EP0862820B1 - Vorrichtung zur optischen signalübertragung - Google Patents

Vorrichtung zur optischen signalübertragung Download PDF

Info

Publication number
EP0862820B1
EP0862820B1 EP96942260A EP96942260A EP0862820B1 EP 0862820 B1 EP0862820 B1 EP 0862820B1 EP 96942260 A EP96942260 A EP 96942260A EP 96942260 A EP96942260 A EP 96942260A EP 0862820 B1 EP0862820 B1 EP 0862820B1
Authority
EP
European Patent Office
Prior art keywords
optical
transmission medium
optical transmission
movement
transmitting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96942260A
Other languages
English (en)
French (fr)
Other versions
EP0862820A1 (de
Inventor
Georg Lohr
Markus Stark
Hans Poisel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schleifring und Apparatebau GmbH
Original Assignee
Schleifring und Apparatebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19543385A external-priority patent/DE19543385C1/de
Priority claimed from DE19543387A external-priority patent/DE19543387C1/de
Priority claimed from DE19543386A external-priority patent/DE19543386C1/de
Application filed by Schleifring und Apparatebau GmbH filed Critical Schleifring und Apparatebau GmbH
Publication of EP0862820A1 publication Critical patent/EP0862820A1/de
Application granted granted Critical
Publication of EP0862820B1 publication Critical patent/EP0862820B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/06Non-electrical signal transmission systems, e.g. optical systems through light guides, e.g. optical fibres

Definitions

  • the invention relates to optical devices Signal transmission between a transmitting unit and a Relatively mobile receiving unit, which has one of the light-conducting body, here as an optical transmission medium referred to, are optically coupled together.
  • optical Systems For data and signal transmission are often optical Systems used. These basically consist of one Transmitting unit and a receiving unit, both via a optical transmission medium are interconnected. is the optical transmission medium the free space or air so results in a light barrier-like arrangement.
  • optical fibers such as glass or plastic fibers used to guide the light.
  • optical fibers such as glass or plastic fibers used to guide the light.
  • the removal of the optical path, between transmitting and receiving unit constant. That means, that the amplitude of the received signal in the receiving unit is hardly subject to fluctuations over time. This results a consistent transmission quality.
  • the transmitter now goes through all positions starting from the Receiver to the end of the optical medium, so does the Runtime too.
  • the light comes to almost no runtime Receiver.
  • This abrupt runtime difference which during the transition can occur in the transferred Signals cause a phase jump.
  • This phase jump limits the transmissible bandwidth and can lead to transmission errors to lead.
  • optical transmission medium in the transmission of optical signals via a formed into a closed curve optical transmission medium is an overlap at the beginning and end of the optical medium unavoidable, provided no failure of the Transfer in this position can be accepted.
  • the first signal reaches after a short distance and thus also short time the receiver.
  • the second signal arrives after passing through a longer distance and thus with a big one Delay the receiver. Both signals are now superimposed and give a wrong sum signal. This will be the Transmission negatively affected.
  • the signal propagation time equals half Period results in an extinction of the signal. Meaningful data transfer is no longer possible here.
  • EP-A-0 149 280 discloses an arrangement for data transmission between two relatively rotatable parts described.
  • a transmitter feeds light into a hollow cylindrical one and on the inside mirrored mirror.
  • At least two receiving transducers are provided whose output signals supplied to the inputs of an OR circuit are.
  • This arrangement has the disadvantage of bandwidth limitation as well as very strong signal amplitudes due to the high attenuation of the long path length of the transmission path.
  • the invention is based on the object, a device for optical signal transmission between a transmitting unit and a relatively movable receiving unit, the over an optical transmission medium are coupled together, in such a way that the aforementioned disturbing influences largely switched off on the transmission quality should be.
  • the Transmission quality independent of relative movements between Transmitter and receiver unit i. that no the data transmission interfering signal overlaps at the place of Receiving unit occur.
  • the device should have a require little space and cost and in particular be suitable for broadband signal transmission.
  • the receiving unit at least one optical Receiver has that of an optical transmission medium whose length is shorter than that of an optical transmitter traveled path relative to the transmission medium, and that the transmitting unit has at least two optical Transmitter, the so in the longitudinal direction of movement spaced apart so that the light at least an optical transmitter coupled into the transmission medium.
  • This subject matter of the invention also relates to an optical signal transmission between moving parts.
  • the Movement can be circular, linear, or any other take any curve, as long as a sufficient Signal coupling from the transmitting unit to the optical transmission medium is guaranteed.
  • path length of Movement refers to linearly moving parts Length of the path along which the transmitting unit and receiving unit can be moved against each other.
  • circular Movements refers to the corresponding share of the Circumference of the circle, however, to the full extent of the circle. This also applies to any other curve along one of them Movement can take place.
  • the optical Path length be made as short as possible.
  • optical signals with different maturities the receiving unit to reach can be safely prevented optical signals with different maturities the receiving unit to reach.
  • optical transmitter with little effort and low Costs are producible while optical receivers alone due to the broadband amplifier very elaborate and are expensive.
  • an optical medium is not used, in that on the whole way of moving from a transmitter Light can be coupled, but it will be a short used optical medium, which is only part of the path length covers. So that on the whole path length an optical transmission becomes possible, are several optical transmitters in the transmitting unit available. These are arranged so that always at least one optical transmitter illuminates the optical medium. This is a seamless signal transmission on the total path length possible.
  • the receivers of the receiving unit are not as usual at the end of the sections of optical media, but roughly arranged in the middle of the sections of the optical media.
  • the transit times of the optical signals of both Ends of the optical medium the same size.
  • the optical transmitters of the transmitting unit are then arranged so that the distances between them are so great that as soon as a transmitter is an optical Medium leaves, just a second transmitter on the other side of this optical medium approaches. This is one seamless signal transmission possible.
  • the receiving unit contains several optical receivers each connected to an optical medium.
  • the Receiving unit is designed such that the signals of the optical receivers are linked together so that a higher signal level or higher reliability Redundancy can be achieved.
  • the Signals from several optical receivers can be added to overall a higher signal level and less noise to obtain.
  • several signals can be combined to enable redundant transmission, so that in case of failure of a transmitter, an optical medium or also a receiver's transmission over another way still possible.
  • Another embodiment relates to an arrangement in which the transmitting unit contains a position sensor.
  • This position sensor Determines which optical transmitter is watching located above an optical medium. This will be the corresponding one optical transmitter signals. This allows the optical transmitters activate the full transmit power and optical Transmit signals. He leaves the area of the optical Medium, he is signaled to leave and he can reduce its transmission power or even completely switch off. With this arrangement, the total power consumption of the transmission system is reduced. By switching off the Transmitter also increases their life and production of electromagnetic interference in the powerful Transmission drivers are reduced.
  • the transmitting unit has at least as many optical transmitters as signal channels present are.
  • the transmitting unit and / or the receiving unit is now designed so that they also have a selector switch contains, which is controlled by a position sensor. Of the Position sensor tells the selector switch which optical Transmitter just signals over the optical medium and the associated receiver on a particular logical signal channel can transfer. It is important that every signal channel is transmitted via a defined path. The transmission path may vary depending on the position of the transmitting and receiving unit vary. It only has to be ensured that z. B. the Signals of the channel 1 on the side of the transmitting unit also for Channel 1 can be transmitted on the side of the receiving unit.
  • a selector switch on the side of the Sender unit is present, are displayed. Is located z. As the transmitter 1 on the receiver 1, so is the logical signal channel 1 from the selector switch to the transmitter 1 connected through. Now the device moves a bit continue, so at a later time the transmitter 2 the receiver 1 stand. Now the selector switches the Signals of the signal channel 1 to the transmitter 2, so that this can transmit its signals back to the receiver 1. Emotional The whole arrangement in turn a little further, so is at a later time transmitter 3 above the receiver 1. Now, the selector switch the signal channel 1 to the transmitter 3, so that this again signals to the receiver 1 can transmit.
  • the corresponding scheme applies to all other transmitters, receivers and signal channels as well.
  • the transmission medium used a photoconductive fiber.
  • This fiber can work accordingly the prior art as glass fiber, plastic fiber or fiber of another photoconductive material be educated.
  • the transmission medium can be light-guiding molding.
  • a light-conducting Liquid used as a transmission medium.
  • a further embodiment of the device according to the invention is based on the light beam propagation within the optical transmission medium in such a way that either optical signals on different Because of within the transmission medium in the way spread that they are the same at the place of the receiving unit Times arrive so that they are put together into a single signal or that the transmission medium is in a way that is designed for a separate spatial Signal transmission of the individual light signals is ensured to avoid signal overlaps.
  • a further advantageous embodiment is that in the case of a linear movement between transmitting unit and Receiving unit, the transmission medium also linear is formed, and preferably parallel to the direction of movement is arranged.
  • a further advantageous embodiment is that in the case of a circular movement between the transmitting unit and receiving unit, the transmission medium also circular is formed, and preferably parallel to the direction of movement is arranged.
  • the transmission medium from a circular arranged optical fiber consisting of a fluorescent dye is doped. By this doping can light be coupled at any point of the fiber.
  • the transmission medium interrupted at least at one point, by deriving the transit times of the optical signals in both directions the transmission medium to the receiving unit equal are big.
  • This device is based on the idea that a desired independence of bandwidth from the Signal propagation times can only be achieved if prevented is that signals in different ways with different Runtime reach the recipient. This means that the independence of the bandwidth from the signal delays guaranteed, provided that only a single signal is the receiver reached. This is e.g. at a linear distance the Case. Similarly, independence can be achieved if several signals arrive at the receiver, but all signals have the same terms to the receiver.
  • Another embodiment results from the fiber with doped with a fluorescent dye, so that the Coupling of light at each position of the transmitting unit becomes particularly easy along the curve in the fiber.
  • Figure 1 shows an inventive arrangement consisting of a transmitting unit 1 and a receiving unit 2, connected with an optical medium 4.
  • the transmitting unit has several, but at least two optical transmitters, of which here by way of example some (3A, 3B, 3C, 3D) are shown as such are designed to be optical information in the optical Can couple medium. These transmitters are arranged that in each case at least one transmitter in the optical Medium coupled.
  • the position sensor P determines the position the optical transmitter and signals the stations the Location over an optical medium such that these then their Enable transmit power.
  • the transmitting unit includes a selection switch A, which establishes the logical association between the logical signal channels, transmitters and receivers based on the information of the position sensor P.
  • the receiving unit 2 includes a plurality of optical receivers (5A, 5B, 5C) with associated optical transmission media (4A, 4B, 4C), some of which are exemplified herein, but at least one for each logical signal channel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)

Description

Technisches Gebiet
Die Erfindung bezieht sich auf Vorrichtungen zur optischen Signalübertragung zwischen einer Sendeeinheit und einer relativ dazu beweglichen Empfangseinheit, die über einen der lichtleitenden Körper, hier als optisches Übertragungsmedium bezeichnet, optisch miteinander gekoppelt sind.
Stand der Technik
Zur Daten- und Signalübertragung werden häufig optische Systeme eingesetzt. Diese bestehen grundsätzlich aus einer Sendeeinheit und einer Empfangseinheit, die beide über ein optisches Übertragungsmedium miteinander verbunden sind. Ist das optische Übertragungsmedium der freie Raum bzw. Luft so ergibt sich eine lichtschrankenähnliche Anordnung.
Häufiger werden jedoch optische Fasern, wie Glas- oder Kunststofffasern zur Führung des Lichtes eingesetzt. In beiden Fällen ist in der Regel die Entfernung des optischen Weges, zwischen Sende- und Empfangseinheit, konstant. Das bedeutet, dass die Amplitude des Empfangssignals in der Empfangseinheit zeitlich kaum Schwankungen unterworfen ist. Damit ergibt sich eine gleichbleibende Übertragungsqualität.
Bei Übertragungsstrecken, bei denen die optische Weglänge zwischen Sendeeinheit und Empfangseinheit variiert, kann sich auch der Signalpegel am Empfänger ändern. Dies ist nicht zuletzt eine Folge der Dämpfung der optischen Strecke, woraus eine wechselnde Übertragungsqualität resultieren kann. Dies kann insbesondere bei modernen digitalen Übertragungssystemen, zu einer unerwünschten Zunahme der Bitfehlerrate führen.
Ein weiterer Nachteil bei den dem Stand der Technik entnehmbaren optischen Übertragungssystemen ergibt sich aus der endlichen Laufzeit des Lichtes durch das optische Übertragungsmedium. Diese Laufzeit ist abhängig von der Distanz zwischen Sender und Empfänger und variiert in einem Bereich von nahezu Null, wenn sich der Sender in unmittelbarer Nähe zum Empfänger befindet, bis hin zu einem Maximalwert, der sich einstellt, wenn sich der Sender an dem vom Empfänger entfernten Ende des optischen. Mediums befindet.
Durchläuft der Sender nun alle Positionen ausgehend vom Empfänger bis zum Ende des optischen Mediums, so nimmt die Laufzeit zu. Beim Übergang von dem, dem Empfänger entfernten Ende des optischen Mediums zum Empfänger nahen Medium, durchläuft das Licht die gesamte Länge des optischen Mediums verbunden mit einer langen Laufzeit bis hin zum Empfänger; im darauffolgenden Fall kommt das Licht nahezu ohne Laufzeit zum Empfänger. Dieser abrupte Laufzeitunterschied, der während des Überganges auftreten kann, kann in den übertragenen Signalen einen Phasensprung verursachen. Dieser Phasensprung begrenzt die übertragbare Bandbreite und kann zu Übertragungsfehlern führen.
Insbesondere bei der Übertragung optischer Signale über ein zu einer geschlossenen Kurve geformtes optisches Übertragungsmedium ist eine Überlappung am Anfang und Ende des optischen Mediums unvermeidbar, sofern kein Ausfall der Übertragung in dieser Position in Kauf genommen werden kann. Damit ergibt sich am Anfang und gleichzeitig am Ende des Mediums im Empfänger eine Überlagerung von zwei Signalen. Das erste Signal erreicht nach kurzer Strecke und damit auch kurzer Zeit den Empfänger. Das zweite Signal erreicht nach dem Durchlaufen einer längeren Strecke und damit mit großer Verzögerung den Empfänger. Beide Signale werden nun überlagert und ergeben ein falsches Summensignal. Damit wird die Übertragung negativ beeinflusst. Insbesondere bei hohen Frequenzen, bei denen die Signallaufzeit gleich der halben Periodendauer ist, ergibt sich eine Auslöschung des Signals. Eine sinnvolle Datenübertragung ist hier nicht mehr möglich.
In der EP-A-0 149 280 wird eine Anordnung zur Datenübertragung zwischen zwei relativ zueinander drehbaren Teilen beschrieben. Ein Sender speist Licht in einen hohlzylindrischen und auf der Innenseite verspiegelten Spiegel. Zum Empfang sind wenigstens zwei Empfangswandler vorgesehen, deren Ausgangssignale den Eingängen einer ODER-Schaltung zugeführt sind. Diese Anordnung hat den Nachteil einer Bandbreitenbegrenzung sowie von sehr stark schwankenden Signalamplituden auf Grund der hohen Dämpfung der langen Weglänge der Übertragungsstrecke.
Beschreibung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur optischen Signalübertragung zwischen einer Sendeeinheit und einer relativ dazu beweglichen Empfangseinheit, die über ein optisches Übertragungsmedium miteinander gekoppelt sind, derart weiterzubilden, dass die vorgenannten störenden Einflüsse auf die Übertragungsqualität weitgehend ausgeschaltet werden sollen. Insbesondere soll erreicht werden, dass die Übertragungsqualität unabhängig von Relativbewegungen zwischen Sende- und Empfangseinheit sein soll, d.h. dass keine die Datenübertragung störenden Signalüberlappungen am Ort der Empfangseinheit auftreten. Ferner soll die Vorrichtung einen geringen Platz- und Kostenaufwand erfordern und insbesondere für eine breitbandige Signalübertragung geeignet sein.
Die Lösung der Aufgabe ist in dem Anspruch 1 angegeben. Vorteilhafte Ausführungsformen sind Gegenstand der Unteransprüche.
Es ist eine Vorrichtung nach der Erfindung derart ausgebildet, dass die Empfangseinheit mindestens einen optischen Empfänger besitzt, der einem optischen Übertragungsmedium zugeordnet ist, dessen Länge kürzer bemessen ist als der von einem optischen Sender zurückgelegte Weg relativ zum Übertragungsmedium, und dass die Sendeeinheit wenigstens zwei optische Sender aufweist, die derart in Bewegungslängsrichtung voneinander beabstandet sind, so dass das Licht wenigstens eines optischen Senders in das Übertragungsmedium einkoppelt.
Dieser erfindungsgemäße Gegenstand bezieht sich ebenso auf eine optische Signalübertragung zwischen bewegten Teilen. Die Bewegung kann hier kreisförmig, linear oder auf jeder anderen beliebigen Kurve stattfinden, solange eine ausreichende Signaleinkopplung von der Sendeeinheit zum optischen Übertragungsmedium gewährleistet ist. Der Begriff Weglänge der Bewegung bezieht sich bei linear bewegten Teilen auf die Länge des Weges, entlang dem die Sendeeinheit und Empfangseinheit gegeneinander bewegt werden können. Bei kreisförmigen Bewegungen bezieht sie sich auf den entsprechenden Anteil am Umfang des Kreises, maximal jedoch auf den vollen Kreisumfang. Dies gilt auch für jede andere Kurve entlang derer eine Bewegung stattfinden kann.
Um eine einfache und kostengünstige Realisierung der Verstärker in der Empfangseinheit zu ermöglichen, muss die optische Weglänge möglichst kurz gestaltet werden. Zudem muss für eine hohe Übertragungsbandbreite sicher verhindert werden, dass optische Signale mit unterschiedlichen Laufzeiten die Empfangseinheit erreichen.
Durch die kurze Gestaltung des optischen Mediums ist auch im Falle des Empfanges mehrerer Signale mit unterschiedlichen Laufzeiten die Übertragungsbandbreite wesentlich größer, da sie sich umgekehrt proportional zur Länge des optischen Mediums verhält.
Ein wichtiger Aspekt bei dieser erfindungemäßen Vorrichtung ist, dass optische Sender mit geringem Aufwand und niedrigen Kosten herstellbar sind, während optische Empfänger alleine aufgrund der breitbandigen Verstärker sehr aufwendig und teuer sind.
Erfindungsgemäß wird nicht ein optisches Medium eingesetzt, in das auf dem gesamten Weg der Bewegung von einem Sender Licht eingekoppelt werden kann, sondern es wird ein kurzes optisches Medium eingesetzt, das nur einen Teil der Weglänge abdeckt. Damit auf der ganzen Weglänge eine optische Übertragung möglich wird, sind mehrere optische Sender in der Sendeeinheit vorhanden. Diese werden so angeordnet, dass immer mindestens ein optischer Sender das optische Medium beleuchtet. Damit wird eine lückenlose Signalübertragung auf der gesamten Weglänge möglich.
In einer besonders vorteilhaften Ausgestaltung der Vorrichtung sind die Empfänger der Empfangseinheit nicht wie üblich am Ende der Teilstücke der optischen Medien, sondern in etwa in der Mitte der Teilstücke der optischen Medien angeordnet. Dadurch sind die Laufzeiten der optischen Signale von beiden Enden des optischen Mediums gleich groß. Es gibt somit keine Überlagerung von optischen Signalen mit unterschiedlichen Laufzeiten, die zu einer Signalverzerrung mit Bahdbreitenbegrenzung führen können. Die optischen Sender der Sendeeinheit werden dann so angeordnet, dass die Abstände zwischen ihnen gerade so groß sind, dass sobald ein Sender ein optisches Medium verlässt, gerade ein zweiter Sender sich auf der anderen Seite diesem optischen Medium nähert. Damit ist eine lückenlose Signalübertragung möglich. Gerade an dieser Stelle koppeln damit zwei optische Sender Licht in das optische Medium ein. Da aber die beiden Wege von den optischen Sendern zum optischen Empfänger der Empfangseinheit gleich groß sind, kommt es zu keinerlei Verzerrungen durch Signallaufzeitunterschiede.
In einer weiteren vorteilhaften Ausgestaltung dieser Erfindung enthält die Empfangseinheit mehrere optische Empfänger die jeweils mit einem optischen Medium verbunden sind. Die Empfangseinheit ist derart gestaltet, dass die Signale der optischen Empfänger miteinander verknüpft werden, so dass ein höherer Signalpegel oder eine höhere Zuverlässigkeit durch Redundanz erreicht werden kann. Ebenso könnten auch die Signale von mehreren optischen Empfängern addiert werden, um insgesamt einen höheren Signalpegel und geringeres Rauschen zu erhalten. Ebenso können mehrere Signale zusammengefasst werden, um eine redundante Übertragung zu ermöglichen, so dass beim Ausfall eines Senders, eines optischen Mediums oder auch eines Empfängers die Übertragung über einen anderen Weg immer noch möglich ist.
Eine andere Ausgestaltung betrifft eine Anordnung, bei der die Sendeeinheit einen Positionssensor enthält. Dieser Positionssensor stellt fest, welcher optische Sender sich gerade über einem optischen Medium befindet. Dies wird dem entsprechenden optischen Sender signalisiert. Dadurch kann der optische Sender die volle Sendeleistung aktivieren und optische Signale übertragen. Verlässt er den Bereich des optischen Mediums, so wird ihm das Verlassen signalisiert und er kann seine Sendeleistung reduzieren oder auch ganz abschalten. Mit dieser Anordnung wird die gesamte Leistungsaufnahme des Übertragungssystems verringert. Durch das Ausschalten der Sender erhöht sich auch deren Lebensdauer und die Erzeugung von elektromagnetischen Störungen in den leistungsstarken Sendetreibern wird reduziert.
In einer weiteren vorteilhaften Ausgestaltung erhält die Empfangseinheit mehrere unabhängige optische Empfänger mit einem eigenen optischen Medium. Die Sendeeinheit besitzt mindestens so viele optische Sender, wie Signalkanäle vorhanden sind. Die Sendeeinheit und/oder die Empfangseinheit ist nun so gestaltet, dass sie zusätzlich einen Auswahlschalter enthält, der über einen Positionssensor gesteuert wird. Der Positionssensor teilt dem Auswahlschalter mit, welcher optische Sender gerade Signale über das optische Medium und den zugeordneten Empfänger an einem bestimmten logischen Signalkanal übertragen kann. Wichtig ist, dass jeder Signalkanal über einen definierten Weg übertragen wird. Der Übertragungsweg kann je nach Position von Sende- und Empfangseinheit variieren. Es muss nur sichergestellt werden, dass z. B. die Signale des Kanals 1 auf der Seite der Sendeeinheit auch zum Kanal 1 auf der Seite der Empfangseinheit übertragen werden.
Die Funktionsweise soll hier noch einmal anhand eines einfachen Beispiels, bei dem ein Auswahlschalter auf der Seite der Sendeeinheit vorhanden ist, dargestellt werden. Befindet sich z. B. der Sender 1 über dem Empfänger 1, so wird auch der logische Signalkanal 1 vom Auswahlschalter an den Sender 1 durchgeschaltet. Bewegt sich die Vorrichtung nun ein Stück weiter, so wird zu einem späteren Zeitpunkt der Sender 2 auf dem Empfänger 1 stehen. Nun schaltet der Auswahlschalter die Signale des Signalkanals 1 auf den Sender 2, so dass dieser seine Signale wieder zum Empfänger 1 übertragen kann. Bewegt sich die ganze Anordnung wiederum ein Stück weiter, so liegt zu einem späteren Zeitpunkt Sender 3 über dem Empfänger 1. Nun wird der Auswahlschalter den Signalkanal 1 auf den Sender 3 schalten, so dass dieser wieder Signale zum Empfänger 1 übermitteln kann. Das entsprechende Schema gilt für alle anderen Sender, Empfänger und Signalkanäle ebenso.
In einer weiteren Ausgestaltung wird als Übertragungsmedium eine lichtleitende Faser eingesetzt. Diese Faser kann entsprechend dem Stand der Technik als Glasfaser, Kunststofffaser oder Faser aus einem anderen lichtleitenden Material ausgebildet sein. Weiterhin kann das Übertragungsmedium ein lichtleitender Formkörper sein. Ebenso ist eine lichtleitende Flüssigkeit als Übertragungsmedium einsetzbar.
Einer weiteren Ausgestaltung der erfindungsgemäßen Vorrichtung liegt die Idee zugrunde, die Lichtstrahlausbreitung innerhalb des optischen Übertragungsmediums derart zu gestalten, dass sich entweder optische Signale auf unterschiedlichen Wegen innerhalb des Übertragungsmediums in der Weise ausbreiten, dass sie am Ort der Empfangseinheit zu gleichen Zeiten ankommen, so dass sie zu einem einzigen Signal zusammengesetzt werden können, oder dass das Übertragungsmedium in einer Weise ausgebildet ist, dass für eine getrennte räumliche Signalübertragung der einzelnen Lichtsignale gesorgt ist, um Signalüberlappungen zu vermeiden.
Eine weitere vorteilhafte Ausgestaltung besteht darin, dass im Falle einer linearen Bewegung zwischen Sendeeinheit und Empfangseinheit das Übertragungsmedium ebenfalls linear ausgebildet ist, und vorzugsweise parallel zur Bewegungsrichtung angeordnet ist.
Eine weitere vorteilhafte Ausgestaltung besteht darin, dass im Falle einer kreisförmigen Bewegung zwischen Sendeeinheit und Empfangseinheit das Übertragungsmedium ebenfalls kreisförmig ausgebildet ist, und vorzugsweise parallel zur Bewegungsrichtung angeordnet ist.
Ferner kann das Übertragungsmedium aus einer kreisförmig angeordneten Lichtleitfaser bestehen, die mit einem Fluoreszenzfarbstoff dotiert ist. Durch diese Dotierung kann Licht an beliebiger Stelle der Faser eingekoppelt werden.
In einer weiteren Ausgestaltung ist das Übertragungsmedium wenigstens an einer Stelle unterbrochen, von der aus die Laufzeiten der optischen Signale in beiden Richtungen des Übertragungsmediums zur Empfangseinheit gleich groß sind.
Dieser Vorrichtung liegt die Idee zugrunde, dass eine gewünschte Unabhängigkeit der Bandbreite von den Signallaufzeiten nur dann erreicht werden kann, wenn verhindert wird, dass Signale auf mehreren Wegen mit unterschiedlichen Laufzeiten den Empfänger erreichen. Dies bedeutet, dass die Unabhängigkeit der Bandbreite von den Signallaufzeiten gewährleistet ist, sofern nur ein einziges Signal den Empfänger erreicht. Dies ist z.B. bei einer linearen Strecke der Fall. Ebenso kann eine Unabhängigkeit erreicht werden, wenn mehrere Signale am Empfänger eintreffen, aber alle Signale gleiche Laufzeiten zum Empfänger besitzen.
Eine weitere Ausgestaltung ergibt sich indem die Faser mit einem fluoreszierenden Farbstoff dotiert ist, so dass die Einkopplung von Licht an jeder Position der Sendeeinheit entlang der Kurve in die Faser besonders einfach wird.
Kurze Beschreibung der Zeichnungen
Die Erfindung wird nachstehend anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben. Es zeigen:
Fig. 1
Schematisierte Darstellung einer erfindungsgemäßen Grundanordnung,
Fig. 2
erfindungsgemäße Vorrichtung mit mehreren Empfangseinheiten,
Beschreibung von Ausführungsbeispielen
Figur 1 zeigt eine erfindungsgemäße Anordnung bestehend aus einer Sendeeinheit 1 sowie einer Empfangseinheit 2, verbunden mit einem optischen Medium 4. Die Sendeeinheit besitzt mehrere, mindestens jedoch zwei optische Sender, von denen hier beispielhaft einige dargestellt sind (3A, 3B, 3C, 3D), die so gestaltet sind, dass sie optische Informationen in das optische Medium einkoppeln können. Diese Sender sind so angeordnet, dass jeweils mindestens ein Sender in das optische Medium einkoppelt. Der Positionssensor P ermittelt die Position der optischen Sender und signalisiert den Sendern die Lage über einem optischen Medium derart, dass diese dann ihre Sendeleistung aktivieren können.
Figur 2 zeigt eine beispielhafte Ausgestaltung.
Hierin enthält die Sendeeinheit einen Auswahlschalter A, der aufgrund der Informationen des Positionssensors P die logische Zuordnung zwischen den logischen Signalkanälen, Sendern und Empfängern herstellt. Die Empfangseinheit 2 enthält mehrere optische Empfänger (5A, 5B, 5C), mit zugeordneten optischen Übertragungsmedien (4A, 4B, 4C), von den hier beispielhaft einige dargestellt sind, jedoch mindestens eines für jeden logischen Signalkanal.

Claims (7)

  1. Vorrichtung zur optischen Signalübertragung zwischen einer Sendeeinheit (1) und einer Empfangseinheit (2), welche relativ zueinander beweglich sind, die über ein optisches Übertragungsmedium (4) miteinander gekoppelt sind,
    dadurch gekennzeichnet, dass
    die Empfangseinheit mindestens einen optischen Empfänger (5A, 5B, 5C) besitzt, der einem optischen Übertragungsmedium zugeordnet ist, dessen Länge kürzer bemessen ist als die Weglänge der Bewegung, und dass die Sendeeinheit wenigstens zwei optische Sender aufweist, die derart in Bewegungslängsrichtung voneinander beabstandet sind, so dass das Licht wenigstens eines optischen Senders in das optische Übertragungsmedium einkoppelt und dass das optische Übertragungsmedium als lichtleitende Faser, als lichtleitende mit einem Fluoreszenzfarbstoff dotierte Faser, als lichtleitender Formkörper oder als lichtleitende Flüssigkeit ausgeführt ist.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der optische Empfänger in der Mitte des optischen Übertragungsmediums angeordnet ist, so dass die Laufzeiten der optischen Signale von beiden Enden des optischen Übertragungsmediums gleich groß sind.
  3. Vorrichtung nach Anspruch 1 bzw. 2,
    dadurch gekennzeichnet, dass
    die optischen Sender der Sendeeinheit derart voneinander beabstandet sind, dass sobald ein Sender durch die Bewegung das optische Übertragungsmedium verlässt, sich ein anderer Sender gerade der anderen Seite des optischen Übertragungsmediums nähert und damit die Datenübertragung fortsetzt.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass
    die Sendeeinheit einen Positionssensor (P) aufweist, der ein Aktivierungssignal für diejenigen optischen Sender erzeugt, die sich gerade in der Nähe eines optischen Übertragungsmediums befinden.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    für verschiedene Signalkanäle mehrere Empfangseinheiten vorgesehen sind, über denen jeweils eine Vielzahl optischer Sender angeordnet sind und dass in der Sende- und/oder Empfangseinheit jeweils ein Positionssensor (P) und ein Auswahlschalter (A) vorgesehen ist, der über den Positionssensor derart ansteuerbar ist, dass eine mehrkanalige, positionsunabhängige Signalübertragung möglich ist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass
    das optische Übertragungsmedium linear ausgebildet ist und im Falle einer linearen Bewegung zwischen Sendeeinheit und Empfangseinheit vorzugsweise parallel zu dieser Bewegungsrichtung angeordnet ist.
  7. Vorrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass
    das optische Übertragungsmedium kreisförmig ausgebildet ist und im Falle einer kreisförmigen Bewegung zwischen Sendeeinheit und Empfangseinheit vorzugsweise parallel zu dieser Bewegungsrichtung angeordnet ist.
EP96942260A 1995-11-21 1996-11-21 Vorrichtung zur optischen signalübertragung Expired - Lifetime EP0862820B1 (de)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE19543387 1995-11-21
DE19543385 1995-11-21
DE19543386 1995-11-21
DE19543385A DE19543385C1 (de) 1995-11-21 1995-11-21 Vorrichtung zur optischen Signalübertragung
DE19543387A DE19543387C1 (de) 1995-11-21 1995-11-21 Vorrichtung zur optischen Signalübertragung
DE19543386A DE19543386C1 (de) 1995-11-21 1995-11-21 Vorrichtung zur breitbandigen optischen Signalübertragung
PCT/DE1996/002223 WO1997019529A1 (de) 1995-11-21 1996-11-21 Vorrichtung zur optischen signalübertragung

Publications (2)

Publication Number Publication Date
EP0862820A1 EP0862820A1 (de) 1998-09-09
EP0862820B1 true EP0862820B1 (de) 2005-04-06

Family

ID=27215682

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96942260A Expired - Lifetime EP0862820B1 (de) 1995-11-21 1996-11-21 Vorrichtung zur optischen signalübertragung

Country Status (5)

Country Link
US (1) US6650843B1 (de)
EP (1) EP0862820B1 (de)
AU (1) AU1138297A (de)
DE (1) DE59611213D1 (de)
WO (1) WO1997019529A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19625870A1 (de) * 1996-06-27 1998-01-08 Schleifring & Apparatebau Gmbh Vorrichtung zum Empfang optischer Signale mit einem lichtleitenden Gegenstand
US6246810B1 (en) 1998-06-16 2001-06-12 Electro-Tec Corp. Method and apparatus for controlling time delay in optical slip rings
US6757494B2 (en) * 2000-12-22 2004-06-29 Nortel Networks Limited Wavelength routing in a photonic network
DE10245450B4 (de) * 2002-09-27 2018-06-14 Schleifring Gmbh Vorrichtung und Verfahren zur Übertragung digitaler Signale zwischen beweglichen Einheiten mit variabler Übertragungsrate
DE10260940B3 (de) * 2002-12-20 2004-11-25 Schleifring Und Apparatebau Gmbh Vorrichtung und Verfahren zur breitbandigen Übertragung digitaler optischer Signale zwischen beweglichen Einheiten
US7599467B2 (en) * 2004-06-03 2009-10-06 Siemens Aktiengesellschaft Device for contact-free transmission of signals and measured data in a computed tomography apparatus
DE102005027632B4 (de) * 2005-03-31 2009-09-24 Schleifring Und Apparatebau Gmbh Mehrkanal-Datenübertragungssystem für Computertomographen
DK2270570T3 (da) 2006-04-28 2014-09-15 Moog Inc Optiske reflektorindretninger til anvendelse i optiske drejeforbindelser
US7672594B2 (en) * 2006-12-06 2010-03-02 Motorola, Inc. Optical communication system with light guide having variable slidable point of entry or exit
US8267598B2 (en) * 2006-12-06 2012-09-18 Motorola Mobility Llc Point to point optical communication system for conveying signals between multiple housings of a device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2846526A1 (de) * 1978-10-25 1980-05-08 Siemens Ag Vorrichtung zum uebertragen von signalen
DE3400361A1 (de) * 1984-01-07 1985-07-18 Philips Patentverwaltung Gmbh, 2000 Hamburg Anordnung zur datenuebertragung zwischen zwei relativ zueinander drehbaren teilen
FR2600879A1 (fr) * 1986-07-07 1988-01-08 Thomson Csf Appareil de tomographie assiste par ordinateur.

Also Published As

Publication number Publication date
EP0862820A1 (de) 1998-09-09
WO1997019529A1 (de) 1997-05-29
US6650843B1 (en) 2003-11-18
AU1138297A (en) 1997-06-11
DE59611213D1 (de) 2005-05-12

Similar Documents

Publication Publication Date Title
DE69915307T2 (de) Bidirektionale dispersionskompensationsvorrichtung
DE2615780C2 (de)
EP0862820B1 (de) Vorrichtung zur optischen signalübertragung
DE10302435B3 (de) Optischer Gigabit-Drehübertrager mit freiem Innendurchmesser
EP1867073B1 (de) Mehrkanal-datenübertragungssystem für computertomographen
DE102007020013B4 (de) Vorrichtung zum Übertragen von Daten
DE10310134B3 (de) Optische Signalkupplung
DE3045315A1 (de) Ringfoermiges, insbesondere optisches, datenuebertragungssystem mit umschaltbarer uebertragungsrichtung
EP0349766A2 (de) Optisches Nachrichtenübertragungssystem, insbesondere im Teilnehmeranschlussbereich
DE10191885B4 (de) Vorrichtung zur breitbandigen elektrischen Signalübertragung mit bidirektionaler Übertragungsstrecke
DE10256634A1 (de) Optischer Drehübertrager mit freiem Innendurchmesser
DE4010712A1 (de) Optisches nachrichtenuebertragungssystem mit einem faseroptischen verstaerker
DE19651236A1 (de) Einrichtung zum Ein- und Auskoppeln optischer Signale zweier Übertragungskanäle
DE10353891B4 (de) Anordnung zur Datenübertragung zwischen einem feststehenden und einem beweglichen Bauteil
DE102019208061A1 (de) Drahtloses optisches Kommunikationsnetzwerk und Vorrichtung zur drahtlosen optischen Kommunikation
EP0073314B1 (de) Übertragungssystem für die vielfach-bidirektionale Ausnutzung einer Lichtwellenleiter-Ader
DE102019118531A1 (de) Kommunikationssystem
DE19543387C1 (de) Vorrichtung zur optischen Signalübertragung
EP0874482A2 (de) Anordnung zum bidirektionalen Senden und Empfangen optischer Signale
DE19543385C1 (de) Vorrichtung zur optischen Signalübertragung
EP2072011B1 (de) Anordnung aus zwei zueinander rotativ bewegbaren Elementen
DE102019118532A1 (de) Kommunikationssystem
EP1672400B1 (de) Optischer Drehübertrager
DE102005010805A1 (de) Erhöhung der Datenrate bei optischen Drehübertragern durch Schieben der Phase
EP0378087B1 (de) Optisches Breitband-Nachrichtenübertragungssystem, insbesondere für den Teilnehmeranschlussbereich

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20021128

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59611213

Country of ref document: DE

Date of ref document: 20050512

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050421

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081128

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081118

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081121

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091121

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091121