (8) angeschlossenen Wasserüberlauf (32) , der ausgangsseitig über einen Kuhlturmrucklaufkanal (10) ver- bunden ist .
3. Ruckkuhlsystem nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß jeder Wasserzufuhrungsschacht (20) mittels einer ihm zugeordneten Zulauf armatur (24) absperrbar ist.
EP96945758A 1995-12-11 1996-11-29 Rückkühlsystem Expired - Lifetime EP0865596B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19546188 1995-12-11
DE19546188 1995-12-11
PCT/DE1996/002298 WO1997021966A2 (de) 1995-12-11 1996-11-29 Rückkühlsystem

Publications (2)

Publication Number Publication Date
EP0865596A2 true EP0865596A2 (de) 1998-09-23
EP0865596B1 EP0865596B1 (de) 2000-02-23

Family

ID=7779795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96945758A Expired - Lifetime EP0865596B1 (de) 1995-12-11 1996-11-29 Rückkühlsystem

Country Status (14)

Country Link
US (1) US6276446B1 (de)
EP (1) EP0865596B1 (de)
JP (1) JP3839488B2 (de)
KR (1) KR100408325B1 (de)
CN (1) CN1131985C (de)
AU (1) AU707461B2 (de)
CA (1) CA2240099C (de)
DE (1) DE59604506D1 (de)
ES (1) ES2143805T3 (de)
IN (1) IN192591B (de)
MY (1) MY115885A (de)
RU (1) RU2164330C2 (de)
UA (1) UA41465C2 (de)
WO (1) WO1997021966A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19957874A1 (de) * 1999-12-01 2001-06-07 Alstom Power Schweiz Ag Baden Kombikraftwerk
US6834080B1 (en) * 2000-09-05 2004-12-21 Kabushiki Kaisha Toshiba Video encoding method and video encoding apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US803220A (en) * 1904-06-21 1905-10-31 Frank Smedley Farnsworth Surface condenser.
US974598A (en) * 1910-06-04 1910-11-01 Frederick A Sondheimer Condenser.
US1103386A (en) * 1912-12-12 1914-07-14 George L Vail Condenser.
DE2356505A1 (de) * 1973-11-13 1975-05-15 Gea Luftkuehler Happel Gmbh Vorrichtung zum rueckkuehlen einer waermetraeger-fluessigkeit
DE2605527A1 (de) 1976-02-12 1977-08-18 Kraftanlagen Ag Heizkraftwerk
US4168030A (en) 1976-10-22 1979-09-18 Timmerman Robert W Waste heat utilization system
FR2517816B1 (fr) * 1981-12-09 1987-05-22 Cem Comp Electro Mec Systeme de distribution d'eau de refroidissement pour aerorefrigerant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9721966A2 *

Also Published As

Publication number Publication date
WO1997021966A2 (de) 1997-06-19
WO1997021966A3 (de) 1997-08-14
CA2240099C (en) 2004-07-06
ES2143805T3 (es) 2000-05-16
UA41465C2 (uk) 2001-09-17
US6276446B1 (en) 2001-08-21
EP0865596B1 (de) 2000-02-23
CA2240099A1 (en) 1997-06-19
KR100408325B1 (ko) 2004-03-18
AU1766097A (en) 1997-07-03
MY115885A (en) 2003-09-30
JP2000501827A (ja) 2000-02-15
IN192591B (de) 2004-05-08
RU2164330C2 (ru) 2001-03-20
DE59604506D1 (en) 2000-03-30
KR19990071826A (ko) 1999-09-27
CN1131985C (zh) 2003-12-24
JP3839488B2 (ja) 2006-11-01
AU707461B2 (en) 1999-07-08
CN1200170A (zh) 1998-11-25

Similar Documents

Publication Publication Date Title
DE19513285B4 (de) Turbinen-Antrieb für Kesselspeisepumpe / Speisewasser-Leitungssystem
WO2004016945A1 (de) Windturbine mit einem geschlossenen kühlkreislauf
EP2889479B1 (de) Geothermiekraftwerksanlage, Verfahren zum Betrieb einer Geothermiekraftwerksanlage und Verfahren zum Erhöhen der Effizienz einer Geothermiekraftwerksanlage
WO2018010878A1 (de) Kraftwerksanlage mit optimierter vorwärmung von speisewasser für tiefaufgestellte turbosätze
DE202017105111U1 (de) Wärmegewinnungsanlage und Wärmetauschereinheit
EP1262638A1 (de) Vorrichtung zur Kühlmittelkühlung einer Gasturbine und Gas- und Dampfturbinenanlage mit einer derartigen Vorrichtung
EP0854969B1 (de) Dampfturbinenanlage
DE102005034847B4 (de) Dampfkraftwerksanlage
EP0865596B1 (de) Rückkühlsystem
DE19957874A1 (de) Kombikraftwerk
WO1998051952A1 (de) Verfahren und vorrichtung zum erwärmen einer ventilanordnung
DE1751724A1 (de) Mischkondensatorenanlage fuer Dampfturbinenkraftwerke
DE19507167C1 (de) Dampfturbinenanlage
DE1936137A1 (de) Dampfkraftanlage mit Luftkuehlung
EP0019297A2 (de) Verfahren und Vorrichtung zum Erzeugen von Dampf
CH634127A5 (de) Waermekraftwerk mit einer trockenkuehleinrichtung.
DE3635707C2 (de)
DE102019207638A1 (de) Wärmeübertragervorrichtung mit mehreren Wärmeübertragern mit jeweiligen Verteil- und Sammelabschnitten sowie Kälteanlage und Kraftfahrzeug mit Kälteanlage
EP1204811B1 (de) Kraftwerk, insbesondere industriekraftwerk
DE3404853A1 (de) Kernkraftwerk mit notstromversorgung
EP0719378A1 (de) Verfahren zur wirkungsgradverbesserung in wärmekraftwerken mit kühlwasserseitig in reihe geschalteten kondensatoren
DE3108855C2 (de) Rückkühleinrichtung
DE3236499C2 (de)
DE3007159A1 (de) Trockenkuehleinrichtung fuer das werkswasser eines luftgekuehlten kraftwerkes
EP0463532A1 (de) Wrasendampfkondensatoranordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980608

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB LI SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990730

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59604506

Country of ref document: DE

Date of ref document: 20000330

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2143805

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151109

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20151223

Year of fee payment: 20

Ref country code: SE

Payment date: 20151105

Year of fee payment: 20

Ref country code: FR

Payment date: 20151110

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160120

Year of fee payment: 20

Ref country code: CH

Payment date: 20160202

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59604506

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20161128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20161128

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20161130