EP0864101A1 - Capteur magnetoresistif a point zero stable en temperature - Google Patents

Capteur magnetoresistif a point zero stable en temperature

Info

Publication number
EP0864101A1
EP0864101A1 EP97939970A EP97939970A EP0864101A1 EP 0864101 A1 EP0864101 A1 EP 0864101A1 EP 97939970 A EP97939970 A EP 97939970A EP 97939970 A EP97939970 A EP 97939970A EP 0864101 A1 EP0864101 A1 EP 0864101A1
Authority
EP
European Patent Office
Prior art keywords
sensor
angle
magnetoresistive
contact
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97939970A
Other languages
German (de)
English (en)
Inventor
Klaus Marx
Franz Jost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0864101A1 publication Critical patent/EP0864101A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Definitions

  • the invention relates to a magnetoresistive sensor with a temperature-stable zero point, in particular a magnetoresistive angle sensor according to the preamble of the main claim.
  • magnetoresistive sensors for the contactless detection of changes in state, for example for angle measurement on a rotatably mounted part.
  • Such magnetoresistive sensors usually comprise magnetic field-dependent resistors which are connected in a bridge and through which a control current which is fed in on a diagonal of the bridge flows.
  • Bridge voltage and the magnetic field direction is used in the non-contact AMR (anisotropy magneto resistance) - angle encoder used for data acquisition. So that an accurate measurement is possible at all, a zero point must first be defined or the sensor must be calibrated.
  • a method for adjusting a magnetoresistive sensor is known, with which the offset error can be compensated.
  • the magnetoresistive sensor which is constructed as a bridge circuit, is subjected to a homogeneous, defined magnetic field, and a defined control current is applied to the current contacts of the bridge circuit. The voltage then established at the other contacts is measured continuously, the magnetoresistive sensor being processed with the aid of a laser until the offset voltage becomes zero when the magnetic field is applied.
  • the object of the present invention is to construct a magnetoresistive angle sensor with a temperature-stable zero point or to subject a conventional magnetoresistive sensor to an adjustment method which ensures that maximum temperature stability is achieved at the zero point.
  • the sensor according to the invention with a temperature-stable zero point has the advantage that a conventional magnetoresistive sensor can be used and that nevertheless a temperature-stable zero point can be set without having to change the basic structure of the magnetoresistive sensor.
  • This advantage is achieved by first searching for the suitable zero point of the magnetoresistive sensor. For this, z. B. in an angle sensor, the magnetoresistive sensor is exposed to a rotating magnetic field and the angle error, that is to say the difference between the measured angle and the actually existing angle, is determined. This angular deviation is determined at different temperatures, two different temperatures being sufficient. A comparison of the angular deviations measured at different temperatures shows that a particularly small angular deviation occurs for some reference angles. This is a property of magnetoresistive sensors that is reproducible and can also be confirmed by means of simulation. If an angle at which the angular deviation depends only slightly on the temperature is selected as the zero point angle, the desired temperature stability of the zero point is obtained.
  • FIG. 1 shows a block diagram of a magnetoresistive sensor which is known per se.
  • the angle error is plotted as a function of the angle in FIG. 2, the values obtained being valid for one measurement.
  • Figures 3 and 4 show further relationships from a simulation calculation.
  • Figure 5 is the derivation of the angular error plotted against the angular position and
  • FIG. 6 shows measured angular deviations plotted against the reference angle for different temperatures, the areas suitable as special angles being marked with minimal temperature dependence.
  • FIG. 1 shows an example of a contactless magnetoresistive sensor with two AMR sensor elements (anisotropy magneto resistance) which are rotated relative to one another by 45 °
  • Embodiment are constructed as resistance bridges, but could also be designed differently 10, 11.
  • a current I is supplied to the AMR sensor elements 10, 11.
  • Evaluation circuit 12 can be evaluated for angle measurement.
  • a sensor as shown in FIG. 1 is used as a non-contact angle sensor, for example for measuring the throttle valve position or as a pedal value transmitter, it is necessary for the evaluation to ensure that the zero point position of the sensor is temperature stable.
  • the control unit determines the zero point of the angle sensor at a specific temperature.
  • the electronic zero point determined in this way should only change slightly with the temperature, since otherwise problems with the idle speed control or with a mechanical stop may occur.
  • the reduction in temperature dependency at the zero point is achieved with conventional use of AMR sensors, for example, through complex wiring or through the use of special filters.
  • another path is followed, which is based on the
  • the special angle i.e. the angle that will later serve as the zero point angle
  • the angular deviation is first determined at room temperature Tl, for this purpose the output voltage U ( ⁇ , t) measured as a function of the magnetic field direction, it being possible for example to measure over the entire 360 °.
  • the sensor elements consist of magnetoresistive resistors, a higher current can be applied to the sensors or the sensor bridge by applying a higher current
  • Temperature T2 can be heated. After this second temperature T2 has been reached, the angular deviation is determined again, the angular deviation being the size by which the magnetic field direction measured with the aid of the sensor differs from the actual one. Will the two
  • Sensor housing is taken into account that one of the special angles obtained is used as the zero point. If necessary, the exact adjustment can be made by an electronic correction.
  • the described method for determining a temperature-stable zero point position and the subsequent assembly of the sensor and the magnet to be scanned can, in principle, also result in a linear correction of the offset in a specific angular range, as a result of which the angular accuracy can be further increased.
  • the method can also be extended to displacement measurements, in which case voltage curves of the output signal of the sensor at different temperatures must again be recorded and compared with one another to determine at least one special point with a low T dependence.
  • mechanical angle to be determined
  • t temperature of the sensor in ° C, ß, ⁇ , ⁇ , AI, A2, 01, 02, ⁇ : exemplary
  • U2 ( ⁇ , t) U20 (t) + U2d (t) * sin (2 ⁇ )
  • U ( ⁇ , t) Ul ( ⁇ , t) + j * U2 ( ⁇ , t)
  • the angle error is denoted by ⁇ ( ⁇ , t), it is the difference between the electrically measured angle and the double mechanical angle.
  • Mechanical angle means the mechanical angle to be recorded, double mechanical angle since the voltages Ul ( ⁇ , t) and U2 ( ⁇ , t) depend on sin (2 ⁇ ) and cos (2 ⁇ ).
  • 3 and 5 show the course of the angular error over the angle for different temperatures.
  • FIG. 4 shows the relationship between U2 and Ul for different temperatures and
  • FIG. 6 shows the derivation of the angular error

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

L'invention concerne un capteur magnétorésistif sans contact, notamment un capteur de déplacement angulaire, qui délivre un signal de sortie en fonction de la position angulaire à déterminer, lequel présente une certaine variabilité thermique. Cette variabilité thermique est toutefois minimale à des angles bien définis. Le signal de sortie du capteur de déplacement angulaire est donc tout d'abord déterminé pour au moins deux températures différentes, sur la plage angulaire, et l'un des angles, pour lequel l'écart entre les signaux est faible, est sélectionné comme point zéro pour les mesures suivantes.
EP97939970A 1996-10-02 1997-08-23 Capteur magnetoresistif a point zero stable en temperature Withdrawn EP0864101A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19640695A DE19640695A1 (de) 1996-10-02 1996-10-02 Magnetoresistiver Sensor mit temperaturstabilem Nullpunkt
DE19640695 1996-10-02
PCT/DE1997/001834 WO1998014792A1 (fr) 1996-10-02 1997-08-23 Capteur magnetoresistif a point zero stable en temperature

Publications (1)

Publication Number Publication Date
EP0864101A1 true EP0864101A1 (fr) 1998-09-16

Family

ID=7807703

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97939970A Withdrawn EP0864101A1 (fr) 1996-10-02 1997-08-23 Capteur magnetoresistif a point zero stable en temperature

Country Status (6)

Country Link
US (1) US6104187A (fr)
EP (1) EP0864101A1 (fr)
JP (1) JP2000501514A (fr)
KR (1) KR19990071701A (fr)
DE (1) DE19640695A1 (fr)
WO (1) WO1998014792A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19817356A1 (de) 1998-04-18 1999-10-21 Bosch Gmbh Robert Winkelgeber und Verfahren zur Winkelbestimmung
DE19839446A1 (de) * 1998-08-29 2000-03-02 Bosch Gmbh Robert Anordnung zur Drehwinkelerfassung eines drehbaren Elements
DE19849613A1 (de) 1998-10-28 2000-05-04 Philips Corp Intellectual Pty Anordnung zur Messung einer relativen linearen Position
DE19902188A1 (de) * 1999-01-21 2000-07-27 Philips Corp Intellectual Pty Anordnung zur Drehzahlmessung
US6411081B1 (en) * 2000-02-10 2002-06-25 Siemens Ag Linear position sensor using magnetic fields
US6633462B2 (en) * 2000-07-13 2003-10-14 Koninklijke Philips Electronics N.V. Magnetoresistive angle sensor having several sensing elements
US6448763B1 (en) * 2001-01-10 2002-09-10 Siemens Corporation System for magnetization to produce linear change in field angle
DE10113131B4 (de) * 2001-03-17 2006-11-16 Sensitec Gmbh Anordnung zur Messung der magnetischen Feldstärke oder von örtlichen Differenzen magnetischer Feldstärken, sowie Schaltungsanordnung für die Auswerteeinheit und Verwendungen der Anordnung und der Schaltungsanordnung
EP1260787A1 (fr) * 2001-05-21 2002-11-27 ruf electronics gmbh Capteur d'angle utilisant des éléments de mesure magnétorésistifs
DE10130988A1 (de) * 2001-06-27 2003-01-16 Philips Corp Intellectual Pty Justierung eines magnetoresistiven Winkelsensors
ITTO20010730A1 (it) * 2001-07-24 2003-01-24 Campagnolo Srl Trasduttore di grandezze angolari.
DE10224288A1 (de) * 2002-05-31 2003-12-11 Zf Lenksysteme Gmbh Vorrichtung zur Messung eines Drehwinkels
US20040012385A1 (en) * 2002-07-16 2004-01-22 Kirkpatrick Richard A. Apparatus and method for generating an offset voltage for angular position calculations
DE10308030B4 (de) 2003-02-24 2011-02-03 Meas Deutschland Gmbh Magnetoresistiver Sensor zur Bestimmung eines Winkels oder einer Position
US7443161B2 (en) * 2004-01-07 2008-10-28 Stefan Butzmann Method of determining angles
US7005915B2 (en) 2004-02-27 2006-02-28 Honeywell International Inc. Series bridge circuit with amplifiers
DE102005014509B4 (de) * 2005-03-30 2007-09-13 Austriamicrosystems Ag Sensoranordnung und Verfahren zur Bestimmung eines Drehwinkels
DE102005054007A1 (de) * 2005-11-10 2007-05-24 Hl-Planar Technik Gmbh Herstellungsverfahren für magnetoresistive Bauelemente
US8933691B2 (en) * 2007-10-27 2015-01-13 Walbro Engine Management, L.L.C. Rotary position sensor
JP5380425B2 (ja) * 2010-12-28 2014-01-08 日立オートモティブシステムズ株式会社 磁界角計測装置,回転角計測装置およびそれを用いた回転機,システム,車両および車両駆動装置
US20130314075A1 (en) * 2012-05-22 2013-11-28 Udo Ausserlechner Offset error compensation systems and methods in sensors
JP5682798B2 (ja) * 2012-08-06 2015-03-11 株式会社デンソー 位置検出装置
FR3007845B1 (fr) * 2013-07-01 2015-07-31 Ntn Snr Roulements Capteur de detection d’un champ magnetique periodique emis par un codeur
WO2016090222A1 (fr) * 2014-12-04 2016-06-09 Server Technology, Inc. Dispositif de capteur magnéto-résistif et circuit régulateur de polarisation magnétique, conjointement avec des systèmes et des procédés les comprenant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD275306A1 (de) * 1988-09-02 1990-01-17 Dal Inst F Zuechtungsforschung Vorrichtung fuer einen temperaturkompensierten magnetoresistiven wegesensor
US5351003A (en) * 1993-04-02 1994-09-27 General Motors Corporation Temperature compensated magnetoresistive position sensor
DE4336482A1 (de) * 1993-10-26 1995-04-27 Bosch Gmbh Robert Verfahren zum Abgleichen eines magnetoresistiven Sensors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9814792A1 *

Also Published As

Publication number Publication date
DE19640695A1 (de) 1998-04-09
US6104187A (en) 2000-08-15
JP2000501514A (ja) 2000-02-08
KR19990071701A (ko) 1999-09-27
WO1998014792A1 (fr) 1998-04-09

Similar Documents

Publication Publication Date Title
WO1998014792A1 (fr) Capteur magnetoresistif a point zero stable en temperature
EP0740776B1 (fr) Systeme de determination sans contact de l'angle de rotation d'un element rotatif
DE102005024879B4 (de) Verfahren zum Bestimmen von Restfehler-Kompensationsparametern für einen magnetoresistiven Winkelsensor und Verfahren zum Verringern eines Restwinkelfehlers bei einem magnetoresistiven Winkelsensor
EP0997706B1 (fr) Dispositif pour mesurer une position relative linéaire
WO1999054684A1 (fr) Capteur angulaire et procede de determination d'un angle
EP1046047B1 (fr) Element detecteur magnetoresistif avec possibilite de choisir le sens d'aimantation de la couche de polarisation
DE10037211A1 (de) Lenkradstellungssensor
WO2005029106A1 (fr) Detecteur pour capter l'orientation d'un champ magnetique dans un plan
WO1988004408A1 (fr) Dispositif de mesure d'une rotation angulaire et ou d'une vitesse de rotation
EP0620416B1 (fr) Système de mesure magnétique
EP1271093A2 (fr) Ajustement d'un palpeur d'angle magnéto-résistif
WO1997000426A1 (fr) Puce detectrice utile pour determiner le deplacement d'un champ magnetique
DE3631042A1 (de) Winkelsensor
EP0997701A2 (fr) Système de mesure d'angles avec une compensation de la tension offset
WO1986000986A1 (fr) Dispositif sensible magnetoresistif pour mesurer des variations du champ magnetique et procede pour le fabriquer
DE3815009A1 (de) Einrichtung und verfahren zum zerstoerungsfreien messen des ohmschen widerstands duenner schichten nach dem wirbelstrom-prinzip
DE3040316C2 (de) Verfahren und Vorrichtung zur kontaktlosen Messung von Gleich- und Wechselströmen, insbesondere von Strom-Augenblickswerten
EP0240707A1 (fr) Dispositif pour mesurer la position sans contact
EP0729587B1 (fr) Procede d'ajustage d'un detecteur magnetoresistif
DE10008987C2 (de) Verfahren zum Anpassen von Sensoren an Kurbelwellen und Nockenwellen
DE19812307C2 (de) Diagnoseeinrichtung für einen Giant Magnetoresistiven Sensor
DE102009029406A1 (de) Verfahren und Vorrichtung zur Temperatur-Überwachung in einem Steuergerät einer elektrischen Hilfskraftlenkung
EP1348974A2 (fr) Elément capteur et dispositif de mesure des gradients, application à la mesure des gradients magnétique et méthode correspondante
DE19532065C2 (de) Magnetoresistiver Sensor
EP0496934B1 (fr) Méthode pour utiliser un palpeur inductif de distance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19981009

17Q First examination report despatched

Effective date: 20030811

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031223