EP0864664A1 - Verfahren zur Herstellung eines superelastischen Artikels aus Nickel-Titan-Legierung - Google Patents

Verfahren zur Herstellung eines superelastischen Artikels aus Nickel-Titan-Legierung Download PDF

Info

Publication number
EP0864664A1
EP0864664A1 EP98420004A EP98420004A EP0864664A1 EP 0864664 A1 EP0864664 A1 EP 0864664A1 EP 98420004 A EP98420004 A EP 98420004A EP 98420004 A EP98420004 A EP 98420004A EP 0864664 A1 EP0864664 A1 EP 0864664A1
Authority
EP
European Patent Office
Prior art keywords
temperature
nickel
alloy
annealing
work hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98420004A
Other languages
English (en)
French (fr)
Inventor
Bernard Prandi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Memometal Industries
Original Assignee
Memometal Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Memometal Industries filed Critical Memometal Industries
Publication of EP0864664A1 publication Critical patent/EP0864664A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect

Definitions

  • the invention relates to a method for manufacturing a superelastic part made of nickel and titanium alloy.
  • the method of the invention aims, on the contrary, to produce a truly superelastic part thanks to a reasoned choice of the composition of the titanium and nickel alloy and a martensite platelet generation heat treatment in this alloy.
  • This object is achieved by the process of the invention which is characterized in that it consists in producing an ingot from of a mixture of nickel and titanium comprising 55.6% ⁇ 0.4% in weight of nickel and to carry out a heat treatment of generation of martensite wafers by subjecting said part at a temperature between 480 and 520 ° C during a duration between 1 and 60 minutes.
  • the ingot produced has a transition temperature at the end of the appearance of austenite A f of less than 20 ° C. under stress, so that the material is really superelastic under normal temperature conditions.
  • the martensite platelet generation heat treatment facilitates the movements of these platelets inside the material, which corresponds to the superelastic nature.
  • the process also includes a step of flash annealing, this annealing flash being carried out at a temperature between 600 ° and 800 ° C for a period of between 10 and 30 seconds, this duration being a function of the transverse dimensions of the part.
  • This flash annealing partially anneals the surface of the part, which increases its ductility without harming its elasticity.
  • the process includes a crystallization annealing step prior to platelet generation heat treatment of martensite, this crystallization annealing being carried out at a temperature between 700 and 800 ° C, preferably between 720 and 780 ° C for a period greater than two minutes.
  • the temperature range chosen for crystallization annealing achieves true crystallization without precipitation phases of the alloy rich in nickel and without embrittlement of the alloy by grain enlargement.
  • the process includes a work hardening step prior to treatment thermal generation of martensite wafers, this work hardening being between 15 and 28%, preferably between 20 and 27%.
  • the purpose of work hardening is to break the structure of annealing and creating dislocations serving as sites of germination to deformation martensite.
  • this work hardening is cold or lukewarm, i.e. at a temperature less than 500 ° C.
  • work hardening can be performed with intermediate annealing, at a temperature between 400 and 550 ° C.
  • An alloy is really superelastic when the deformation martensite created under a stress ⁇ is not stable.
  • the alloy should not be in the martensitic state in this temperature range. In other words, an alloy is sought whose temperature M s is less than -20 ° C.
  • the temperature difference separating M s and A f is of the order of 40 ° C for titanium and nickel alloys, so that, to comply with the condition previously stated, it is necessary to '' have an alloy whose temperature A f under stress is less than 20 ° C.
  • the effect of a stress on an alloy of titanium and nickel influences the temperatures identified above, to the point that these can be shifted upwards by approximately 30 ° C. This is why, when it is desired to have a temperature A f of less than 20 ° C under stress, it is necessary to provide an alloy composition such that A f is less than -10 ° C in the absence of stress.
  • condition A f below -10 ° C corresponds to an alloy of titanium and nickel rich in nickel, that is to say comprising nickel in a proportion of 55.6% ⁇ 0.4% by weight with, optionally, conventional addition elements such as iron, copper or vanadium, these elements replacing nickel according to rules known to those skilled in the art.
  • Particularly interesting results have been obtained in the case where the percentage of nickel is between 55.8 and 56% by weight.
  • the process of the invention thus begins with a step 1 of mixture of nickel and titanium in the chosen proportions.
  • Stage 1 is followed by a fusion 2, at a temperature of the order of 1300 to 1500 ° C., leading to a first transformation of the ingot when hot, ie at a temperature of between 900 and 1000 ° C., represented by stage 3.
  • a fusion 2 at a temperature of the order of 1300 to 1500 ° C., leading to a first transformation of the ingot when hot, ie at a temperature of between 900 and 1000 ° C., represented by stage 3.
  • Several stages of work hardening 4 and several stages of successive annealing 5 of the ingot can be provided, which is represented by the looping arrow F 1 in FIG. 3.
  • the martensite platelet generation heat treatment included in the process of the invention which is represented by step 12 in FIG. 3, must not have a negative influence on the transition temperature A f, that is to say - say increase this temperature.
  • the heat treatment may have the effect of precipitating TiNi 3 , Ti 2 Ni 3 or Ti 2 Ni 4 .
  • this precipitation corresponds to a decrease in the relative value of nickel in the alloy, so that the transition temperature is displaced according to arrow F in FIG. 2 and that it increases in the unwanted direction. It is therefore important to avoid as much as possible the formation of TiNi 3 or other similar compounds during the heat treatment. It has been determined experimentally that little or no TiNi 3 is formed when the heat treatment is carried out at a temperature above 480 ° C.
  • the process also includes a step 11 of flash annealing prior to platelet generation heat treatment martensite.
  • This step 11 could also be later at treatment 12.
  • This flash annealing is carried out at a temperature between 600 and 800 ° C for a period between 10 and 30 seconds. This duration depends on transverse dimensions of the wire, that is to say of its diameter.
  • the purpose of the flash treatment is to improve the ductility, that is to say the fatigue resistance of the part, without harming with a superelastic effect. This is achieved if a fraction corresponding to approximately 10% of the mass of the part is annealed near the surface of it.
  • this flash annealing can be carried out at a temperature included between 720 ° and 780 ° C.
  • a step 6 of annealing treatment of crystallization is also planned before the heat treatment generation of martensite platelets.
  • This annealing of crystallization must bring a real recrystallization of the whole piece, that is to say that the grains elongated during rolling must be able to be broken to form grains smaller.
  • crystallization annealing must be long enough to bring the whole room to the desired temperature. For a small diameter wire, this is done after two about minutes. For a large piece or a coil complete with wire, crystallization annealing may take longer of one hour.
  • the treatment of annealing tends to weaken the alloy by magnifying the grains or even burns when the annealing temperature reaches 900 ° C. This is why, for safety, we limit the annealing temperature at about 800 ° C.
  • a step 8 work hardening is also provided in the process in order to break the annealing structure and create dislocations serving as a germination site for deformation martensite. Practical tests have shown that when this work hardening is limited to 15%, “annealed” austenite remains inside material and the superelastic effect is not optimal. We speak in this case of "soft" component of the material.
  • This work hardening can be carried out in one or more stages, which is represented by the looping arrow F 2 in FIG. 3, cold or lukewarm, that is to say at a temperature below 500 ° C.
  • an intermediate annealing step 9 can be provided at a temperature between 400 and 550 ° C so not to generate a new recrystallization of the alloy.
  • This intermediate annealing allows, in particular, a setting easier workpiece shape while improving elongation elastic obtainable.
  • the wire is calibrated in a shaping step 10.
  • a superelastic part obtained by the process of the invention finds many applications.
  • the process can be used for the manufacture of threads, the diameter is between 0.5 and 5 mm and which can serve as glasses frame, but also bra frame, cell phone antenna, needle, prosthetic piece or for ancillary equipment intended for the installation of prostheses in the medical field.
  • the cross section of these wires can be round, square, rectangular or other, as desired the user.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Materials For Medical Uses (AREA)
  • Adornments (AREA)
EP98420004A 1997-01-16 1998-01-14 Verfahren zur Herstellung eines superelastischen Artikels aus Nickel-Titan-Legierung Withdrawn EP0864664A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9700598A FR2758338B1 (fr) 1997-01-16 1997-01-16 Procede de fabrication d'une piece superelastique en alliage de nickel et de titane
FR9700598 1997-01-16

Publications (1)

Publication Number Publication Date
EP0864664A1 true EP0864664A1 (de) 1998-09-16

Family

ID=9502825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98420004A Withdrawn EP0864664A1 (de) 1997-01-16 1998-01-14 Verfahren zur Herstellung eines superelastischen Artikels aus Nickel-Titan-Legierung

Country Status (3)

Country Link
US (1) US5958159A (de)
EP (1) EP0864664A1 (de)
FR (1) FR2758338B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2900694A1 (fr) * 2006-05-05 2007-11-09 Sdgi Holdings Inc Procede de realisation d'une connexion entre au moins deux pieces utilisant une piece de serrage, piece de serrage et systeme de connexion la comprenant

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106642A (en) * 1998-02-19 2000-08-22 Boston Scientific Limited Process for the improved ductility of nitinol
US6057498A (en) * 1999-01-28 2000-05-02 Barney; Jonathan A. Vibratory string for musical instrument
US20030226441A1 (en) * 2000-01-28 2003-12-11 Barney Jonathan A. Tension regulator for stringed instruments
US7192496B2 (en) * 2003-05-01 2007-03-20 Ati Properties, Inc. Methods of processing nickel-titanium alloys
US7455737B2 (en) * 2003-08-25 2008-11-25 Boston Scientific Scimed, Inc. Selective treatment of linear elastic materials to produce localized areas of superelasticity
FR2884406B1 (fr) 2005-04-14 2008-10-17 Memometal Technologies Soc Par Dispositif d'osteosynthese intramedullaire de deux parties d'os, notamment de la main et/ou du pied
FR2913876B1 (fr) 2007-03-20 2009-06-05 Memometal Technologies Soc Par Dispositif d'osteosynthese
US8915916B2 (en) 2008-05-05 2014-12-23 Mayo Foundation For Medical Education And Research Intramedullary fixation device for small bone fractures
FR2935601B1 (fr) * 2008-09-09 2010-10-01 Memometal Technologies Implant intramedullaire resorbable entre deux os ou deux fragments osseux
US9724140B2 (en) 2010-06-02 2017-08-08 Wright Medical Technology, Inc. Tapered, cylindrical cruciform hammer toe implant and method
US9498273B2 (en) 2010-06-02 2016-11-22 Wright Medical Technology, Inc. Orthopedic implant kit
US8608785B2 (en) 2010-06-02 2013-12-17 Wright Medical Technology, Inc. Hammer toe implant with expansion portion for retrograde approach
US8475711B2 (en) 2010-08-12 2013-07-02 Ati Properties, Inc. Processing of nickel-titanium alloys
US8945232B2 (en) 2012-12-31 2015-02-03 Wright Medical Technology, Inc. Ball and socket implants for correction of hammer toes and claw toes
US9279171B2 (en) 2013-03-15 2016-03-08 Ati Properties, Inc. Thermo-mechanical processing of nickel-titanium alloys
US9724139B2 (en) 2013-10-01 2017-08-08 Wright Medical Technology, Inc. Hammer toe implant and method
US9474561B2 (en) 2013-11-19 2016-10-25 Wright Medical Technology, Inc. Two-wire technique for installing hammertoe implant
US9545274B2 (en) 2014-02-12 2017-01-17 Wright Medical Technology, Inc. Intramedullary implant, system, and method for inserting an implant into a bone
US9498266B2 (en) 2014-02-12 2016-11-22 Wright Medical Technology, Inc. Intramedullary implant, system, and method for inserting an implant into a bone
AU2014331633B2 (en) 2014-09-18 2017-06-22 Wright Medical Technology, Inc Hammertoe implant and instrument
EP3232960A4 (de) 2014-12-19 2018-08-15 Wright Medical Technology, Inc. Intramedullärer anker für interphalangäre arthrodese
US9757168B2 (en) 2015-03-03 2017-09-12 Howmedica Osteonics Corp. Orthopedic implant and methods of implanting and removing same
EP3251621B1 (de) 2016-06-03 2021-01-20 Stryker European Holdings I, LLC Intramedulläres implantat
WO2018076010A1 (en) * 2016-10-21 2018-04-26 Confluent Medical Technologies, Inc. Materials having superelastic properties including related methods of fabrication and design for medical devices
CN111593231B (zh) * 2020-05-09 2021-08-20 中国科学院金属研究所 一种高纯NiTi合金丝材的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2117001A (en) * 1982-02-27 1983-10-05 Tohoku Metal Ind Ltd Titanium-nickel alloy having reversible shape memory
EP0143580A1 (de) * 1983-11-15 1985-06-05 RAYCHEM CORPORATION (a Delaware corporation) Formgedächtnislegierungen
EP0161066A1 (de) * 1984-04-04 1985-11-13 RAYCHEM CORPORATION (a Delaware corporation) Legierungen auf Nickel-Titanbasis
EP0167221A1 (de) * 1984-05-09 1986-01-08 Kyoto University Eisen-Nickel-Titan-Kobaltlegierung mit Formgedächtniseigenschaft und Pseudo-Elastizität sowie Verfahren zur Herstellung dieser Legierung
US4894100A (en) * 1987-01-08 1990-01-16 Tokin Corporation Ti-Ni-V shape memory alloy
EP0353816A1 (de) * 1988-08-01 1990-02-07 Matsushita Electric Works, Ltd. Gedächtnislegierung und Schutzvorrichtung für elektrische Stromkreise unter Verwendung dieser Legierung
WO1995027092A1 (en) * 1994-03-31 1995-10-12 Besselink Petrus A Ni-Ti-Nb ALLOY PROCESSING METHOD AND ARTICLES FORMED FROM THE ALLOY

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2117001A (en) * 1982-02-27 1983-10-05 Tohoku Metal Ind Ltd Titanium-nickel alloy having reversible shape memory
EP0143580A1 (de) * 1983-11-15 1985-06-05 RAYCHEM CORPORATION (a Delaware corporation) Formgedächtnislegierungen
EP0161066A1 (de) * 1984-04-04 1985-11-13 RAYCHEM CORPORATION (a Delaware corporation) Legierungen auf Nickel-Titanbasis
EP0167221A1 (de) * 1984-05-09 1986-01-08 Kyoto University Eisen-Nickel-Titan-Kobaltlegierung mit Formgedächtniseigenschaft und Pseudo-Elastizität sowie Verfahren zur Herstellung dieser Legierung
US4894100A (en) * 1987-01-08 1990-01-16 Tokin Corporation Ti-Ni-V shape memory alloy
EP0353816A1 (de) * 1988-08-01 1990-02-07 Matsushita Electric Works, Ltd. Gedächtnislegierung und Schutzvorrichtung für elektrische Stromkreise unter Verwendung dieser Legierung
WO1995027092A1 (en) * 1994-03-31 1995-10-12 Besselink Petrus A Ni-Ti-Nb ALLOY PROCESSING METHOD AND ARTICLES FORMED FROM THE ALLOY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2900694A1 (fr) * 2006-05-05 2007-11-09 Sdgi Holdings Inc Procede de realisation d'une connexion entre au moins deux pieces utilisant une piece de serrage, piece de serrage et systeme de connexion la comprenant
WO2007129154A1 (en) * 2006-05-05 2007-11-15 Warsaw Orthopedic, Inc. Method for making a connection between at least two parts using a clamping part, clamping part and connection system including the clamping part

Also Published As

Publication number Publication date
FR2758338B1 (fr) 1999-04-09
FR2758338A1 (fr) 1998-07-17
US5958159A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
EP0864664A1 (de) Verfahren zur Herstellung eines superelastischen Artikels aus Nickel-Titan-Legierung
FR2532662A1 (fr) Procede de production d'un alliage de cuivre au beryllium et cet alliage
FR2941962A1 (fr) Procede de fabrication d'une piece en superalliage a base de nickel, et piece ainsi obtenue.
CA2984131C (fr) Acier, produit realise en cet acier, et son procede de fabrication
EP3165622B1 (de) Herstellungsverfahren eines drahtes aus einer goldlegierung
FR2772790A1 (fr) ALLIAGES INTERMETALLIQUES A BASE DE TITANE DU TYPE Ti2AlNb A HAUTE LIMITE D'ELASTICITE ET FORTE RESISTANCE AU FLUAGE
FR2462484A1 (fr) Alliage a base de titane du type ti3al
FR2557145A1 (fr) Procede de traitements thermomecaniques pour superalliages en vue d'obtenir des structures a hautes caracteristiques mecaniques
EP0863219B1 (de) Titanaluminid zum Gebrauch bei erhöhter Temperatur
FR2655057A1 (fr) Alliages titane-aluminium-vanadium et procede de traitement de pieces forgees en de tels alliages.
EP0792945B1 (de) Wärmebehandlungsverfahren für Superlegierung auf Nickelbasis
CA2435938C (fr) Acier isotrope a haute resistance, procede de fabrication de toles et toles obtenues
CH715726B1 (fr) Procédé d'obtention d'un composant fonctionnel pour mouvement horloger.
EP0382109B1 (de) Verfahren zur Behandlung eines Werkstücks aus einer metallischen Formgedächtnislegierung mit zwei umkehrbaren Formgedächtniszuständen
FR2691983A1 (fr) Procédé de traitement thermique d'un superalliage à base de nickel.
FR2628349A1 (fr) Procede de forgeage de pieces en superalliage a base de nickel
EP0555124A1 (de) Einkristalline Superlegierung auf Nickelbasis mit verbesserte Oxydationsbeständigkeit und Verfahren zu seiner Herstellung
CH677677A5 (de)
FR2952559A1 (fr) Procede de fabrication d'alliages de titane avec forgeages a temperatures incrementees
CH719372B1 (fr) Axe de pivotement pour mouvement horloger.
WO2023232938A1 (fr) Procede de fabrication d'un composant horloger ou de bijouterie et ledit composant horloger ou de bijouterie
CH715728B1 (fr) Procédé d'obtention d'un composant d'or 18 carats pour des applications d'habillage horloger et de joaillerie.
FR2643086A1 (fr) Procede de conditionnement d'une piece en alliage metallique a memoire de forme presentant deux etats de memoire de forme reversibles
CH715727B1 (fr) Procédé d'obtention d'un composant micromécanique en alliage d'or 18 carats.
EP0856069A1 (de) Verfahren zur waermebehandlung eines bleches aus einer nickellegierung und nach diesem verfahren hergestelltes erzeugnis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990312

AKX Designation fees paid

Free format text: DE ES FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20000331

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020202