EP0848844A1 - Procede d'asservissement d'une servovalve pouvant etre asservie en debit et en pression - Google Patents

Procede d'asservissement d'une servovalve pouvant etre asservie en debit et en pression

Info

Publication number
EP0848844A1
EP0848844A1 EP96930228A EP96930228A EP0848844A1 EP 0848844 A1 EP0848844 A1 EP 0848844A1 EP 96930228 A EP96930228 A EP 96930228A EP 96930228 A EP96930228 A EP 96930228A EP 0848844 A1 EP0848844 A1 EP 0848844A1
Authority
EP
European Patent Office
Prior art keywords
value
pressure difference
values
loop
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP96930228A
Other languages
German (de)
English (en)
Inventor
Christian Menard
Patrick Lorinet
Philippe Chabbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0848844A1 publication Critical patent/EP0848844A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • G05D16/202Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means actuated by an electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0379By fluid pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve

Definitions

  • the present invention relates to a method for controlling a servo valve which can be controlled by flow or by pressure. It applies in particular to hydraulic servovalves used in brake systems or automatic vehicle guidance.
  • Such servovalves comprise a hydraulic slide provided with return means and set in motion by a rotary actuator such as an electric motor; the return means maintain the drawer in a neutral position from which the drawer can be driven in translation in two opposite directions to obtain two working positions, corresponding for example to the pressurization or to the covering of the circuit.
  • Such servovalves have two control loops: one, which is called the flow control loop, operates when the servovalve is intended to dose a flow, and the other, which is called a pressure loop, operates when the servovalve is intended to control a pressure in a volume, a brake, a jack, etc.
  • the loops implement: a sensor which measures the position of the motor linked to the valve of the servovalve, in the case of flow control; one or two pressure sensors which measure the pressure in one or two volumes, in the case of pressure control.
  • the measurements are compared with position setpoints for the flow and pressure loop for the pressure loop (s).
  • PID Proportional Integral Derivative
  • the regulation loops determine power control levels for the motor which are insufficient for optimal transitions to be obtained on transient speeds.
  • a state control module which determines the current to be applied to the motor and, consequently, the torque to be imposed on the motor.
  • the power is controlled in the part of the equipment constituted by the transistor bridge controlling the motor and the duty cycle of this bridge.
  • the duty cycle varies in relation to the software which imposes the status command.
  • the object of the invention is to alleviate the aforementioned drawbacks, in particular to improve the speed of response of the servovalve for transient situations and to eliminate the drawbacks due to the passage of the dead zone.
  • the subject of the invention is a method for controlling a servovalve comprising a drawer provided with return means and set in motion by a rotary actuator such as an electric motor, the control device comprising two loops nested, a first flow control loop as a function of the measurement of the angular position of the rotary actuator and a second control loop with variable pressure control as a function of the pressure measurement, characterized in that the first control loop is a proportional action loop, the gain of which is constant for values of the absolute value of the position deviation which are less than at least one threshold value, then varies increasingly for the values of the absolute value of the pressure difference which are greater than said first threshold.
  • the gain value (Kpa) is an increasing function of the volume capacity of the chamber whose pressure must be controlled, the difference between the gains for two given volumes being constant when the pressure difference varies.
  • a fixed value is added to the value of the position setpoint supplied to the first control loop from the start of the passage in the dead zone and, for decreasing values of the position
  • the main advantages of the invention are that it makes it possible to use a proportional derivative control and, consequently, to obtain short response times, by eliminating the effects due to the passage of the drawer in the dead zone.
  • FIG. 1 a block diagram of the servo-control device
  • FIG. 5 is a block diagram of a servovalve and its servo device.
  • the servovalve itself is constituted by a hydraulic slide 1, controlled by an electric motor 2 and provided with return devices not shown.
  • the hydraulic slide 1 controls, for example, the pressurization or the covering of a chamber 3.
  • the motor is controlled by an electronic control device 4 with modulation of the pulse width.
  • a position sensor 5 measures the angular position of the motor and a pressure sensor 6 measures the pressure prevailing in the chamber 3.
  • a first control loop includes a comparator 11, which receives a position reference value and the actual value of the position supplied by the sensor 5. This comparator provides a position deviation signal to a control circuit 12 proportional control, which provides a control signal to the electronic control device 4, by pulse width modulation. This first loop is completed by the motor 2 and the position sensor 5.
  • This first control loop is nested in a second control loop, which comprises a use chamber 3 and a pressure sensor 6, the output signal of which is sent to a variable control servo device 21.
  • the latter supplies a corrected pressure signal to a comparator 22 which also receives a pressure reference value and supplies a pressure difference signal to an electronic control circuit 23 supplying a position reference signal to the comparator 11 of the first loop .
  • This second control loop also includes the control device 12, the electronic circuit 4, the motor 2 and the hydraulic slide 1.
  • the proportional action servo-control circuit 12 provides a gain value which is a function of the value of the pressure difference signal ⁇ supplied by the comparator 22. The law for controlling the value of the gain is indicated by the curve in FIG.
  • the threshold and the value of the constant gain are different for the positive and negative values of the pressure difference ⁇ .
  • the threshold S is higher but the value of the gain K is less than the value K of the gain for the negative values, the threshold S 'for the negative values being, in absolute value, lower than the threshold S for positive values.
  • the value of the gain varies progressively as a function of the absolute value of the position difference, according to a linear function in the example shown.
  • a second threshold S ′ is provided which is greater than the first threshold S ′ and, from this threshold value S ′ of the absolute value of the position deviation,
  • the gain values are higher for the negative values of the latter than for its positive values.
  • the positive threshold S is equal to 40 bars
  • the thresholds for the negative values S 'and S' are respectively equal to 8 and 14 bars
  • the absolute value of the slope of the linear function for positive values greater than 40 bars is equal to 1; for negative values between 8 and 14 bars in absolute value, the absolute value of the slope of the linear function is equal to 0.5, and for negative values greater than 14 bars in absolute value, the slope of the linear function is equal to 1 as for positive values greater than 40 bars.
  • FIG. 3 represents the computer control flow diagram making it possible to obtain this law of variation of the gain of the first control loop of the position of the motor.
  • a first step 30 it is determined whether the pressure difference ⁇ p is positive or negative. In the case where it is positive, the pressure difference is compared with the first threshold value S in a step 31. As long as this difference is greater than this threshold, the gain is determined according to a linear function in a step 33, the slope of this linear function being equal to 1. When the pressure difference drops below this threshold value, in step 32 the value of the gain K has a constant value K.
  • the absolute value is first calculated in a step 34 and then compared with the threshold S 'in a step 35 and when the absolute value of the pressure difference is lower than this threshold value, the gain Kpa is fixed at the value K2 in a step 36. Otherwise, the absolute value of the pressure difference ⁇ is compared with the second threshold S 'in a step 37. If this absolute value is less than this threshold, a first linear function is determined in a step 38 whose absolute value of the slope is equal to 0 , 5 and, in the opposite case, a second linear function with a higher slope is determined in a step 39, the absolute value of which is equal to 1.
  • a correction of the dead zone is carried out in order to remove the time constant introduced by the passage of the slide in this dead zone.
  • a dead zone value ZM is defined which corresponds to the travel of the slide until the hydraulic connection is established; this dead zone ZM corresponds for example to 0.5 mm for a total stroke of the drawer of 4 mm.
  • a first step 40 the sign of variation ⁇ x of the slide stroke is determined, each sign corresponding to a direction of translation of the slide. Yes this variation is positive, it is compared with the value -ZM in a step 41 and if the position x is greater than this value, in a step 42, a fixed value corresponding to the dead zone ZM.
  • step 43 at a value equal to + ZM and as long as the value of position x. is greater than this value, the correction of step 42 is carried out.
  • curves in FIG. 5a which represent, as a function of time t, for curve 5a, the position setpoint normally supplied by the circuit 23, for curve 5b, the copy of the position of the motor, for the curve 5c, the flow rate of the servovalve without correction of the dead zone, for curve 5d, the correction of the set point produced according to the invention and for curve 5e, the flow rate of the servovalve when the zone correction is carried out dead.
  • control processes are performed digitally by a microprocessor located in the device 21 and use software for controlling the servovalve.
  • the servovalve according to the invention can be used with chambers of different volumes. It is sufficient, for the regulation of the gain K, to determine a basic value which is an increasing function of the volume of the chamber of use.
  • the software is the same and the curves in Figure 2 corresponding to different pressures are simply offset by a fixed value and are therefore obtained by translation parallel to the axis of gains K

Abstract

Pour l'asservissement d'une servovalve hydraulique à tiroir hydraulique (1) mis en mouvement par un actionneur rotatif (12), impliquant une première boucle (2, 5, 11, 12, 4) d'asservissement du débit en fonction de la mesure de la position angulaire de l'actionneur rotatif et une deuxième boucle (1, 3, 6, 21, 22, 23, 11, 12, 4, 2) d'asservissement à commande variable en fonction de la mesure de la pression, l'invention est caractérisée en ce que la première boucle d'asservissement est une boucle à action proportionnelle dont le gain (Kpa) est constant pour des valeurs de la valeur absolue de l'écart de pression (εp) qui sont inférieures à au moins une valeur de seuil, puis varie de manière croissante pour les valeurs de la valeur absolue de l'écart de pression (εp) qui sont supérieures audit premier seuil.

Description

PROCEDE D'ASSERVISSEMENT D'UNE SERVOVALVE POUVANT ETRE ASSERVIE EN DEBIT ET EN PRESSION
La présente invention concerne un procédé d'asservissement d'une servovalve gui peut être asservie en débit ou en pression. Elle s'applique notamment aux servovalves hydrauliques utilisées dans des systèmes de freinage ou de guidage automatique des véhicules.
De telles servovalves comportent un tiroir hydraulique muni de moyen de rappel et mis en mouvement par un actionneur rotatif tel qu'un moteur électrique ; les moyens de rappels maintiennent le tiroir dans une position neutre à partir de laquelle le tiroir peut être entraîné en translation dans deux directions opposées pour obtenir deux positions de travail, correspondant par exemple à la mise sous pression ou à la mise sous bâche du circuit.
De telles servovalves comportent deux boucles d'asservissement : l'une, qui est appelée boucle de contrôle du débit, intervient lorsque la servovalve est destinée à doser un débit et l'autre, qui est appelée boucle de pression, intervient lorsque la servovalve est destinée à contrôler une pression dans un volume, un frein, un vérin, etc.
De telles servovalves sont décrites en particulier dans les demandes de brevets français n° 92 02843 du 10 mars 1992 et n° 94 07571 du 21 juin 1994 de la déposante.
Dans cet automatisme, les boucles mettent en oeuvre : un capteur qui mesure la position du moteur lié au tiroir de la servovalve, dans le cas de l'asservissement en débit ; un ou deux capteurs de pression qui mesurent la pression dans un ou deux volumes, dans le cas de l'asservissent en pression. Les mesures sont comparées à des consignes de position pour la boucle de débit et de pression pour la ou les boucles de pression. Pour traiter le sujet de manière optimale, c'est-à- dire en assurant un compromis entre gain, phase et stabilité des asservissements, on utilise le savoir faire des techniques du domaine de l'automatique, qui sont en général des boucles d'asservissement, dans lesquelles des fonctions PID (Proportionnelles Intégrales Dérivées) sont mises en oeuvre : traitement du type linéaire.
Dans le cas du contrôle des boucles de la servovalve, il n'est pas toujours évident d'utiliser une commande proportionnelle dérivée. La raison en est que pour des petits signaux, il serait nécessaire de donner aux boucles un premier gain et, pour de grands signaux, un autre gain. On se heurte alors à une difficulté particulière, qui consiste à ajouter aux commandes du type linéaire, un type particulier de contrôle commande.
Les éléments mécaniques qui poussent à considérer le contrôle commande d'une manière particulière sont liés à l'effet de jet, mais également au fait que le moteur électrique de commande possède une self importante et une inertie ; ceci a pour origine la puissance qu'il doit développer pour contrer les forces générées par l'effet de jet.
De plus, lorsqu'il est nécessaire de travailler sur des écarts de signaux importants, les boucles de régulation déterminent des niveaux de commande en puissance pour le moteur qui sont insuffisants pour que, sur des régimes transitoires, les rapidités optimales soient obtenues. Il est donc dans ce cas nécessaire de procéder à l'adjonction d'un module de commande d'état, qui détermine le courant à appliquer au moteur et, par conséquent, le couple à imposer au moteur. La commande de la puissance est réalisée dans la partie du matériel constituée par le pont à transistors commandant le moteur et le rapport cyclique de commande de ce pont. Le rapport cyclique varie en relation avec les logiciels qui imposent la commande d'état. Lorsque le tiroir est actionné, par exemple à partir de sa position de mise à la bâche, vers sa position de mise sous pression, il traverse une zone morte pour laquelle il n'y a pas de liaison dans les circuits à commander et, par conséquent, aucune action du circuit hydraulique n'a lieu. Cette zone morte entraîne une hystérésis qui diminue les performances en particulier dans le cas d'actionnement de dispositifs tels que des freins.
Le but de l'invention est de pallier les inconvé- nients précités, notamment pour améliorer la rapidité de réponse de la servovalve pour des situations transitoires et supprimer les inconvénients dus au passage de la zone morte.
A cet effet, l'invention a pour objet un procédé d'asservissement d'une servovalve comportant un tiroir muni de moyens de rappel et mis en mouvement par un actionneur rotatif tel qu'un moteur électrique, le dispositif d'asservissement comprenant deux boucles imbriquées, une première boucle d'asservissement du débit en fonction de la mesure de la position angulaire de l'actionneur rotatif et une deuxième boucle d'asservissement à commande variable de la pression en fonction de la mesure de la pression, caractérisé en ce que la première boucle d'asservissement est une boucle à action proportionnelle dont le gain est constant pour des valeurs de la valeur absolue de l'écart de position qui sont inférieures à au moins une valeur de seuil, puis varie de manière croissante pour les valeurs de la valeur absolue de l'écart de pression qui sont supérieures audit premier seuil.
Selon une autre caractéristique de l'invention, dans le cas d'un asservissement en pression, la valeur du gain (Kpa) est une fonction croissante de la capacité du volume de la chambre dont on doit contrôler la pression, la différence entre les gains pour deux volumes donnés étant constante lorsque l'écart de pression varie. Selon encore une autre caractéristique de l'invention, dans le cas d'un asservissement en pression, pour des valeurs croissantes de la position (x^) de l'actionneur rotatif, on ajoute une valeur fixe à la valeur de la consigne de position fournie à la première boucle d'asservissement à partir du début du passage dans la zone morte et, pour des valeurs décroissantes de la position
(xt) de l'actionneur rotatif, la valeur de consigne de position reprend sa valeur initiale à partir du début du passage dans la zone morte.
L'invention a pour principaux avantages qu'elle permet d'utiliser une commande proportionnelle dérivée et, par suite, d'obtenir de faibles temps de réponse, en éliminant les effets dus au passage du tiroir dans la zone morte.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit, faite en regard des dessins annexés qui repré¬ sentent : - la figure 1, un schéma synoptique du dispositif d'asservissement ;
- la figure 2, une courbe indiquant les différentes valeurs de gain de la première boucle d'asservissement ;
- la figure 3, un organigramme de commande de la première boucle ;
- la figure 4, un organigramme de commande de la deuxième boucle ;
- la figure 5, une série de courbes illustrant la commande de la deuxième boucle. L'invention est décrite ci-dessous en référence à une servovalve hydraulique, mais il est bien entendu qu'elle peut également être mise en oeuvre pour une servovalve pneumatique, moyennant des modifications qui sont à la portée de l'homme de l'art à la lecture de la présente description. La figure l est un schéma synoptique d'une servovalve et de son dispositif d'asservissement. La servovalve elle-même est constituée par un tiroir hydraulique 1, commandé par un moteur électrique 2 et muni de dispositifs de rappel non représentés. Le tiroir hydraulique 1 commande, par exemple, la mise sous pression ou la mise à la bâche d'une chambre 3.
Le moteur est commandé par un dispositif électronique de commande 4 à modulation de la largeur d'impulsion. Un capteur de position 5 mesure la position angulaire du moteur et un capteur de pression 6 mesure la pression régnant dans la chambre 3.
Une première boucle d'asservissement comporte un comparateur 11, qui reçoit une valeur de consigne de position et la valeur réelle de la position fournie par le capteur 5. Ce comparateur il fournit un signal d'écart de position à un circuit 12 d'asservissement à commande proportionnelle, qui fournit un signal de commande au dispositif électronique de commande 4, par modulation de largeur d'impulsion. Cette première boucle est complétée par le moteur 2 et le capteur de position 5.
Cette première boucle d'asservissement est imbriquée dans une deuxième boucle d'asservissement, laquelle comprend une chambre d'utilisation 3 et un capteur de pression 6 dont le signal de sortie est envoyé à un dispositif d'asservissement à commande variable 21. Ce dernier fournit un signal de pression corrigé à un comparateur 22 qui reçoit par ailleurs une valeur de consigne de pression et fournit un signal d'écart de pression à un circuit électronique de commande 23 fournissant un signal de consigne de position au comparateur 11 de la première boucle. Cette deuxième boucle d'asservissement comprend également le dispositif d'asservissement 12, le circuit électronique 4, le moteur 2 et le tiroir hydraulique 1. Conformément à l'invention, le circuit d'asser¬ vissement 12 à action proportionnelle fournit une valeur de gain qui est fonction de la valeur du signal d'écart de pression ε fournie par le comparateur 22. La loi de commande de la valeur du gain est indiquée par la courbe de la figure 2 qui représente la valeur du gain K en fonction de la valeur de l'écart de pression ε qui est égal à la différence entre la pression désirée, qui peut aller jusqu'à 166 bars par exemple, et la pression instantanée mesurée par le capteur 6. Lorsque l'on commande une mise sous pression de la chambre 3, cet écart a tout d'abord une valeur élevée, puis il décroît au fur et à mesure que la pression s'établit dans la chambre d'utilisation 3.
Lorsque l'écart de pression est inférieur à un certain seuil, en valeur absolue, le gain est maintenu à une valeur constante. Avantageusement le seuil et la valeur du gain constant sont différents pour les valeurs positives et négatives de l'écart de pression ε . Pour les valeurs positives, le seuil S est plus élevé mais la valeur du gain K est inférieure à la valeur K du gain pour les valeurs négatives, le seuil S' pour les valeurs négatives étant, en valeur absolue, plus faible que le seuil S pour les valeurs positives.
Lorsque la valeur de l'écart de pression ε dépasse, en valeur absolue, les valeurs de seuil indiquées ci-dessus, la valeur du gain varie de manière croissante en fonction de la valeur absolue de l'écart de position, selon une fonction linéaire dans l'exemple représenté.
Avantageusement, pour les valeurs négatives de l'écart de position, on prévoit un deuxième seuil S' supérieur au premier seuil S' et, à partir de cette valeur de seuil S' de la valeur absolue de l'écart de position,
2 c ' le gain varie de manière linéaire avec une pente plus élevée que pour les valeurs comprises entre les deux seuils
S' et S' . 1 2 Avantageusement, les valeurs du gain, pour une même valeur absolue de l'écart de position, sont plus élevées pour les valeurs négatives de ce dernier que pour ses valeurs positives.
Dans un exemple de réalisation appliqué à l'asservissement en pression d'un frein d'un véhicule, le seuil positif S est égal à 40 bars, les seuils pour les valeurs négatives S' et S' sont respectivement égaux à 8 et 14 bars, la valeur absolue de la pente de la fonction linéaire pour les valeurs positives supérieures à 40 bars est égale à 1 ; pour les valeurs négatives comprises entre 8 et 14 bars en valeur absolue, la valeur absolue de la pente de la fonction linéaire est égale à 0,5, et pour les valeurs négatives supérieures à 14 bars en valeur absolue, la pente de la fonction linéaire est égale à 1 comme pour les valeurs positives supérieures à 40 bars.
La figure 3 représente l'organigramme de commande informatique permettant d'obtenir cette loi de variation du gain de la première boucle d'asservissement de la position du moteur.
Dans une première étape 30, on détermine si l'écart de pression εp est positif ou négatif. Dans le cas où il est positif, l'écart de pression est comparé à la première valeur de seuil S dans une étape 31. Tant que cet écart est supérieur à ce seuil, le gain est déterminé selon une fonction linéaire dans une étape 33, la pente de cette fonction linéaire étant égale à 1. Lorsque l'écart de pression passe en dessous de cette valeur de seuil, dans l'étape 32 la valeur du gain K a une valeur constante K .
Si le signal d'écart de pression ε est négatif, on en calcul tout d'abord la valeur absolue dans une étape 34 puis on la compare au seuil S' dans une étape 35 et quand la valeur absolue de l'écart de pression est inférieure à cette valeur de seuil, le gain Kpa est fixé à la valeur K2 dans une étape 36. Dans le cas contraire, la valeur absolue de l'écart de pression ε est comparée au deuxième seuil S' dans une étape 37. Si cette valeur absolue est inférieure à ce seuil, on détermine dans une étape 38 une première fonction linéaire dont la valeur absolue de la pente est égale à 0,5 et, dans le cas contraire, on détermine, dans une étape 39, une deuxième fonction linéaire de pente plus élevée dont la valeur absolue est égale à 1.
Selon une autre caractéristique de l'invention, on effectue une correction de la zone morte afin de supprimer la constante de temps introduite par le passage du tiroir dans cette zone morte. On définit une valeur de zone morte ZM qui correspond à la course du tiroir tant que la liaison hydraulique n'est pas établie ; cette zone morte ZM correspond par exemple à 0,5 mm pour une course totale du tiroir de 4 mm.
Selon l'invention, lorsque la course du tiroir, x, varie de manière croissante, c'est-à-dire dans la direction de la position de mise sous pression de la chambre 3, dès que le tiroir entre dans la zone morte, on ajoute à la consigne de position fournie au comparateur 11 une valeur constante qui est de préférence égale à la valeur de la zone morte précitée ZM, c'est-à-dire 0,5 mm dans l'exemple indiqué. Cette augmentation de la valeur de consigne est maintenue et lorsque la course du tiroir, x. , décroît, c'est-à-dire que ce dernier se dirige vers la position de mise à la bâche, dès que le tiroir atteint la zone morte, l'augmentation de la consigne de position est supprimée et cette dernière reprend sa valeur normale. Ceci est illustré sur l'ordinogramme de la figure 4 qui indique la loi de détermination de la consigne de position en fonction de la position du tiroir ou de la position du moteur fournie par le capteur 5, x .
Dans une première étape 40, on détermine le signe de variation Δx de la course du tiroir, chaque signe correspondant à une direction de translation du tiroir. Si cette variation est positive, elle est comparée à la valeur -ZM dans une étape 41 et si la position x est supérieure à cette valeur, dans une étape 42, on ajoute à la valeur de consigne élaborée par le circuit 23 une valeur fixe correspondant à la zone morte ZM.
Si la variation de la position fournie par le capteur 5 est négative, elle est comparée, dans une étape
43, à une valeur égale à +ZM et tant que la valeur de la position x. est supérieure à cette valeur, on effectue la correction de l'étape 42.
Lorsque le tiroir a atteint la zone morte, c'est-à- dire lorsque la position x est inférieure à ZM, la valeur de consigne de position reprend la valeur élaborée normalement par le circuit 23.
Ceci est illustré par les courbes de la figure 5a qui représentent en fonction du temps t, pour la courbe 5a, la consigne de position fournie normalement par le circuit 23, pour la courbe 5b, la recopie de la position du moteur, pour la courbe 5c, le débit de la servovalve sans correction de la zone morte, pour la courbe 5d, la correction de la consigne réalisée selon l'invention et pour la courbe 5e, le débit de la servovalve lorsque l'on effectue la correction de la zone morte.
Ces processus d'asservissement sont réalisés de manière numérique par un microprocesseur se trouvant dans le dispositif 21 et mettent en oeuvre un logiciel de commande de la servovalve.
La servovalve selon l'invention peut être utilisée avec des chambres de volumes différents. Il suffit, pour la régulation du gain K , de déterminer une valeur de base qui est une fonction croissante du volume de la chambre d'utilisation. Le logiciel est le même et les courbes de la figure 2 correspondant à des pressions différentes sont simplement décalées d'une valeur fixe et s'obtiennent donc par translation parallèlement à l'axe des gains K

Claims

REVENDI CATI ONS
1. Procédé d'asservissement d'une servovalve comportant un tiroir (1) muni de moyens de rappel et mis en mouvement par un actionneur rotatif (12) tel qu'un moteur électrique, le dispositif d'asservissement comprenant deux boucles imbriquées, une première boucle (2, 5, 11, 12, 4) d'asservissement du débit en fonction de la mesure de la position angulaire de l'actionneur rotatif et une deuxième boucle (1, 3, 6, 21, 22, 23, 11, 12, 4, 2) d'asservissement à commande variable en fonction de la mesure de la pression, caractérisé en ce que la première boucle d'asservissement est une boucle à action proportionnelle dont le gain (Kpa) est constant pour des valeurs de la valeur absolue de l'écart de pression (£p) qui sont inférieures à au moins une valeur de seuil (Sl f S'^, puis varie de manière croissante pour les valeurs de la valeur absolue de l'écart de pression (Sp) qui sont supérieures audit premier seuil (S^, S'!).
2. Procédé selon la revendication 1, caractérisé en ce que, pour une même valeur de la valeur absolue de l'écart de pression (Ep) , la valeur du gain (Kpa) de la boucle d'asservissement est plus élevée pour la valeur négative dudit écart que pour sa valeur positive.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que, lorsque la valeur absolue de l'écart de pression (£p) est supérieure audit premier seuil, le gain varie selon une fonction linéaire.
4. Procédé selon l'une quelconque des revendica¬ tions précédentes, caractérisé en ce qu'il est prévu un premier et un second seuils (S1# S' ^ ) différents pour les valeurs négatives de l'écart de pression (£p) et pour ses valeurs positives, sa valeur (S'!) étant plus faible pour les valeurs négatives.
5. Procédé selon l'une quelconque des revendica¬ tions précédentes, caractérisé en ce que, pour les valeurs négatives de l'écart de pression (Ep) , le gain (Kpa) varie selon une première fonction linéaire jusqu'à un troisième seuil (S2) de la valeur absolue de l'écart de pression (S p) , puis selon une deuxième fonction linéaire de plus grande pente.
6. Procédé selon la revendication 5, caractérisé en ce que la valeur absolue de la pente de la deuxième fonction linéaire pour les valeurs négatives de l'écart de pression (£p) est égale à la pente de la fonction linéaire pour les valeurs positives de l'écart de pression (Ep) .
7. Procédé selon l'une quelconque des revendica¬ tions 1 à 6, caractérisé en ce que la valeur du gain (Kpa) est une fonction croissante de la capacité du volume de la chambre (3) dont on doit contrôler la pression, la différence entre les gains pour deux volumes donnés étant constante lorsque l'écart de pression varie.
8. Procédé d'asservissement selon l'une quelconque des revendications précédentes, caractérisé en ce que, dans le cas d'un asservissement en pression, pour des valeurs croissantes de la position (x^) de l'actionneur rotatif, on ajoute une valeur fixe à la valeur de la consigne de position fournie à la première boucle d'asservissement à partir du début du passage dans la zone morte et, pour des valeurs décroissantes de la position (x-t) de l'actionneur rotatif, la valeur de consigne de position reprend sa valeur initiale à partir du début du passage dans la zone morte.
9. Procédé d'asservissement selon la revendication 7, caractérisé en ce que ladite valeur fixe correspond au déplacement du tiroir (1) entre sa position neutre de repos et une de ses deux positions de travail.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il est appliqué à une servovalve hydraulique.
11. Procédé selon l'une des revendications 1 à 9, caractérisé en ce qu'il est appliqué à une servovalve pneumatique.
EP96930228A 1995-09-08 1996-09-06 Procede d'asservissement d'une servovalve pouvant etre asservie en debit et en pression Ceased EP0848844A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9510535A FR2738613B1 (fr) 1995-09-08 1995-09-08 Procede d'asservissement d'une servovalve hydraulique pouvant etre asservie en debit et en pression
FR9510535 1995-09-08
PCT/FR1996/001374 WO1997009663A1 (fr) 1995-09-08 1996-09-06 Procede d'asservissement d'une servovalve pouvant etre asservie en debit et en pression

Publications (1)

Publication Number Publication Date
EP0848844A1 true EP0848844A1 (fr) 1998-06-24

Family

ID=9482377

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96930228A Ceased EP0848844A1 (fr) 1995-09-08 1996-09-06 Procede d'asservissement d'une servovalve pouvant etre asservie en debit et en pression

Country Status (5)

Country Link
US (1) US5915401A (fr)
EP (1) EP0848844A1 (fr)
CA (1) CA2231340A1 (fr)
FR (1) FR2738613B1 (fr)
WO (1) WO1997009663A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465382B2 (en) * 2001-06-13 2008-12-16 Eksigent Technologies Llc Precision flow control system
US20020189947A1 (en) * 2001-06-13 2002-12-19 Eksigent Technologies Llp Electroosmotic flow controller
US7004362B2 (en) * 2001-12-07 2006-02-28 Boone Brian T Method and apparatus for carrying a car seat
JP4298354B2 (ja) * 2002-04-24 2009-07-15 キヤノン株式会社 位置制御システムおよび位置制御方法
US7454254B2 (en) * 2005-08-30 2008-11-18 Honeywell International, Inc. Aircraft cabin pressure control system and method for reducing outflow valve actuator induced cabin pressure oscillations
CN105589481B (zh) * 2015-03-31 2018-05-22 河南华润电力古城有限公司 智能滑压控制方法及系统
US20200348702A1 (en) * 2019-04-30 2020-11-05 Illinois Tool Works Inc. Advanced pressure based mass flow controllers and diagnostics
DE102019209091A1 (de) * 2019-06-24 2020-12-24 Festo Se & Co. Kg Verfahren zum Betreiben eines Fluidsystems, Fluidsystem und Computerprogrammprodukt

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948295A (en) * 1955-09-13 1960-08-09 Conval Corp Electrical valve positioner
US3402972A (en) * 1966-08-11 1968-09-24 Gen Electric Continuous pressure control system
US3552428A (en) * 1968-06-20 1971-01-05 Phillips Petroleum Co Automatically tuned process controller
CA1080793A (fr) * 1975-10-09 1980-07-01 Thomson-Csf Agencement de commande electronique pour l'allumage d'un moteur a combustion interne
US4059128A (en) * 1976-03-12 1977-11-22 Dresser Industries, Inc. Digital pressure standard
FR2374528A1 (fr) * 1976-12-17 1978-07-13 Cii Systeme d'allumage electronique et moteur a combustion interne equipe d'un tel systeme
FR2437506A1 (fr) * 1978-09-29 1980-04-25 Thomson Csf Capteur de position angulaire pour moteur a combustion interne equipe d'un systeme d'allumage electronique
US4313414A (en) * 1980-01-14 1982-02-02 Thomson-Csf Shaft position sensor for an internal combustion engine equipped with an electronic ignition system
US4417312A (en) * 1981-06-08 1983-11-22 Worcester Controls Corporation Electronic controller for valve actuators
US4798527A (en) * 1988-03-07 1989-01-17 Vickers, Incorporated Control system for injection molding machine
US4961441A (en) * 1989-11-13 1990-10-09 Salter Stuart C Method and system for controlling a pressure regulator
US5094260A (en) * 1990-10-26 1992-03-10 Alcon Surgical, Inc. Proportional valve and pressure control system
FR2682922B1 (fr) * 1991-10-23 1996-07-05 Thomson Csf Procede et dispositif de freinage de vehicules par asservissement du couple de freinage applique sur une roue.
FR2688620B1 (fr) * 1992-03-10 1994-10-21 Thomson Csf Dispositif de transmission d'energie de commande mecanique, notamment pour le controle de la pression de freinage dans un frein.
US5297987A (en) * 1992-06-01 1994-03-29 United Technologies Corporation Pressure control servo loop
FR2696398B1 (fr) * 1992-10-06 1994-11-04 Thomson Csf Procédé, dispositif de freinage et véhicule équipé.
FR2708747B1 (fr) * 1993-08-06 1995-09-01 Thomson Csf Procédé de recalibrage d'un processeur de gestion d'énergie de batteries.
FR2708746B1 (fr) * 1993-08-06 1995-09-01 Thomson Csf Procédé d'évaluation de la charge restante dans une batterie d'accumulateurs.
FR2713019B1 (fr) * 1993-11-23 1995-12-22 Thomson Csf Procédé et dispositif de surveillance et d'équilibrage dynamique d'un pack de batteries d'accumulateurs.
FR2721413B1 (fr) * 1994-06-21 1996-08-30 Thomson Csf Dispositif de commande d'un tiroir hydraulique.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9709663A1 *

Also Published As

Publication number Publication date
FR2738613B1 (fr) 1997-10-24
FR2738613A1 (fr) 1997-03-14
US5915401A (en) 1999-06-29
WO1997009663A1 (fr) 1997-03-13
CA2231340A1 (fr) 1997-03-13

Similar Documents

Publication Publication Date Title
US4907493A (en) Valve control system for hitch motor
US6424902B1 (en) Method and apparatus for operating a continuously variable transmission in the torque limited region near zero output speed
CN1023196C (zh) 注塑机控制系统
FR2685264A1 (fr) Dispositif d'entrainement pour un vehicule de travaux, appareil et procede pour synchroniser les vitesses de moteurs d'entrainement separes d'un tel dispositif.
US4754824A (en) Method and apparatus for steering a vehicle
FR2508104A1 (fr) Dispositif de commande pour un moteur pouvant fonctionner avec deux carburants gaz/gazole
FR2761039A1 (fr) Procede et dispositif de mise en oeuvre d'un systeme de guidage d'un vehicule automobile
FR2874410A1 (fr) Procede et dispositif pour commander un verin pneumatique
FR2800427A1 (fr) Procede et systeme de commande d'un ecoulement de fluide dans un systeme electrohydraulique comprenant des circuits hydrauliques multiples
FR2607199A1 (fr) Dispositif pour produire des pressions hydrauliques elevees
JP2001108098A (ja) 油圧機械式駆動装置用の下限速度制御装置及びその作動方法
FR2489545A1 (fr) Systeme adaptif pour la detection des defaillances d'une servocommande d'un aeronef
EP0249559B1 (fr) Procédé et dispositif d'asservissement en position d'un verin pneumatique
EP0848844A1 (fr) Procede d'asservissement d'une servovalve pouvant etre asservie en debit et en pression
US20210025374A1 (en) Hydraulic Pressurizing Medium Supply Assembly, and Method
FR2473130A1 (fr) Systeme de commande de pompes hydrauliques pour engins de genie civil
JP2013528763A (ja) トランスミッション・モータトルクの較正
US5628187A (en) Method to calibrate a hydrostatic transmission with electronic controls
FR2812249A1 (fr) Dispositif de regulation d'un systeme d'entrainement pour chariot de manutention
FR2982239A1 (fr) Procede et dispositif de detection du blocage d'une gouverne d'aeronef.
FR2799776A1 (fr) Unite de commande pour engin de chantier
FR3016488A1 (fr) Procede et dispositif de commande d'un levier de manœuvre d'un vehicule
US4120233A (en) Hydraulic control system for at least two consumers
FR2628693A1 (fr) Systeme de freinage a regulation du glissement et a modelisation de la pression de modulateur
FR2686310A1 (fr) Systeme pour la commande d'une surface aerodynamique d'un aeronef.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE DK ES FR GB IT NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000822

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20010226